Биографии Характеристики Анализ

Теории флогистона. Смотреть что такое "Флогистон" в других словарях

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Теория "флогистона", ее значение для развития органической химии

Со второй половины XVI века начинается новый период развития химии. Передовые ученые того времени приходят к выводу, что химию следует изучать как самостоятельную область естествознания, независимо от применения ее для целей алхимии или врачевания. Химию следует считать не служанкой какого-нибудь искусства или профессии, а существенной частью великого учения о природе; только при этом условии химия как наука может достигнуть значительных успехов. В этот период постепенно начинают устанавливаться первые представления о химически чистом, или индивидуальном, веществе, о сложных веществах и их составных частях и о химических элементах как о пределе разложения всех веществ.

Накопление сведений о веществах и их взаимных отношениях дало возможность сделать два важных обобщения:

1. О постоянстве многих свойств у определенного, или «чистого», вещества: нечистота есть следствие примеси других веществ, а не результат влияния невещественных свойств.

2. О родственных отношениях между определенными веществами: данное вещество может быть получено лишь из некоторых (а не из всех) веществ, и, наоборот, эти последние могут быть получены из данного вещества.

Все это позволило знаменитому английскому ученому, физику и химику Роберту Бойлю (1627--1691) высказать впервые идею об элементах как о пределе разложения веществ («The Sceptical Chymist», 1661). Отказавшись от идеи гипотетических «философских» элементов как носителей качеств веществ, он пришел к твердому убеждению, что необходимо обращать внимание главным образом на те составные части веществ, которые можно фактически выделить и которые, следовательно, реально существуют. Если эти составные части невозможно разложить далее, то их следует называть элементами. Таким образом, число элементов не может быть дано a priori, а может быть установлено только опытом.

Однако взгляды Бойля завоевывали признание химиков медленно и постепенно, и указанные выше выводы сделались господствующими только к началу XVIII века. Для окончательного установления понятия об элементах как о конечных продуктах разложения веществ понадобилось еще около ста лет. Недоставало еще критерия для суждения о том, какие изменения веществ следует признать соединением и какие разложением; поэтому сложные вещества можно было считать простыми, и наоборот.

С конца XVII и почти до конца XVIII века в умах химиков безраздельно господствовала флогистонная теория, выдвинутая с целью объяснения процессов горения и вообще окисления, а также процессов восстановления. Гипотеза флогистона была первой теорией в химии и позволила обобщить множество реакций. Это было заметным шагом на пути становления химии как науки. В 70x годах XVIII века теория флогистона была опровергнута трудами Антуана Лавуазье, благодаря которым ее сменила другая -- кислородная теория горения.

Георг Эрнст Шталь (Stahl, Georg Ernst) (1659-1734), немецкий врач и химик, создатель теории флогистона. Родился 21 октября 1659 в Ансбахе. В 1673-1679 изучал медицину и химию в Йенском университете, стал там же приват-доцентом, затем профессором медицины. С 1687 - придворный врач герцога Заксен-Веймарского Иоганна Эрнста. В 1694 был избран профессором медицины только что открывшегося университета в Галле. Преподавал основы медицины и работал в клинике, проводил обширные теоретические и экспериментальные исследования в области химии. В 1715 был приглашен в Берлин на должность придворного врача прусского короля Фридриха Вильгельма I. Стал президентом Медицинской коллегии - высшего медицинского учреждения Пруссии. Благодаря его усилиям в Берлине была основана Медико-хирургическая коллегия для подготовки военных врачей.

В историю химии Шталь вошел как автор теории флогистона (от греч. флогистос, воспламеняющийся). Сам термин встречается еще у Аристотеля, а затем у ряда врачей и химиков Средневековья, но первый набросок учения об одном из «начал» макрокосма, «горючей земле», дал предшественник Шталя Иоганн Бехер.

Идеи Шталя были изложены в многочисленных трудах - Основания зимотехники, или общая теория брожения (Zimotechnica fundamentalis seu Fermentationis theoria generalis, 1697), Бехеров пример (дополнение к Подземной физике Бехера) (Specimen Becherianum, 1723), Основания догматической и экспериментальной химии (Fundamenta Chymiae dogmaticae et experimentalis, 1723). Шталю принадлежат также работы по горному делу, металлургии, пробирному искусству.

Создателями теории флогистона считаются немецкие химики Иоганн Иоахим Бехер и Георг Эрнст Шталь. Бехер в книге "Подземная физика" (1669) изложил свои очень эклектичные взгляды на составные части тел. Таковыми, по его мнению, являются три вида земли: первая - плавкая и каменистая (terra lapidea), вторая - жирная и горючая (terra pinguis) и третья - летучая (terra fluida s. mercurialis). Горючесть тел, по мнению Бехера, обусловлена наличием в их составе второй, жирной, земли. Система Бехера очень похожа на алхимическое учение о трёх принципах, в котором горючесть обусловлена наличием серы; однако Бехер считает, что сера является сложным телом, образованным кислотой и terra pinguis. По сути, теория Бехера представляла собой одну из первых попыток предложить нечто новое взамен алхимического учения о трёх принципах. Увеличение массы металла при обжиге Бехер традиционно объяснял присоединением "огненной материи". Эти взгляды Бехера послужили предпосылкой к созданию теории флогистона, предложенной Шталем в 1703 г., хотя и имеют с ней очень мало общего. Тем не менее, сам Шталь всегда утверждал, что авторство теории принадлежит Бехеру.

Суть теории флогистона можно изложить в следующих основных положениях:

1. Существует материальная субстанция, содержащаяся во всех горючих телах - флогистон (от греческого цлпгйуфпж - горючий).

2. Горение представляет собой разложение тела с выделением флогистона, который необратимо рассеивается в воздухе. Вихреобразные движения флогистона, выделяющегося из горящего тела, и представляют собой видимый огонь. Извлекать флогистон из воздуха способны лишь растения.

3. Флогистон всегда находится в сочетании с другими веществами и не может быть выделен в чистом виде; наиболее богаты флогистоном вещества, сгорающие без остатка.

4. Флогистон обладает отрицательной массой.

Теория Шталя, подобно всем предшествующим, также исходила из представлений, будто свойства вещества определяются наличием в них особого носителя этих свойств. Положение флогистонной теории об отрицательной массе флогистона (значительно более позднее и признававшееся не всеми сторонниками теории) было призвано объяснить тот факт, что масса окалины (или всех продуктов горения, включая газообразные) больше массы обожжённого металла.

Процесс обжига металла в рамках теории флогистона можно отобразить следующим подобием химического уравнения:

Металл = Окалина + Флогистон

Для получения металла из окалины (или из руды), согласно теории, можно использовать любое тело, богатое флогистоном (т.е. сгорающее без остатка) - древесный или каменный уголь, жир, растительное масло и т.п.:

Окалина + Тело, богатое флогистоном = Металл

Необходимо подчеркнуть, что эксперимент может только подтвердить справедливость этого предположения; это являлось хорошим аргументом в пользу теории Шталя. Флогистонная теория со временем была распространена на любые процессы горения. Тождество флогистона во всех горючих телах было обосновано Шталем экспериментально: уголь одинаково восстанавливает и серную кислоту в серу, и земли в металлы. Дыхание и ржавление железа, по мнению последователей Шталя, представляют собой тот же процесс разложения содержащих флогистон тел, но протекающий медленнее, чем горение.

Первая теория научной химии - теория флогистона - в значительной степени основывалась на традиционных представлениях о составе веществ и об элементах как носителях определённых свойств. Тем не менее, именно она стала в XVIII веке главным условием и основной движущей силой развития учения об элементах. Энгельс оценивает теорию флогистона следующим образом: «Химия... освободилась от алхимии посредством теории флогистона». Именно во время почти столетнего существования флогистонной теории завершилось начатое Бойлем превращение алхимии в химию.

Флогистонная теория горения была создана для описания процессов обжига металлов, изучение которых являлось одной из важнейших задач химии конца XVIII века. Металлургия в это время столкнулась с двумя проблемами, разрешение которых было невозможно без проведения серьёзных научных исследований - большие потери при выплавке металлов и топливный кризис, вызванный почти полным уничтожением лесов в Европе.

Основой для теории флогистона послужили традиционные представления о горении как о разложении тела. Феноменологическая картина обжига металлов была хорошо известна: металл превращается в окалину, масса которой больше массы исходного металла (Бирингуччо ещё в 1540 г. показал, что вес свинца увеличивается после прокаливания); кроме того, при горении имеет место выделение газообразных продуктов неизвестной природы. Целью химической теории стало рациональное объяснение этого феномена, которое можно было бы использовать для решения конкретных технических задач. Последнему условию не отвечали ни представления Аристотеля, ни алхимические взгляды на горение.

Теория флогистона позволила, дать приемлемое объяснение процессам выплавки металлов из руды, состоящее в следующем. Руда, содержание флогистона в которой мало, нагревается с древесным углем, который очень богат флогистоном; флогистон при этом переходит из угля в руду, и образуются богатый флогистоном металл и бедная флогистоном зола.

Флогистонная теория - первая истинно научная теория химии - послужила мощным стимулом для развития количественного анализа сложных тел, без которого было бы абсолютно невозможным экспериментальное подтверждение идей о химических элементах. Следует отметить, что положение об отрицательной массе флогистона фактически сделано на основании закона сохранения массы, который был открыт значительно позднее. Это предположение само по себе способствовало дальнейшей активизации количественных исследований. Ещё одним результатом создания флогистонной теории явилось активное изучение химиками газов вообще и газообразных продуктов горения в частности. К середине XVIII века одним из важнейших разделов химии стала т.н. пневматическая химия, основоположники которой Джозеф Блэк, Даниил Резерфорд, Генри Кавендиш, Джозеф Пристли и Карл Вильгельм Шееле явились создателями целой системы количественных методов в химии.

Во второй половине XVIII века теория флогистона завоевала среди химиков практически всеобщее признание. На основе флогистонных представлений сформировалась номенклатура веществ; предпринимались попытки связать такие свойства вещества, как цвет, прозрачность, щёлочность и т.п., с содержанием в нём флогистона. Французский химик Пьер Жозеф Макёр, автор весьма популярного учебника "Элементы химии" и "Химического словаря" писал в 1778 г., что флогистонная теория "…наиболее ясна и наиболее согласна с химическими явлениями. Отличаясь от систем, порождённых воображением без согласия с природой и разрушаемых опытом, теория Шталя - надёжнейший путеводитель в химических исследованиях. Многочисленные опыты… не только далеки от того, чтобы её опровергнуть, но, наоборот, становятся доказательствами в её пользу". По иронии судьбы, учебник и словарь Макёра появились в то время, когда век флогистонной теории подошёл к концу.

Следует отметить, что в исторической литературе имеются серьёзные разногласия в оценке роли теории флогистона - от резко негативной до положительной. Однако нельзя не признать, что теория флогистона имела целый ряд несомненных достоинств:

Она просто и адекватно описывает экспериментальные факты, касающиеся процессов горения;

Теория внутренне непротиворечива, т.е. ни одно из следствий не находится в противоречии с основными положениями;

Теория флогистона целиком основана на экспериментальных фактах;

Теория флогистона обладала предсказательной способностью.

Знаменитые химики того времени Михаил Ломоносов, Карл Шееле, Джозеф Пристли, Генри Кавендиш искали способы выделения флогистона из различных веществ, но так и не смогла его обнаружить. Ломоносов, например, допускал, что флогистон - материальное тело, состоящее из мельчайших частиц (корпускул).

Всюду и везде химики того времени искали следы таинственного флогистона.

Если сгорал уголь, химик говорил: -- Весь флогистон из угля ушел в воздух. Осталась одна зола. Когда фосфор, вспыхнув ярким пламенем, превращался в сухую фосфорную кислоту, то это объяснялось так же: фосфор, мол, распался на свои составные части -- на флогистон и фосфорную кислоту. Даже когда раскаленный или влажный металл ржавел -- и тут химик видел козни флогистона: -- Ушел флогистон, и от блестящего металла осталась ржавчина, или окалина.

Никто не мог объяснить толком, что такое флогистон. Иные думали, что это нечто вроде газа, а другие говорили, что флогистон нельзя ни увидеть, ни получить отдельно, так как самостоятельно он существовать не может, а всегда связан с каким-нибудь другим веществом.

Некоторые ученые одно время утверждали, будто им удалось выделить флогистон в чистом виде. Но потом они сами же усомнились в этом и заявили: «Пожалуй, то, что мы приняли за чистый флогистон, вовсе и не флогистон».

Не знали, есть ли у него вес, как у всякого другого тела, или он невесом. Флогистон казался неуловимым и бесплотным, как призрак. Но все химики того времени упорно верили в его существование.

Откуда же возникла эта странная вера? Всякому, кто наблюдал за огнем, бросалось в глаза, что горящее вещество разрушается и исчезает. Из зажженного тела словно что-то выделяется и уходит с пламенем, а на его месте остаются зола, пепел, окалина или кислота. (Теперь мы называем подобный продукт горения ангидридом кислоты). Горение, казалось, уничтожает вещество, выгоняя из него нечто призрачное, неуловимое -- «душу огня». Вот и было решено, что горение есть распад сложного горючего вещества на особый огненный элемент -- флогистон -- и другие составные части.

В период развития теории флогистона впервые было замечено различие в свойствах типичных сложных и изменчивых органических веществ и типичных простых и устойчивых минеральных веществ, какими являются металлы, окислы, кислоты, минеральные соли и т. п. Однако соответственно установившемуся в то время делению вещественного мира на три царства природы -- минеральное, растительное и животное, вещества также стали делить по происхождению на вещества минеральные, растительные и животные. Химики еще не решались объединить понятия о веществах растительного и животного происхождения в одно общее понятие органических веществ.

Деление на растительные, животные я минеральные вещества впервые появляется в 1675 г. в курсе химии Лемери. Другие химики того времени пытаются обосновать это деление и отыскать причину различия веществ разного происхождения. Так, Бехер полагал, что «элементы в различных царствах природы одни и те же, но в растительных и животных веществах они соединены более сложным, а в минеральных -- более простым способом». Другой автор флогистонной теории, Шталь, объясняет различие свойств различным составом: «в минеральных веществах, -- говорит он, -- преобладает землистое, а в растительных и животных -- водное и горючее начало».

Химия органических веществ за период господства теории флогистона не сделала заметных успехов ни в теоретическом, ни в практическом отношении. Органические вещества исследовали только для нужд фармации или с целью усовершенствования технических процессов, например процесса крашения.

Несмотря на то, что теория флогистона неверно истолковывала факты, она, особенно в первое время, оказалась полезной для развития химии. На ее основе удалось установить родственные отношения громадного числа вещестз и, используя ее как руководящую нить для химического исследования, правильно предсказать многие химические отношения веществ.

Экспериментальное исследование химических реакций в этот период впервые стало на твердую почву.

Уже к середине XVIII века вследствие накопления фактического материала теория флогистона начинает задерживать развитие химии как науки, препятствуя объяснению новых данных. Так, например, в Петербурге в 1785 г. Т.Е. Ловиц открыл явление адсорбции веществ углем из растворов, но, находясь под влиянием теории флогистона, не смог правильно объяснить это явление, хотя и сделал из него важные практические выводы.

Первым аргументом против теории флогистона явилось открытие в 1748 г. гениальным русским ученым М.В. Ломоносовым закона сохранения вещества. В письме к Л. Эйлеру от 5 июля 1748 г. Ломоносов писал: «...все изменения, совершающиеся в природе, происходят таким образом, что сколько к чему прибавилось, столько же отнимается от другого. Так, сколько к одному телу прибавится вещества, столько же отнимется от другого...» Этот закон был установлен Ломоносовым на основании блестящих экспериментальных работ, среди которых особого внимания заслуживают его опыты окисления металлов при нагревании в запаянных сосудах. Взвешивая прибор на точных весах до и после опыта, Ломоносов приходит к выводу, что после происшедшей химической реакции окисления металла вес прибора не изменяется. Своими опытами Ломоносов опроверг результаты аналогичных опытов Р. Бойля. Ошибка последнего заключалась в том, что он по окончании опыта вскрывал запаянный сосуд; в реторту врывался воздух, и вес прибора увеличивался. Это и привело Бойля к неправильному выводу осуществовании весомой «материи огня».

Работы Ломоносова, однако, не были оценены современниками, и лишь более чем сто лет спустя вызвали удивление и восхищение всего ученого мира.

Окончательное крушение теории флогистона произошло в результате открытия кислорода и выяснения его роли в процессах окисления. Кислород был открыт в 1774 г. Шееле и, независимо от него, Пристли. Однако эти выдающиеся экспериментаторы оба были убежденнейшими сторонниками теории флогистона (в их время уже опровергнутой) и поэтому отказались не в состоянии сделать какие-либо действительно научные выводы из своего открытия. Полученный ими кислород они считали лишь «дефлогистированным», или «огненным», воздухом, в котором горение происходит более интенсивно, чем в обычном воздухе. Ни Шееле, ни Пристли не смогли понять огромного значения открытой ими важнейшей роли кислорода в химических процессах, несмотря на то, что в их руках имелись убедительные факты. Даже после того как Лавуазье дал правильное объяснение явлений горения и вообще окисления, они продолжали слепо отстаивать свою неверную точку зрения. Ф. Энгельс в предисловии ко второму тому «Капитала» К. Маркса писал по поводу этого исторического факта следующее: «Пристли и Шееле описали кислород, но они не знали, что оказалось у них в руках. Они «оставались в плену» флогистонных «категорий, которые они нашли у своих предшественников». Элемент, которому суждено было ниспровергнуть все флогистонные воззрения и революционизировать химию, пропадал в их руках совершенно бесплодно... Лавуазье, руководствуясь этим новым фактом, вновь подверг исследованию всю флогистонную химию и впервые открыл, что новая разновидность воздуха была новым химическим элементом, что при горении не таинственный флогистон выделяется из горящего тела, а этот новый элемент соединяется с телом... И если даже Лавуазье и не дал описания кислорода, как он утверждал впоследствии, одновременно с другими и независимо от них, то все же по существу дела открыл кислород он, а не те двое, которые только описали его, даже не догадываясь о том, чтоименно они описывали».

Таким образом, заслуга окончательного ниспровержения теории флогистона принадлежит Лавуазье, который, применяя, как и Ломоносов, строго количественный метод исследования, в своих опытах (1772--1777) доказал, что процесс горения представляет собой не разложение вещества, а реакцию соединения вещества с кислородом. Говоря образно, Лавуазье поставил химию с головы на ноги.

теория флогистон влияние развитие химия

Литература

А. Азимов. Краткая история химии. Развитие идей и представлений в химии. М.: Мир, 1983. 187 стр.

А.Н. Шамин. История биологической химии. Формирование биохимии. М.: Наука, 1983. 262 стр.

В.А. Волков, Е.В. Вонский, Г.И. Кузнецова Выдающиеся химики мира. М.: Высшая школа, 1991. 656 стр.

П.М. Зоркий Критический взгляд на основные понятия химии. Журнал Российского химического общества им. Д.И. Менделеева, 1996, том 40, N3, стр.5-25.

Раков Э.Г. Вещества и люди: заметки и очерки о химии. М. «Академкнига», 2003, 318 с.

Ю.И. Соловьев История химии (Развитие химии с древнейших времен до конца XIX в. М.: Просвещение, 1983.

Размещено на Allbest.ru

Подобные документы

    Теория флогистона и система Лавуазье. Творец теории флогистона - Георг Шталь. Он считал, что флогистон содержится во всех горючих и способных к окислению веществах. Периодический закон. Дмитрий Иванович Менделеев.

    реферат , добавлен 05.04.2004

    Теория флогистона и система Лавуазье. Периодический закон. История современной химии как закономерный процесс смены способов решения ее основной проблемы. Различные подходы к самоорганизации вещества. Общая теория химической эволюции и биогенеза Руденко.

    курсовая работа , добавлен 28.02.2011

    Происхождение термина "химия". Основные периоды развития химической науки. Типы наивысшего развития алхимии. Период зарождения научной химии. Открытие основных законов химии. Системный подход в химии. Современный период развития химической науки.

    реферат , добавлен 11.03.2009

    Процесс зарождения и формирования химии как науки. Химические элементы древности. Главные тайны "трансмутации". От алхимии к научной химии. Теория горения Лавуазье. Развитие корпускулярной теории. Революция в химии. Победа атомно-молекулярного учения.

    реферат , добавлен 20.05.2014

    История химии как науки. Родоночальники российской химии. М.В.Ломоносов. Математическая химия. Атомная теория - основа химической науки. Атомная теория просто и естественно объясняла любое химическое превращение.

    реферат , добавлен 02.12.2002

    Краткий исторический обзор развития органической химии. Первые теоретические воззрения. Теория строения А.М. Бутлерова. Способы изображения органических молекул. Типы углеродного скелета. Изомерия, гомология, изология. Классы органических соединений.

    контрольная работа , добавлен 05.08.2013

    Основные направления научных достижений Д.И. Менделеева. Его значение в истории мировой науки, в области физической химии. Изучение упругости газов, химической теории растворов, создание периодического закона. Создание учебника-монографии "Основы химии".

    реферат , добавлен 19.03.2011

    Основные этапы развития химии. Алхимия как феномен средневековой культуры. Возникновение и развитие научной химии. Истоки химии. Лавуазье: революция в химии. Победа атомно-молекулярного учения. Зарождение современной химии и ее проблемы в XXI веке.

    реферат , добавлен 20.11.2006

    Зарождение химии в Древнем Египте. Учение Аристотеля об атомах как идейная основа эпохи алхимии. Развитие химии на Руси. Вклад Ломоносова, Бутлерова и Менделеева в развитие этой науки. Периодический закон химических элементов как стройная научная теория.

    презентация , добавлен 04.10.2013

    Главные положения классической теории химического строения молекулы. Характеристики, определяющие ее реакционную способность. Гомологический рад алканов. Номенклатура и изометрия углеводородов. Классификация кислородосодержащих органических соединений.

Введение

Представления древнегреческих натурфилософов оставались основными идейными истоками естествознания вплоть до XVIII в. До начала эпохи Возрождения в науке господствовали представления Аристотеля. В дальнейшем стало расти влияние атомистических взглядов, впервые высказанных Евклидом и Демокритом. Алхимические работы опирались преимущественно на натурфилософские взгляды Платона и Аристотеля. Большинство экспериментаторов того периода были откровенными шарлатанами, которые пытались с помощью примитивных химических реакций получить или золото, или философский камень - вещество, дающее бессмертие. Однако были и настоящие ученые, которые пытались систематизировать знания. Среди них Авиценна, Парацельс, Роджер Бэкон др. Некоторые химики считают, что алхимия - это зря потерянное время. Однако это не так: в процессе поиска золота было открыто множество химических соединений и изучены их свойства. Благодаря этим знаниям в конце XVII века была создана первая серьезная химическая теория - теория флогистона.

Теория флогистона и система Лавуазье

Первая теория научной химии - теория флогистона - в значительной степени основывалась на традиционных представлениях о составе веществ и об элементах как носителях определённых свойств. Тем не менее, именно она стала в XVIII веке главным условием и основной движущей силой развития учения об элементах и способствовала полному освобождению химии от алхимии. Именно во время почти столетнего существования флогистонной теории завершилось начатое Бойлем превращение алхимии в химию. Флогистонная теория горения была создана для описания процессов обжига металлов, изучение которых являлось одной из важнейших задач химии конца XVIII века. Металлургия в это время столкнулась с двумя проблемами, разрешение которых было невозможно без проведения серьёзных научных исследований - большие потери при выплавке металлов и топливный кризис, вызванный почти полным уничтожением лесов в Европе. Основой для теории флогистона послужили традиционные представления о горении как о разложении тела. Феноменологическая картина обжига металлов была хорошо известна: металл превращается в окалину, масса которой больше массы исходного металла (Бирингуччо ещё в 1540 г. показал, что вес свинца увеличивается после прокаливания); кроме того, при горении имеет место выделение газообразных продуктов неизвестной природы. Целью химической теории стало рациональное объяснение этого феномена, которое можно было бы использовать для решения конкретных технических задач. Последнему условию не отвечали ни представления Аристотеля, ни алхимические взгляды на горение.

Создателями теории флогистона считаются немецкие химики Иоганн Иоахим Бехер и Георг Эрнст Шталь . Бехер в книге "Подземная физика" (1669) изложил свои очень эклектичные взгляды на составные части тел. Таковыми, по его мнению, являются три вида земли: первая - плавкая и каменистая (terra lapidea), вторая - жирная и горючая (terra pinguis) и третья - летучая (terra fluida s. mercurialis). Горючесть тел, по мнению Бехера, обусловлена наличием в их составе второй, жирной, земли. Система Бехера очень похожа на алхимическое учение о трёх принципах, в котором горючесть обусловлена наличием серы; однако Бехер считает, что сера является сложным телом, образованным кислотой и terra pinguis. По сути, теория Бехера представляла собой одну из первых попыток предложить нечто новое взамен алхимического учения о трёх принципах. Увеличение массы металла при обжиге Бехер традиционно объяснял присоединением "огненной материи". Эти взгляды Бехера послужили предпосылкой к созданию теории флогистона, предложенной Шталем в 1703 г., хотя и имеют с ней очень мало общего. Тем не менее, сам Шталь всегда утверждал, что авторство теории принадлежит Бехеру.

Суть теории флогистона можно изложить в следующих основных положениях:

  • 1. Существует материальная субстанция, содержащаяся во всех горючих телах - флогистон
  • 2. Горение представляет собой разложение тела с выделением флогистона, который необратимо рассеивается в воздухе. Вихреобразные движения флогистона, выделяющегося из горящего тела, и представляют собой видимый огонь. Извлекать флогистон из воздуха способны лишь растения.
  • 3. Флогистон всегда находится в сочетании с другими веществами и не может быть выделен в чистом виде; наиболее богаты флогистоном вещества, сгорающие без остатка.
  • 4. Флогистон обладает отрицательной массой.

Теория Шталя, подобно всем предшествующим, также исходила из представлений, будто свойства вещества определяются наличием в них особого носителя этих свойств. Положение флогистонной теории об отрицательной массе флогистона (значительно более позднее и признававшееся не всеми сторонниками теории) было призвано объяснить тот факт, что масса окалины (или всех продуктов горения, включая газообразные) больше массы обожжённого металла.

Процесс обжига металла в рамках теории флогистона можно отобразить следующим подобием химического уравнения:

Металл = Окалина + Флогистон

Для получения металла из окалины (или из руды), согласно теории, можно использовать любое тело, богатое флогистоном (т.е. сгорающее без остатка) - древесный или каменный уголь, жир, растительное масло и т.п.:

Окалина + Тело, богатое флогистоном = Металл

Необходимо подчеркнуть, что эксперимент может только подтвердить справедливость этого предположения; это являлось хорошим аргументом в пользу теории Шталя. Флогистонная теория со временем была распространена на любые процессы горения. Тождество флогистона во всех горючих телах было обосновано Шталем экспериментально: уголь одинаково восстанавливает и серную кислоту в серу, и земли в металлы. Дыхание и ржавление железа, по мнению последователей Шталя, представляют собой тот же процесс разложения содержащих флогистон тел, но протекающий медленнее, чем горение.

Теория флогистона позволила, в частности, дать приемлемое объяснение процессам выплавки металлов из руды, состоящее в следующем. Руда, содержание флогистона в которой мало, нагревается с древесным углем, который очень богат флогистоном; флогистон при этом переходит из угля в руду, и образуются богатый флогистоном металл и бедная флогистоном зола.

Следует отметить, что в исторической литературе имеются серьёзные разногласия в оценке роли теории флогистона - от резко негативной до положительной. Однако нельзя не признать, что теория флогистона имела целый ряд несомненных достоинств:

  • - она просто и адекватно описывает экспериментальные факты, касающиеся процессов горения;
  • - теория внутренне непротиворечива, т.е. ни одно из следствий не находится в противоречии с основными положениями;
  • - теория флогистона целиком основана на экспериментальных фактах;
  • - теория флогистона обладала предсказательной способностью.

Георг Шталь считал, что флогистон содержится во всех горючих и способных к окислению веществах. Горение или окисление рассматривалось им как процесс, при котором тело теряет флогистон. Воздух играет при этом особо важную роль. Он необходим для окисления, чтобы “вбирать” в себя флогистон. Из воздуха флогистон попадает в листья растений и в их древесину, из которых при восстановлении он вновь освобождается и возвращается телу. Так впервые была сформулирована теория, описывающая процессы горения. Ее особенности и новизна состояли в том, что одновременно рассматривались во взаимосвязи процессы окисления и восстановления. Теория флогистона развивала идеи Бехера и атомистические представления. Она позволяла объяснить протекание различных процессов в ремесленной химии и, в первую очередь, в металлургии и оказала громадное влияние на развитие химических ремесел и совершенствование методов "экспериментального искусства" в химии. Теория флогистона способствовала и развитию учения об элементах. Приверженцы теории флогистона называли элементами оксиды металлов, рассматривая их как металлы, лишенные флогистона. Металлы же, напротив, считали соединениями элементов (оксидов металлов) с флогистоном. Потребовалось лишь поставить все положения этой теории “с головы на ноги”. Что и было сделано в дальнейшем. Для объяснения того, что масса оксидов больше чем масса металлов, Шталь предположил (а, вернее утверждал), что флогистон имеет отрицательный вес, т.е. флогистон соединившись с элементом “тянет” его вверх. Несмотря на одностороннюю, лишь качественную характеристику процессов, происходящих при горении, теория флогистона имела громадное значение для объяснения и систематизации именно этих превращений. На неверность флогистонной теории указывал Михаил Иванович Ломоносов. Однако экспериментально доказать это смог Антуан Лоран Лавуазье. Лавуазье заметил, что при горении фосфора и серы же, как и при прокаливании металлов, происходит увеличение веса вещества. Казалось бы естественным сделать: увеличение веса сжигаемого вещества происходит при всех процессах горения. Однако этот вывод настолько противоречил положениям теории флогистона, что нужна была недюжинная смелость, чтобы высказать его хотя бы в виде гипотезы. Лавуазье решил проверить высказанные ранее Бойлем, Реем, Мэйоу и Ломоносовым гипотезы о роли воздуха в процессах горения. Он интересовался тем, увеличивается ли количество воздуха, если в нем происходит восстановление окисленного тела и выделение благодаря этому дополнительного воздуха. Лавуазье удалось доказать, что действительно количество воздуха при этом возрастает. Это открытие Лавуазье назвал самым интересным со времени работ Шталя. Поэтому в ноябре 1772 г. Он направил в Парижскую Академию наук специальное сообщение о полученных им результатах. На следующем этапе исследований Лавуазье полагал выяснить, какова природа “воздуха”, соединяющегося с горючими телами при их окислении. Однако все попытки установить природу этого “воздуха” в 1772-1773 гг. Окончились безрезультатно. Дело в том, что Лавуазье, так же как и Шталь, восстанавливал “металлические извести” путем непосредственного контакта с “углеобразной материей” и тоже получал при этом диоксид углерода, состав которого он не мог тогда установить. Как считал Лавуазье, “уголь сыграл с ним злую шутку”. Однако Лавуазье, как и многим другим химикам, не приходила мысль, что восстановление оксидов металлов можно осуществить нагрева-нием с помощью зажигательного стекла.

Но вот осенью 1774 г. Джозеф Пристли сообщил, что при восстановлении окиси ртути с помощью зажигательного стекла образуется новый вид воздуха - “дефлогистированный воздух”. Незадолго до этого кислород был открыт Шееле, но сообщение об этом было опубликовано с большим запозданием. Шееле и Пристли объясняли наблюдаемое ими явление выделения кислорода с позиций флогистонной теории. Только Лавуазье смог использовать открытие кислорода в качестве главного аргумента против теории флогистона. Весной 1775 г. Лавуазье воспроизвел опыт Пристли. Он хотел получить кислород и проверить, был ли кислород тем компонентом воздуха, благодаря которому происходило горение или окисление металлов. Лавуазье удалось не только выделить кислород, но и вновь получить оксид ртути. Одновременно Лавуазье определял весовые отношения вступающих в эту реакцию веществ. Ученому удалось доказать, что отношения количества веществ, участвующих в реакциях окисления и восстановления, остаются неизменными.

Работы Лавуазье произвели в химии, пожалуй, такую же революцию, как два с половиной века до открытия Коперника в астрономии. Вещества, которые раньше считались элементами, как показал Лавуазье, оказались соединениями, состоящими в свою очередь из сложных “элементов”. Открытия и воззрения Лавуазье оказали громадное влияние не только на развитие химической теории, но и на всю систему химических знаний. Они так преобразовали саму основу химических знаний и языка, что следующие поколения химиков, по существу, не могли понять даже терминологию, которой пользовались до Лавуазье. На этом основании впоследствии стали считать, что о “подлинной” химии нельзя говорить до открытий Лавуазье. Преемственность химических исследований при этом была забыта. Только историки химии начали вновь воссоздавать действительно существовавшие закономерности развития химии. При этом было выяснено, что “химическая революция” Лавуазье была бы невозможна без существования до него определенного уровня химических знаний.

Развитие химических знаний Лавуазье увенчал созданием новой системы, в которую вошли важнейшие достижения химии прошлых веков. Эта система, правда, в значительно расширенном и исправленном виде, стала основой научной химии. В 80-х гг. XVIII в. Новая система Лавуазье получила признание у ведущих естествоиспытателей Франции - К. Бертолле, А. Де Фуркруа и Л. Гитона де Морво. Они поддержали новаторские идеи Лавуазье и совместно с ним разработали новую химическую номенклатуру и терминологию. В 1789 г. Лавуазье изложил основы разработанной им системы знаний в учебнике “Начальный курс химии, представленный в новом виде на основе новейших открытий”.

Лавуазье разделял элементы на металлы и неметаллы, а соединения на двойные и тройные. Двойные соединения, образуемые металлами с кислородом, он относил к основаниям, а соединения неметаллов с кислородом - к кислотам. Тройные соединения, получающиеся при взаимодействии кислот и оснований, он называл солями. Система Лавуазье основывалась на точных качественных и количественных исследованиях. Этот довольно новый вид аргументации он использовал, изучая многие спорные проблемы химии - вопросы теории горения, проблемы взаимного превращения элементов, которые были весьма актуальны в период становления научной химии.

Так, для проверки представления о возможности взаимного превращения элементов Лавуазье в течение нескольких дней нагревал воду в запаянной сосуде. В итоге он обнаружил в воде незначительное количество “земли”, установив при этом, что изменение общего веса сосуда вместе с водой не происходит. Образование “земель” Лавуазье объяснил не как результат их выделения из воды, а за счет разрушения стенок реакционного сосуда.

Для ответа на этот вопрос шведский химик аптекарь К. Шееле в то же время использовал качественные методы доказательства, установив идентичность выделяющихся “земель” и материала сосуда. Лавуазье, как и Ломоносов, учитывал существовавшие с древности наблюдения о сохранении веса веществ и систематически изучал весовые соотношения веществ, участвующих в химической реакции. Он обратил внимание на то, что, например, при горении серы или при образовании ржавчины на железе происходит увеличение веса исходных веществ. Это противоречило теории флогистона, согласно которой при горении должен был выделяться гипотетический флогистон. Лавуазье счел ошибочным объяснение, согласно которому флогистон обладал отрицательным весом, и окончательно отказался от этой идеи.

Другие химики, например М.В. Ломоносов или Дж. Мэйоу, пытались объяснить окисление элементов и образование оксидов металлов (или, как тогда говорили, “известей”) как процесс, при котором частицы воздуха соединяются с каким-либо веществом. Этот воздух может быть “оттянут обратно” путем восстановления.

В 1772 г. Лавуазье собрал этот воздух, но не смог установить его природу. Первым об открытии кислорода сообщил Пристли. В 1775 г. Ему удалось доказать, что именно кислород соединяется с металлом и вновь выделяется из него при его восстановлении, как, например, при образовании “извести” ртути и ее восстановлении. Систематическим взвешиванием было установлено, что вес металла, участвующего в этих превращениях, не изменяется.

Сегодня этот факт, казалось бы, убедительно доказывает справедливость предположений Лавуазье, а тогда большинство химиков отнеслись к нему скептически. Одной из причин такого отношения было то, что Лавуазье не мог объяснить процесс горения водорода. В 1783 г. он узнал, что, используя электрическую дугу, Кавендиш доказал образование воды при сжигании смеси водорода и кислорода в закрытом сосуде. Повторив этот опыт, Лавуазье нашел, что вес воды соответствует весу исходных веществ. Затем он провел эксперимент, в котором пропускал водяной пар через железные стружки, помещенные в сильно нагреваемую медную трубку. Кислород соединялся с железными стружками, а водород собирался на конце трубки.

Таким образом, воспользовавшись превращениями веществ, Лавуазье сумел объяснить процесс горения и качественно, и количественно, и для этого ему уже не нужна была теория флогистона. Пристли же и Шееле, которые, открыв кислород, фактически создали основные предпосылки для появления кислородной теории Лавуазье, сами твердо придерживались позиций теории флогистона.

Кавендиш, Пристли, Шееле и некоторые другие химики полагали, что расхождения между результатами опытов и положениями теории флогистона удастся устранить путем создания дополнительных гипотез. Надежность и полнота опытных данных, ясность аргументации и простота изложения способствовали быстрому распространению системы Лавуазье в Англии, Голландии, Германии, Швеции, Италии. В Германии представления Лавуазье были изложены в двух работах д-ра Гиртаннера “Новая химическая номенклатура на немецком языке” (1791 г.) и “Основы антифлогистонной химии” (1792 г.). Благодаря Гиртаннеру впервые появились немецкие обозначения веществ, соответствующие новой номенклатуре, например кислорода, водорода, азота. Работавший в Берлине Гермбштедт опубликовал в 1792 г. учебник Лавуазье в переводе на немецкий язык, а М. Клапрот после того, как он повторил опыты Лавуазье, признал, новое учение; взгляды Лавуазье разделял и знаменитый естествоиспытатель А. Гумбольдт.

В 1790-х годах в Германии не раз публиковались работы Лавуазье. Большинство известных химиков Англии, Голландии, Швеции, талии разделяли взгляды Лавуазье. Нередко в историко-научной литературе можно прочесть, что для признания теории Лавуазье химикам понадобилось достаточно много времени. Однако по сравнению с 200 годами непризнания астрономами взглядов Коперника 10-15-летний период дискуссий в химии не так уж велик.

В последней трети XVIII в. одной из важнейших была проблема, которая многие века интересовала ученых: химики хотели понять, почему и в каких соотношениях соединяются вещества друг с другом. К этой проблеме проявляли интерес еще греческие философы, а во времена Возрождения ученые выдвигали идею о сродстве веществ и даже строили ряды веществ по сродству. Парацельс писал, что ртуть образует с металлами амальгамы, причем для разных металлов с различной скоростью ив такой последовательности: быстрее всего с золотом, затем с серебром, свинцом, оловом, медью и, наконец, медленнее всего с железом. Парацельс считал, что причиной этого ряда химического сродства является не только “ненависть” и “любовь” веществ друг к другу. В соответствии с его представлениями металлы содержат серу, и, чем меньше ее содержание, тем чище металлы, а чистота веществ в значительной мере определяет их сродство друг к другу. Г. Шталь объяснял ряд осаждения металлов как результат различного содержания в них флогистона. До последней трети XVIII в. многочисленные исследования были направлены на то, чтобы расположить вещества по величине их “сродства”, и многие химики составляли соответствующие таблицы. Для объяснения различного химического сродства веществ выдвигались и атомистические представления, а после того, как в конце XVIII - начале XIX вв. Ученые стали понимать влияние электричества на протекание некоторых химических процессов, для этой же цели пытались использовать и представления об электричестве.

Основываясь на них, Берцелиус создал дуалистическую теорию состава веществ, в соответствии с, например, соли состоят из положительно и отрицательно заряженных “оснований” и “кислот”: при электролизе они притягиваются к противоположно заряженным электродам и могут распадаться при этом на элементы вследствие нейтрализации зарядов. Со второй половины XVIII в. особенно много внимания ученые стали уделять вопросу: в каких количественных соотношениях взаимодействуют друг с другом вещества в химических реакциях? Уже давно было известно, что кислоты и основания могут нейтрализовать друг друга. Предпринимались также попытки установить содержание кислот и оснований в солях. Т. Бергман и Р. Кирван нашли, что, например, в реакции двойного обмена между химически нейтральными сульфатом калия и нитратом натрия образуются новые соли - сульфат натрия и нитрат калия, которые тоже являются химически нейтральными. Но ни один из исследователей не сделал из этого наблюдения общего вывода. В 1767 г. Кавендиш обнаружил, что количество азотной и серной кислот, нейтрализующие одинаковые количества карбоната калия, нейтрализуют также одинаковое количество карбоната кальция. И.Рихтер первым сформулировал закон эквивалентов, объяснение которому было найдено позднее с позиций атомистической теории Дальтона.

Рихтер установил, что раствор, получающийся при смешивании растворов двух химически нейтральных солей, тоже нейтрален. Он провел многочисленные определения количеств оснований и кислот, которые, соединяясь, дают химически нейтральные соли. Рихтер сделал следующий вывод: если одно и то же количество какой-либо кислоты нейтрализуется различными, строго определенными количествами разных оснований, то эти количества оснований эквивалентны и нейтрализуются одним и тем же количеством другой кислоты. Выражаясь современным языком, если к раствору сульфата калия, например, добавить раствор нитрата бария до полного осаждения сульфата бария, то раствор, содержащий нитрат калия, тоже будет нейтрален:

K2SO4 + Ba(NO3)2 = 2KNO3 + BaSO4.

Следовательно, при образовании нейтральной соли эквивалентны друг другу следующие количества: 2K, 1Ba, 1SO4 и 2NO3. Полинг обобщил и сформулировал в современном виде этот закон соединительных весов”: “Весовые количества двух элементов (или их целочисленные кратные), которые, реагируют с одним и тем же количеством третьего элемента, реагируют друг с другом в тех же количествах”. Вначалеработы Рихтера почти не привлекли внимания исследователей, поскольку он пользовался еще терминологией флогистонной теории. Кроме того, полученные ученым ряды эквива-лентных весов были недостаточно наглядны, а предложенный им выбор относительных количеств оснований не имел серьезных доказательств. Положение исправил Э.Фишер, который среди эквивалентных весов Рихтер выбрал в качестве эталона эк-вивалент серной кислоты, приняв его равным 100, и составил, исходя из этого, таблицу “относительных весов” (эквивалентов) соединений. Но о таблице эквивалентов Фишера стало известно лишь благодаря Бертолле, который, критикуя Фишера, привел эти данные в своей книге “Опыт химической статики” (1803 г.). Бертолле сомневался, что состав химических соединений постоянен. Он имел на это основание. Вещества, которые в начале XIX в. считались чистыми, на самом деле были либо смесями, либо равновесными системами различных веществ, а количественный состав химических соединений во многом зависел от количеств веществ, участвующих в реакциях их образования.

Некоторые историки химии считают, что, подобно Венцелю, Бертолле также предвосхитил основные положения закона действия масс, который аналитически выражал влияние количеств взаимодействующих на скорость превращения. Немецкий химик К. Венцель в 1777 г. показал, что скорость растворения металла в кислоте, измеряемая количеством металла, растворившегося за определенное время, пропорциональна “силе” кислоты. Бертолле сделал многое для учета влияния масс реагентов на ход превращения.

Однако между работами Венцеля и даже Бертолле, с одной стороны, и точной формулировкой закона действия масс - с другой, существует качественное различие. Негативное отношение Бертолле к закону нейтрализации Рихтера не могло длиться долго, так как против положений Бертолле энергично выступил Пруст. Проделав в течение 1799-1807 гг. массу анализов, Пруст доказал, что Бертолле сделал свои выводы о различном составе одних и тех же веществ, анализируя смеси, а не индивидуальные вещества, что он, например, не учитывал содержания воды в некоторых оксидах. Пруст убедительно доказал постоянство состава чистых химических соединений и завершил свою борьбу против взглядов Бертолле установлением закона постоянства состава веществ: состав одних и тех же веществ независимо от способа получения одинаков (постоянен).

флогистон лавуазье шталь химия

Заключение

Флогистонная теория - первая истинно научная теория химии - послужила мощным стимулом для развития количественного анализа сложных тел, без которого было бы абсолютно невозможным экспериментальное подтверждение идей о химических элементах.

Следует отметить, что положение об отрицательной массе флогистона фактически сделано на основании закона сохранения массы, который был открыт значительно позднее. Это предположение само по себе способствовало дальнейшей активизации количественных исследований. Ещё одним результатом создания флогистонной теории явилось активное изучение химиками газов вообще и газообразных продуктов горения в частности.

К середине XVIII века одним из важнейших разделов химии стала т.н. пневматическая химия, основоположники которой Джозеф Блэк , Даниил Резерфорд , Генри Кавендиш , Джозеф Пристли и Карл Вильгельм Шееле явились создателями целой системы количественных методов в химии. Во второй половине XVIII века теория флогистона завоевала среди химиков практически всеобщее признание.

На основе флогистонных представлений сформировалась номенклатура веществ; предпринимались попытки связать такие свойства вещества, как цвет, прозрачность, щёлочность и т.п., с содержанием в нём флогистона.

Французский химик Пьер Жозеф Макёр , автор весьма популярного учебника "Элементы химии" и "Химического словаря", писал в 1778 г., что флогистонная теория "…наиболее ясна и наиболее согласна с химическими явлениями. Отличаясь от систем, порождённых воображением без согласия с природой и разрушаемых опытом, теория Шталя - надёжнейший путеводитель в химических исследованиях. Многочисленные опыты… не только далеки от того, чтобы её опровергнуть, но, наоборот, становятся доказательствами в её пользу". По иронии судьбы, учебник и словарь Макёра появились в то время, когда век флогистонной теории подошёл к концу.

Литература

  • 1) Ахметов Н.С. Общая и неорганическая химия. - М.: Высшая школа,1988.
  • 2) Дикерсон Р., Грей Г., Грей Дж. Основные законы химии: В 2-х т. / Перевод с английского и предисловие Е.Л. Розенберга.-М.: Мир, 1982.
  • 3) Некрасов Б.В. Основы общей химии: Т. I. -М.: Химия, 1969.
  • 4) Штрубе В. Пути развития химии: В 2-х т. / Перевод с немецкого А.Ш. Гладкой, под редакцией В.А. Крицмана. - М.: Мир, 1984.
Очерк общей истории химии [От древнейших времен до начала XIX в.] Фигуровский Николай Александрович

Г. Э. ШТАЛЬ И ОСНОВАНИЕ ТЕОРИИ ФЛОГИСТОНА

Г. Э. ШТАЛЬ И ОСНОВАНИЕ ТЕОРИИ ФЛОГИСТОНА

В сочинениях химиков второй половины XVII в. большое внимание отводилось толкованиям явлений горения и кальцинации (превращение в «известь») металлов. Такое внимание вполне понятно и связано с потребностями расширявшегося производства, в первую очередь с топливной проблемой. Развитие металлургической и металлообрабатывающей промышленности, стекольного производства и других отраслей техники привело в ряде стран Западной Европы к катастрофическому истреблению лесов. Недостаток древесного топлива и особенно древесного угля - единственного в то время средства для восстановления металлов из руд, широко применявшегося в производстве, поставил перед учеными и практиками задачу найти пути более экономичного и рационального использования топлива. Одновременно начались поиски заменителей древесного угля в металлургических процессах. Еще в 1619 г. Дад Дадлей (1599–1684) предложил применять в доменном процессе вместо древесного угля каменный. Поэтому технологи-металлурги и химики, разрабатывавшие пути осуществления этого предложения, довольно широко изучали процессы горения и свойства топлива.

С другой стороны, быстро развивающаяся металлургическая промышленность испытывала нужду в рационализации технологии производства в других отношениях. В частности, обсуждался вопрос о больших потерях металла, превращавшегося в окалину при плавке и термической обработке. Поэтому широко изучался процесс кальцинации металлов и восстановления их из окислов. Кроме того, металлурги XVII в. столкнулись с проблемой добычи металлов из бедных руд. Требовалось научное обоснование переработки таких руд с минимальными потерями металлов.

Развитие представлений о горении и кальцинации металлов происходило в тесной связи с учениями о составных частях сложных тел. На общем фоне господства многих традиционных пережитков средневековья, схоластических догматов и алхимических верований эти учения нередко принимали уродливые формы. Единой точки зрения по вопросу об основных первоначалах тел не существовало. Одни химики придерживались учения о трех первоначалах спагириков, а другие признавали лишь старинное аристотелевское учение о четырех элементах-качествах; большинство же химиков XVII в. пыталось примирить оба учения, придумывая при этом различные гипотетические принципы вещей; четвертые, наконец, такие, как Бойль, высказывали сомнение в справедливости учений перипатетиков и спагириков, формулировали новые идеи, но были непоследовательными в их приложении к объяснениям химических явлений.

Правильное по существу определение понятия «элемент», данное Бойлем, ни у него самого, ни у его современников не нашло логического развития. Оставалось неясным, какие же вещества следует считать истинными элементами тел. Вот почему химики не могли, да и не хотели расстаться со старыми представлениями об элементах и занимались поисками путей подтверждения этих учений, имея в своем распоряжении лишь единственное средство для разложения тел: «универсальный анализатор» - огонь.

Убеждение в том, что при горении и прокаливании тела разлагаются на более простые составные части по сравнению с самим прокаливаемым телом, едва ли можно ставить в вину химикам того времени. Они повседневно наблюдали такое разложение, получая в остатке землю (золу) и, в виде летучих продуктов, воду и некоторые воздухообразные вещества, еще неясной в то время природы. Естественно, что и кальцинацию металлов они рассматривали как частный случай горения с образованием в остатке той же земли («извести»). Подтверждение того, что при прокаливании металл разлагается на составные части, они видели и в образовании дыма, например в случае кальцинации сурьмы посредством зажигательного стекла и нечистых металлов. Никого из них не смущало то, что в результате кальцинации металлы значительно увеличиваются в весе. Этот факт рассматривался как второстепенное, побочное явление, не имеющее большого значения при трактовке процессов кальцинации как разложения металла. Любое объяснение этого факта казалось приемлемым, лишь бы оно не противоречило основной концепции. Бойль дал одно из таких объяснений, допустив, что при кальцинации металлов к ним присоединяется огненная материя. И его точка зрения без критики была принята большинством химиков.

В такой обстановке протекала деятельность основателя теории флогистона Г. Э. Шталя. Разработанная им система взглядов, основанная на сложившихся к концу XVII в. представлениях о составных частях тел и явлениях горения, а также явлениях кальцинации металлов, получила вскоре полное и безраздельное признание химиков и на многие десятилетия утвердилась в качестве теоретической основы химии.

Георг ЭрнстШталь (72) (1659–1734) в молодости изучал медицину в Иенском университете, по окончании которого, получив ученую степень в 1683 г., вел здесь же преподавательскую работу в качестве приват-доцента. В 1687 г. он был приглашен на должность лейб-медика к герцогу Саксен-Веймарскому, а в 1693 г. переехал в Галле во вновь основанный университет в качестве второго ординарного профессора медицины и химии (первым профессором был Ф. Гоффман, о котором будет сказано ниже). В течение 22-летней профессорской деятельности в Галле Шталь подготовил много учеников, некоторые из которых впоследствии стали видными учеными. Все они были горячими поклонниками и последователями нового флогистического учения и широко пропагандировали его в своих сочинениях. В 1716 г. Шталь переехал в Берлин, стал членом Прусской академии наук и королевским лейб-медиком. В берлинский период своей деятельности он опубликовал свои важнейшие сочинения по химии и, в частности, известный курс «Основания догматической и экспериментальной химии» (73).

Теоретические воззрения Шталя окончательно сложились в берлинский период его жизни. В начале своей деятельности в Иене Шталь был близок к алхимии. Познакомившись с сочинениями Бехера, он стал горячим последователем его учений. Взгляды Шталя по вопросу об элементарных составных частях тел в этот период в общем отражали господствовавшие в то время представления. Он делил все тела на простые, которые он называл принципами, или началами, и сложные. Эти последние он в свою очередь делил по степени сложности на «смешанные» и «составные» тела. Кроме того, он выделял в особый класс сложные составные тела, которые называл «агрегатами».

В качестве главных составных частей сложных тел Шталь принимал элементы алхимиков, а с другой стороны, он считал началами тел и последние составные части, которые могут быть выделены из сложного тела в результате разложения. Те из них, о которых ничего достоверно не было известно, он называл «физическими началами», остальные же - «химическими началами». Последние он именовал по-разному, однако в соответствии с элементами алхимиков - ртутью и солью. Так, он употреблял термины «сухая землистость», «воспламеняемое летучее» и «летучий флюид», или соль, «масло», «спирт» и т. д.

В сочинениях, которые Шталь опубликовал в конце XVII в., его взгляды о составных частях сложных тел получили некоторое развитие в связи с объяснением им явлений горения и в особенности явления кальцинации металлов. Еще в Иене Шталь начал исследования, связанные, по-видимому, с рационализацией доменного процесса и металлообрабатывающих производств. Мастеровые обратили его внимание на явление, причинявшее им много неприятностей. Впоследствии Шталь писал об этом следующее: «Кузнецы, медники, литейщики колоколов и пуговичные мастера жаловались на то, что из несовершенных металлов в процессе прокаливания их на воздухе выгорает некоторая часть; металлы при этом распадаются, превращаясь как бы в золу… Почему это происходит, что это за явление, как оно протекает, что именно уходит из металла и, равным образом, как следует поступить, чтобы этого не происходило, или каким образом восстановить потери, - это неизвестно даже таким опытным мастерам» (74).

Несомненно, именно в связи с этой проблемой, Шталь уже в своей «Зимотехнии» (75), вышедшей первым изданием в 1697 г., делает упор на особую роль в процессах горения той «составной части» металлов и горючих тел вообще, которая обусловливает их горючесть. Выясняя природу этой «составной части» горючих тел, он обсуждает, в частности, вопрос о составе серы, которую он относил, как и Лемери и другие химики того времени, к сложным телам. В том же году Шталь (76) описывает следующий, по его выражению, «новый эксперимент синтеза» серы. Он нейтрализовал серную кислоту поташом и прокалил получившуюся при этом соль (сульфат калия) с углем, в результате чего образовалась «серная печень», т. е. смесь сульфидов калия. Из раствора этой серной печени действием кислот он получил серу. На основании этого опыта Шталь заключил, что сера состоит из кислой части, т. е. серной кислоты, и из другой части - «горючего начала», которое содержится в угле.

Здесь же Шталь высказывает мнение, широко развитое им в дальнейших сочинениях, что «горючее начало», содержащееся в угле и жирных веществах, входит также в состав неблагородных металлов. Это следует из того факта, что в присутствии угля и маслянистых субстанций металлы восстанавливаются из «известей» при нагревании. Таким образом, металлы помимо землистой составной части содержат это «начало горючести», и именно это «начало» сообщает металлам их металлические свойства. Для обозначения этого принципа горючести Шталь употребляет термин «флогистон» (от греческих - «огонь» и - «горючий») и пишет это слово по-гречески.

В 1703 г. Шталь переиздал книгу Бехера «Подземная физика». В специальном приложении к этой книге, озаглавленном «Специмен Бехера» («Specimen Becherianum») (77), Шталь вновь развивает взгляды о составных частях металлов и о «начале горючести». Он особо подчеркивает, что эти представления принадлежат собственно не ему, а Бехеру: «Becheriana sunt quae profero», т. е. «то, что я излагаю, принадлежит Бехеру» (78). Однако они довольно значительно отличаются от бехеровских. Действительно, в отличие от Бехера и других своих предшественников, полагавших, что все горючие тела содержат сернистые или жирные составные части, или terra pinguis, придающие им способность гореть, Шталь имеет в виду некий абстрактный «принцип горючести» и поэтому вводит для него специальное название - «флогистон» (79), с целью устранить путаницу в обозначениях.

В дальнейших сочинениях и особенно в вышедшей в 1723 г. книге «Основания химии» Шталь еще шире развивает свои первоначальные представления о флогистоне. Исходя из основного положения, что наличие флогистона в телах служит условием их горючести, Шталь выясняет, в частности, отношение флогистона к огню. По его мнению, огонь (нагревание) необходим для осуществления химических превращений, но он не может рассматриваться в качестве составной части тел, выделяющейся при разложении в виде пламени. Иначе сказать, Шталь отрицает элементарность аристотелевского огня-стихии. Что же касается флогистона, содержащегося в горючих телах, то при выделении из них, утверждает Шталь, он способен соединяться с различными веществами, в частности с воздухом, причем такие соединения весьма прочны. При горении тел флогистон улетучивается из них, производя при этом быстрое вихреобразное движение, и, соединяясь с воздухом, образует то, что обычно называется пламенем или огнем. Из воздуха, в котором флогистон рассеивается, его невозможно выделить химическим путем. Только растения могут извлекать его из воздуха; через растения он переходит и в животные организмы.

Шталь знал, что металлы при нагревании без доступа воздуха не могут превращаться в «извести», но не объяснил достаточно отчетливо этот факт. Он знал также, что при кальцинации вес металлов увеличивается, но говорил об этом как о малозначащем факте и объяснял его в соответствии со взглядами Кункеля.

В чистейшем состоянии флогистон, согласно Шталю, содержится в саже, полученной при сжигании хорошо очищенных масел. Таким образом, флогистон как будто бы можно сопоставить с углеродом. Но Шталь не считал флогистон углеродом и вообще каким-либо определенным веществом. Однако, по его представлениям, «горючая субстанция, или способное производить огонь начало, не только нечто действительное, но и нечто телесное (et-was Korperliches)» (80) и вместе с тем это простое вещество, которое не может быть разложено на какие-либо составные части.

Но Шталь принимал, что флогистон является вещественным лишь в том случае, когда он находится в сочетании с другими веществами в сложных телах. Только тогда он способен при нагревании этих тел проявляться в виде огня. В свободном же состоянии это нечто неопределенное. В «Случайных мыслях» (81) Шталь указывает: «…Вне сомнений, он (флогистон) или совсем не дает огня, представляя собой невидимую тонкость, или же образует далеко разветвленный невидимый огонь, а именно: теплоту». Поэтому, продолжает Шталь, эта первоначальная основная сущность горючести «до сих пор не была найдена и познана сама по себе, вне связи и соединения с другими материями, и не была поэтому описана в соответствии с своими основными качествами».

Далее Шталь указывает, что именно наличием флогистона в составе тел объясняются их цвета и запахи. Этот принцип горючести «присутствует во всех смешанных телесных вещах в большей или меньшей степени, притом во всех трех царствах - растительном, животном и минеральном». «Особенно часто встречается это вещество в растительных и животных образованиях, все части которых пронизаны им, за исключением находящейся в них случайно воды» (82).

Не трудно понять, что с точки зрения объяснения явлении окисления и восстановления металлов флогистон Шталя - это нечто противоположное кислороду или, лучше сказать, это «отрицательный кислород». Если воспользоваться методом уравнений для изображения процесса окисления металл а, то, сточки зрения последователей теории флогистона, мы получили бы: Металл - флогистон = металлическая известь (окисел). Эту реакцию, как известно, можно выразить уравнением: Металл + кислород = окисел металла («известь» флогистиков).

Из сказанного очевидно, что учение Шталя о флогистоне основано на совершенно ошибочных представлениях не только о процессах горения и кальцинации металлов, но и о составляющих тела простых, элементарных веществах. В понятии «флогистон» нельзя не видеть обобщения учений об аристотелевских стихиях-качествах и алхимических принципах тел; принцип горючести, т. е. «сернистой» - «жирной», или «горючей» составной части тел, сопоставлен с аристотелевским элементом-качеством - огнем. По представлениям Шталя, флогистон в большей степени абстрактное понятие, чем материальное тело, т. е. флогистон понимался им аналогично тому, как понималась алхимиками «сера» как принцип вещей или аристотелианцами - «огонь» как элемент-качество. Только впоследствии, уже в период расцвета теории флогистона, химики принялись за поиски среди материальных тел этого неуловимого вещества. Ю. Либих писал в связи с этим: «Вначале флогистон был одно только понятие, вопрос же о материальном его существовании не имел никакого значения до тех пор, пока содержащаяся в нем идея не приносила плодов относительно приведения фактов в порядок и новых обобщений» (83).

Преемственность в представлениях алхимиков и флогистиков очевидна. Она сказалась не только в том, что в основу теории флогистона легло учение о горении тел как об их распаде, и не только в неопределенности и в метафизичности самого понятия «флогистон», но и в том, что теория флогистона не устранила алхимических учений и прежде всего учения о трех первоначалах, составляющих тела. Как известно, именно это учение и было своего рода теоретической основой бесплодных поисков алхимиками философского камня и путей трансмутации металлов. Поэтому, если встать на точку зрения некоторых историков химии, считающих возникновение теории флогистона началом научного развития химии, то следовало бы согласиться с мнением, что «алхимия - мать химии». Однако, как будет видно далее, подлинное научное развитие химии началось лишь тогда, когда из научного обихода были полностью изгнаны основы алхимических учений, прежде всего учение о трех элементах алхимиков, и вместе с ним сам флогистон и другие фантазии, окутанные мистическим туманом.

При всем этом теория флогистона принесла несомненную пользу для дальнейшего развития химии. Эта теория позволила рассматривать с единой точки зрения различные химические процессы, которые ранее считались совершенно разнородными и объяснялись в каждом случае особыми причинами. Особенно важно, что эта теория давала возможность просто объяснять явления окисления и восстановления металлов. Правда, «простота объяснения ослепляла как самого Шталя, так и последовавшее за ним поколение химиков, так что никто из них не замечал вопиющих противоречий между флогистической теорией и фактами» (84). Теория флогистона оплодотворила и экспериментальные исследования химиков, получившие в XVIII в. широкое развитие. Как указывает Дж. Бернал: «Центральным вопросом, вокруг которого вращалась эта теория, была универсальность противоположных процессов флогистации-дефлогистации. Таким образом, она объединяла сходные процессы и разделяла несходные» (85).

Следует, однако, иметь в виду, что быстрый прогресс химии в конце XVIII в. был обусловлен отнюдь не тем, что химики истолковывали вновь добывавшиеся ими новые факты с точки зрения флогистического учения. Со второй половины XVIII в. в химии, под влиянием потребностей бурно развивавшейся промышленности и других факторов, в том числе и потребностей самой химии, началось быстрое накопление экспериментального материала, главным образом данных о составе различных солей, минералов, растительных извлечений и т. п. Эти новые факты, добытые в эпоху господства теории флогистона, но совершенно независимо от существования этого учения, и явились той базой, на которой стала возможной и «химическая революция» и внедрение в химию атомистики и учения об элементах.

Теория флогистона не сразу была принята всеми химиками. Она получила широкое распространение главным образом благодаря деятельности учеников Шталя, многие из которых прославились не столько как теоретики, сколько как экспериментаторы и химики-технологи. Несомненно, что по крайней мере отчасти их достижения в области технической химии и привлекали внимание ученых разных стран Европы. Из сочинений по технической химии, а также из трудов химиков-аналитиков - сторонников теории флогистона и были восприняты европейскими химиками флогистические доктрины.

Приведем в заключение определение, данное Шталем предмету и задачам химии. В курсе «Основания химии» он дает следующее определение химии: «Химия, иначе алхимия и спагирия, есть искусство разделять тела как смешанные, так и составные и агрегированные на их начала (принципы), а также таковые составлять из начал. Ее субъектами служат все смешанные и составные тела, которые могут быть разделены и составлены вновь; цель же ее - само разделение и составление, иначе - разрушение и возрождение» (86). Это определение, так же как и приведенное ранее определение Лемери, типично для химиков-врачей того времени и отражает лишь задачи химии как искусства с чисто практическим направлением, обслуживающего в первую очередь нужды медицины и фармации.

Отметим в заключение, что Шталь был последователем корпускулярной теории, но понимал ее чисто механистически.

Из книги Славянская Европа V–VIII веков автора Алексеев Сергей Викторович

Основание Киева За Днепр волынцевские племена вторглись уже в начале своей истории. Это не было массовое переселение - большинство жителей киевской округи сохранило свою культуру. Волынцевцы постепенно растворились в их среде. Однако с этого времени полянское

Из книги Императорская Россия автора Анисимов Евгений Викторович

Основание Петербурга Петр I, отпраздновав взятие Нотебурга, не решился идти вниз по Неве и отложил поход до весны 1703 года. В ту зиму отряды Меншикова, как сообщала первая русская газета «Ведомости», нападали на мызы и деревни в окрестностях Кексгольма и там захватили

автора

Географическое его основание Прежде всего поищем этих условий в свойствах страны, где установился изучаемый порядок. Родовая нераздельность княжеского владения в Киевской Руси имела опору в её географических особенностях, т.е. в условиях её материального

Из книги Курс русской истории (Лекции I-XXXII) автора Ключевский Василий Осипович

Основание политическое В других условиях, вызванных к действию той же колонизацией края, надобно искать источника самой идеи удела как частной личной собственности удельного князя. Колонизация ставила князей Верхнего Поволжья в иные отношения к своим княжествам, каких

Из книги Полная история ислама и арабских завоеваний в одной книге автора Попов Александр

Основание Багдада При начале правления клана Аббасидов постоянно возникал вопрос выбора местонахождения новой столицы. Аль-Мансур, долго пытаясь подыскать что-либо подходящее, понял, что проще основать новый город, и в 762 году заложил на западном берегу реки Тигр в месте,

Из книги Всемирная история без цензуры. В циничных фактах и щекотливых мифах автора Баганова Мария

Основание Александрии Захватив Египет, Александр решил основать там большой город и дать ему свое имя. Считается, что место для города Александру подсказал приснившийся ему Гомер, продекламировавший следующие стихи: На море шумно-широком находится остров,

Из книги История Византийской империи. Время до крестовых походов до 1081 г. автора Васильев Александр Александрович

Основание Константинополя Вторым событием первостепенной важности, после признания Христианства, было основание Константином новой столицы на европейском берегу Босфора, уже при входе его в Мраморное море, на месте древней мегарской колонии Византия (?????????? – Byzantium).

Из книги «Бежали храбрые грузины» [Неприукрашенная история Грузии] автора Вершинин Лев Рэмович

Основание Собственно же история Иверии начинается с Александра Македонского. Вопреки рассказам летописцев, что Двурогий туда заходил, но, естественно, был побежден, восхитился мужеством будущих грузин, помирился с ними и заключил договор о дружбе и взаимопомощи, на

Из книги Сибирская одиссея Ермака автора Скрынников Руслан Григорьевич

ОСНОВАНИЕ ТОБОЛЬСКА Пятьсот сорок казаков прибыли с Ермаком в Сибирь. Лишь девяносто ушли из Кашлыка с головой Иваном Глуховым и Матвеем Мещеряком. Еще три-четыре десятка ермаковцев, ездивших с посольством в Москву, были задержаны там властями.Казаки налегали на весла,

Из книги Египет. История страны автора Адес Гарри

Основание Каира После того как фатимидский военачальник Джавхар, грек или сицилиец, обратившийся в ислам, во главе небольшого отряда верных воинов-берберов взял Фустат (969), он заложил новую резиденцию правителя и город в нескольких милях к северу. Это поселение назвали

Из книги Хунну и Гунны (разбор теорий о происхождении народа Хунну китайских летописей, о происхождении европейских Гуннов и о взаимных отношениях этих двух на автора Иностранцев К.А.

III. Теория турчизма Хунну и финнизма Гуннов. Абель Ремюза, как сторонник первой части этой теории и разбор его доводов. Клапрот - главный представитель этой теории. Его исследования и разбор их. Другие последователи этой теории. Её общее значение. Следующая по времени за

автора

IV. ВОЗНИКНОВЕНИЕ ТЕОРИИ ФЛОГИСТОНА

Из книги Очерк общей истории химии [От древнейших времен до начала XIX в.] автора Фигуровский Николай Александрович

V. КРИЗИС ТЕОРИИ ФЛОГИСТОНА ПРЕДМЕТ И ОБЩИЕ ЗАДАЧИ ИСТОРИИ ХИМИИ В развитии химических наук и химической техники приняли участие многие тысячи ремесленников, химиков-практиков, врачей, технологов, изобретателей и ученых сотен поколений. Все они внесли тот или иной вклад

Из книги Очерк общей истории химии [От древнейших времен до начала XIX в.] автора Фигуровский Николай Александрович

Из книги Очерк общей истории химии [От древнейших времен до начала XIX в.] автора Фигуровский Николай Александрович

НАУЧНАЯ ДЕЯТЕЛЬНОСТЬ ЛАВУАЗЬЕ В ОБЛАСТИ ПНЕВМАТИЧЕСКОЙ ХИМИИ. ОСНОВАНИЕ КИСЛОРОДНОЙ ТЕОРИИ Если не считать двух статей, посвященных анализам образцов гипса, то первой серьезной работой Лавуазье явился мемуар «О природе воды», представленный им в Академию наук 10 мая

Из книги Всемирная история в изречениях и цитатах автора Душенко Константин Васильевич

Введение.

2.Подпериод флогистона.

В семнадцатом столетии началось бурное развитие механики, которое оказалось плодотворным и для химии. У химиков возродился интерес к процессу горения. Почему одни предметы горят, а другие не горят? Что представляет собой процесс горения?

В 1669 году немецкий химик Иоганн Бехер (1635–1682), попытался дать рациональное объяснение явлению горючести. Бехер считает, что в природе существуют три различные земли: первая – плавкая или стекловидная, вторая – жирная или горючая и третья – жидкая. Жирная земля, по Бехеру, являющаяся носителем горючести, напоминает серу прежних химиков. Представления Бехеры были развиты основоположником теории флогистона - немецким врачом и химиком Георгом Шталем (1659–1734). Шталь вместо понятия «жирная земля» ввел понятие «флогистона» (1723) – от греческого «флогистос» - горючий, воспламеняющийся.

Теория флогистона основана на убеждении, что все горючие вещества богаты особым горючим веществом – флогистоном и чем больше флогистона содержит данное тело, тем более оно способно к горению. То, что остается после завершения процесса горения, флогистона не содержит и потому гореть не может. Шталь утверждает, что ржавление металлов подобно горению дерева. Металлы, по его мнению, тоже содержат флогистон, но, теряя его, превращаются в известь, ржавчину или окалину. Однако, если к этим остаткам опять добавить флогистон, то вновь можно получить металлы. При нагревании этих веществ с углем металл «возрождается».

Так впервые была сформулирована теория, описывающая
процессы горения. Ее особенности и новизна состояли в том, что одновременно рассматривались во взаимосвязи процессы окисления и восстановления. Теория флогистона имела целый ряд несомненных достоинств:

Она просто и адекватно описывает экспериментальные факты, касающиеся процессов горения;

Теория внутренне непротиворечива, т.е. ни одно из следствий не находится в противоречии с основными положениями;

Теория флогистона целиком основана на экспериментальных фактах;

Теория флогистона обладала предсказательной способностью.

Флогистонная теория – первая истинно научная теория химии – послужила мощным стимулом для развития количественного анализа сложных тел, без которого было бы абсолютно невозможным экспериментальное подтверждение идей о химических элементах. Эта теория способствовала дальнейшей активизации исследований, целью которых было подтверждение правильности флогистонной теории. Одними из первых преступили к работе Джозеф Блэк (1728-1799), Даниил Резерфорд (1749-1819), Генри Кавендиш (1731-1810), Джозеф Пристли (1733-1804) и Карл Вильгельм Шееле (1742-1786), которые явились создателями целой системы количественных методов в химии, и работами которых, как это ни парадоксально, была опровергнута теория флогистона.


Работы Блэка в области химии не столь многочисленны, но они послужили началом исследований для целой плеяды химиков.
Свою диссертацию Блэк посвятил выяснению природы «едких» и «мягких» щелочей, а также свойствам «воздуха», который выделялся при действии кислот на «мягкие» щелочи. В духе бытовавших представлений Блэк полагал, что «едкость» щелочей связана с присутствием в них разных количеств «огненной материи». Ученый, однако, убедился в ином: прокаливание известняка сопровождается выделением значительного количества «воздуха». Поскольку он легко поглощался («фиксировался») едкими щелочами, Блэк назвал его «фиксируемым». Это означало не что иное, как открытие углекислого газа (1754). Того самого «лесного духа», выделение которого наблюдал при сжигании древесного угля в 1620 г. голландец Ян Ван Гельмонт. Оставив оксид кальция на воздухе Блэк заметил, что он превращается в карбонат, -значит в воздухе есть небольшое количество углекислого газа. Значит воздух непростое вещество, а смесь по крайней мере двух веществ.

Ученик Блэка Даниэль Резерфорд стал проводить другие опыты. Он держал мышь в ограниченном объеме, пока она не погибла, потом свечу, пока не погасла. Потом пропустил воздух через раствор, способный абсорбировать углекислый газ. В оставшемся воздухе мышь погибала. И Резерфорд и Блэк объяснили это с позиции теории флогистона. Пока мыши дышали и свеча горела выделялся флогистон и поступал в воздух. Когда из воздуха убрали углекислый газ, он содержал так много флогистона, что был как бы пропитан им. Этот воздух больше не мог принять флогистона, поэтому свеча не горела. Д.Резерфорд назвал его «постоянным или удушливым воздухом», а позже Антуан Лоран Лавуазье азотом («а» - по-гречески отрицание, «зое»- жизнь) .

Первая опубликованная в 1766 г. работа Кавендиша посвящена «горючему воздуху» (водороду). Прежде всего он увеличивает количество способов получения «горючего воздуха». Кавендиш определил, какой объем «горючего воздуха» выделяется при растворении в кислоте одного и того же количества разных металлов, при какой пропорции смешения «горючего воздуха» с обыкновенным получается взрыв наибольшей силы и, наконец, каков удельный вес «горючего воздуха». Тем не менее самые трудные вопросы, связанные с «горючим воздухом», оставались невыясненными. Откуда берется «горючий воздух» – из металла или кислоты? Куда он девается или, лучше сказать, во что превращается при горении и взрыве? Понять, что "горючий воздух" - это самостоятельный химический элемент, Кавендиш так и не смог.

4.Кислородная теория горения.

Нефлогистонные представления о горении и дыхании зародились даже несколько ранее флогистонной теории. Жан Рей (1583-1645) в 1630 г. высказывал предположение, что увеличение массы металла при обжиге обусловлено присоединением воздуха. Дальнейшее развитие эти взгляды получают в книге "О селитре и воздушном спирте селитры", которую написал в 1669 г. английский химик Джон Мейоу (1645-1679). Мейоу пытается доказать, что в воздухе содержится особый газ (spiritus nitroaëreus ), поддерживающий горение и необходимый для дыхания.

Открытие кислорода было сделано независимо друг от друга почти одновременно несколькими учёными.

Карл Вильгельм Шееле получил кислород в 1771 г., назвав его "огненным воздухом" ; однако результаты опытов Шееле были опубликованы лишь в 1777 г. По мнению Шееле, "огненный воздух" представлял собой "кислую тонкую материю, соединённую с флогистоном".

Джозеф Пристли выделил кислород в 1774 г. нагреванием оксида ртути. Пристли считал, что полученный им газ представляет собой воздух, абсолютно лишённый флогистона, вследствие чего в этом "дефлогистированном воздухе" горение идёт лучше, чем в обычном. Большое значение для создания кислородной теории горения имели, кроме того, открытие водорода Кавендишем в 1766 г. и азота Резерфордом в 1772 г. (следует отметить, что Кавендиш принял водород за чистый флогистон).

Значение сделанного Шееле и Пристли открытия смог правильно оценить французский химик Антуан Лоран Лавуазье (1743-1794). В 1777 г. Лавуазье формулирует основные положения кислородной теории горения. --Горение есть процесс соединения тел с кислородом с одновременным выделением тепла и света. Получающееся при этом продукты –не простые вещества, а сложные, состоящие из тела и кислорода. При горении вес вещества увеличивается. Дыхание тождественно горению, только идет оно медленнее и образующееся при этом тепло идет на поддержание постоянной температуры тела.

1778 Лавуазье формулирует закон сохранения массы: масса никогда не создается и не уничтожается, а лишь переходит от одного вещества к другому. В 1783 Лавуазье, повторив опыты Кавендиша по сжиганию «горючего» воздуха (водорода), сделал вывод, что «вода не есть вовсе простое тело», а является соединением водорода и кислорода.

Новая кислородная теория горения (термин кислород – oxygenium – появляется в 1777 г. в работе Лавуазье "Общее рассмотрение природы кислот и принципов их соединения") имеет ряд существенных преимуществ по сравнению с флогистонной. Она более проста, чем флогистонная, не содержит в себе "противоестественных" предположений и, главное, не основывается на существовании субстанций, не выделенных экспериментально. Вследствие этого кислородная теория горения довольно быстро получает широкое признание среди естествоиспытателей (хотя полемика между Лавуазье и флогистиками длится почти два десятилетия).

5. Химическая революция.

Значение кислородной теории оказалось значительно бóльшим, чем просто объяснение явлений горения и дыхания. Отказ от теории флогистона требовал пересмотра всех основных принципов и понятий химии, изменения терминологии и номенклатуры веществ. Поэтому с кислородной теории начинается переломный этап в развитии химии, названный "химической революцией". В 1785-1787 гг. четыре выдающихся французских химика – Антуан Лоран Лавуазье, Клод Луи Бертолле (1748-1822), Луи Бернар Гитон де Морво (1737-1816) и Антуан Франсуа де Фуркруа (1755-1809) – по поручению Парижской академии наук разрабатывают новую систему химической номенклатуры. Логика новой номенклатуры предполагает построение названия вещества по названиям тех элементов, из которых вещество состоит. Основные принципы этой номенклатуры используются до настоящего времени. В 1789 г. Лавуазье издаёт свой знаменитый учебник "Элементарный курс химии", целиком основанный на кислородной теории горения и новой химической номенклатуре. Появление этого курса собственно и ознаменовало, по мнению Лавуазье, химическую революцию. В "Элементарном курсе химии" Лавуазье приводит первый в истории новой химии список химических элементов, разделённых на несколько типов. В книге имеется 3 части:

1) сведения о газах, их разложении и соединении, образование кислородных соединений; 2)описаны простые вещества (элементы) их всего 33, включая теплород и свет;3)систематизированы химические операции и химическая аппаратура.

Человек давно связал свою судьбу с огнём. Настолько тесно, что с точки зрения взаимоотношений человека и огня можно посмотреть даже на всю историю земной цивилизации. Огонь - это тепло в жилище. Это переход со звериного на человеческий способ питания. Это замена дубины и камня орудиями труда из металла…

Роль огня становилась всё значительнее и всё разнообразнее, а сам он долгое время оставался таинственным и непознанным. До поры до времени это не очень беспокоило, хотя, конечно, о его природе задумывались всегда.

Рост промышленности и металлургического производства, особенно заметный, как уже отмечалось, с XVI–XVII вв., понуждал заняться этим вплотную. Надо было понять, почему, к примеру, так много теряется металла на окалину; почему вес его увеличивается при нагревании. И вообще, что такое горение?

История открытия химических элементов и создания научной теории горения богата фактами, подтверждающими одну парадоксальную мысль, высказанную современным учёным Джоном Берналом: сделать открытие проще, чем понять, что оно сделано.

Вот кислород. Этот элемент вполне мог появиться уже в VIII в. Сведения о нём - косвенные, разумеется, - есть в трактате китайского алхимика Мао Хао. Китайцы знали «деятельное начало», входящее в состав воздуха, и называли его «йын». В XV в. следы кислорода можно обнаружить в трудах Леонардо да Винчи. Потом они снова теряются - до XVII в., когда голландец Дребелль изобретает подводную лодку и очень скоро убеждается, что обычного воздуха для дыхания в ней хватает ненадолго. И он использует селитру, чтобы её кислородом обогатить воздух в подводной лодке. Но этот факт остался незамеченным.

Или возьмём хлор. Трудно поверить, чтобы алхимики с ним ни разу не сталкивались, прокаливая поваренную соль с медным купоросом и квасцами. Алхимикам было не до него. Золото - вот что их интересовало. Да и как поймать и исследовать то, что поймать невозможно: формы оно не имеет и обладает «летучестью»? Первым, кто обратил внимание на эти «летучие» вещества, был знакомый нам Ван-Гельмонт, давший «летучим веществам» название - газы. Однако Ван-Гельмонт тут же предупреждает: газы «нельзя собрать ни в какой сосуд и нельзя сделать видимым телом».

Вряд ли был на свете такой алхимик, который не знал бы, что для горения нужен обычный воздух и что обжиг металла (тогда это называлось кальцинацией) сродни сгоранию дров в камине. Но за разъяснением этих явлений в силу традиции обращались к аристотелевым первоэлементам и к своим алхимическим принципам. Горение представлялось распадом вещества с выделением воздуха. Стало быть, кальцинация - это тоже распад металла.

В XVII в. эта точка зрения стала подвергаться сомнению. В 1673 г. Р.Бойль опубликовал работу «Новые эксперименты о том, как сделать огонь и пламя стойкими и весомыми». В ней он приходит к выводу, что увеличение веса металлов при прокаливании происходит в результате прилипания к нему «огненной материи», которую выделяет горящий уголь.

Чуть раньше, в 1665 г., соотечественник Бойля - Роберт Гук, начинавший у него ассистентом свою научную карьеру, в сочинении «Микрография» предложил, не называя кислорода, иную теорию горения. В воздухе, по мнению Гука, находится вещество, которое в связанном состоянии содержится в селитре (вспомним Дребелля!). Это вещество при высокой температуре растворяет горючие материалы и получается огонь.

И совсем уже незадолго до выхода книги Бойля ещё один его соотечественник, Джон Майов, выпустил на латинском языке трактат «О селитре и воздушном спирте селитры», в котором растворитель Гука был назван «воздушным спиртом». Горение, считал Майов, - это соединение «серных частиц» (дань алхимическому началу сере) с «воздушными огненными частицами»; они-то и увеличивают вес металла при кальцинации. Свою точку зрения Майов доказал опытами, которые стали хрестоматийными. Он погружал в воду стеклянный колокол и зажигал под ним серу, «воздушные огненные частицы» выгорали, общий объем воздуха под колоколом становился меньше, вода поднималась, а горение прекращалось. Если под колокол поместить мышь, горение прекратится еще раньше. Вывод: «воздушные частицы» одинаково нужны и для горения, и для дыхания.

Майов был не только химик, но и врач. И как врач высказал мысли, поразительные для того времени. «Воздушный спирт», считал он, поглощается лёгкими и кровью человека, при этом выделяется тепло, а кровь меняет цвет: тёмная венозная становится ярко-красной артериальной.

И всё-таки первая общая теория горения возникла на основе старых представлений о горении как о процессе, в котором происходит распад, а не соединение веществ. Её творцом был немецкий врач и химик Георг Эрнст Шталь (1660–1734), профессор Йенского университета. В разработке теории он опирался на учение своего предшественника И.И.Бехера о трёх землях и воде - «составных частях всех смешанных тел». Связь этого учения с алхимическими (натрохимическими) воззрениями несомненна. Есть, однако, и существенное отличие. Земля и вода Бехера - материальны, в то время как алхимики, следуя за Аристотелем, обозначали подобными понятиями абстрагированные стихии-качества. Первая земля, по Бехеру, сообщает смешанным телам «телесность, субстанцию и сущность»; вторая придаёт им «консистенцию, цвет, вкус», а третья - «форму, проницаемость, запах, блеск, свечение и т. д.».

Шталь, придерживаясь бехеровской классификации составных частей смешанных тел, вторую землю назвал флогистоном (от греческого флогистос - огонь, воспламеняющийся). Флогистон, по Шталю, - «горючая субстанция, или способное производить огонь начало, - не только нечто действительное, но и нечто телесное». Когда вещество горит, горючая субстанция «улетучивается», оставляя после себя дефлогистированную массу, а пламя - вихреобразное движение этой субстанции в воздухе.

Флогистонная теория сыграла двоякую роль. С одной стороны, она сблизила и объединила окончательно типичные процессы горения с явлениями, наблюдавшимися при обжиге и кальцинировании (окислении) металлов. А с другой, она же стимулировала поиск подлинно научных объяснений этих явлений.

И раньше не раз бывало, что исходные неверные, ненаучные воззрения приводили к открытиям естественнонаучного характера. Флогистон наиболее разительный в этом смысле пример. Химия, по оценке Ф.Энгельса, «…освободилась от алхимии посредством флогистонной теории». Стремясь поймать эту неуловимую «телесную субстанцию» и тем самым доказать справедливость теории, её сторонники успешно рыли ей могилу. На это ушёл почти весь XVIII в.

Трудности у теории начались сразу же. Как же так: если флогистон - это улетучивающаяся «телесная субстанция», то почему вес металла при обжиге не уменьшается, а увеличивается? Флогистон не имеет веса, отвечали сторонники теории. «Телесная субстанция» не имеет веса? - удивились скептики. У неё «отрицательный» вес - нашёлся ученик Шталя Иоганн Юнкер. Хотя никто никогда не видел материальных веществ с отрицательным весом, тем не менее флогистонную теорию признали многие крупные учёные. Более того, изобретались наглядные представления об отрицательном весе флогистона. Француз Гитон де Морво писал: «Приведём в равновесие на весах под водой два свинцовых шара приблизительно одного веса; затем к одной чашке весов подвесим кусок пробки… тогда эта чашка со свинцовым шаром поднимется вверх… несмотря на то, что вес её, очевидно, увеличился. Подобное же происходит при горении, только здесь взвешивание происходит в воздухе…»

Российский академик Михайло Ломоносов в 1756 г. обжигал металлы в запаянной колбе, сравнивал её вес до обжига и после него, и эти опыты убедили его в том, что «славного Роберта Бойля мнение ложно…», потому что вес колбы не изменялся. Он менялся только при обжиге на открытом воздухе. Стало быть, никакой «огненной материи», прилипающей к металлу, нет. А ещё раньше, в 1744 г., в диссертации «Размышления о причине теплоты и холода» Ломоносов высмеял «огненную материю», которая то входит в поры тел, «как бы привлекаемая каким-то приворотным зельем», то бурно покидает их, «как бы объятая ужасом».

Теплоту Ломоносов понимал как движение материальных частиц и впервые отчётливо показал, из чего состоят окружающие нас тела. По его мнению, тела состоят из «первичных корпускул», которые в свою очередь «есть собрание элементов…» А «элемент есть часть тела, не состоящая из каких-либо других меньших и отличающихся от него тел».

Относительно флогистона Ломоносов придерживался мнения, что он существует и представляет собой «горючий воздух», «горючий пар», выделяющийся «при растворении какого-либо неблагородного металла, особенно железа, в кислотных спиртах…» Мы знаем теперь, что «горючий пар», выделяющийся при этих реакциях, - это водород.

Судьбу флогистонной теории решили многочисленные экспериментальные данные, накопленные к концу XVIII в. Окончательный приговор ей вынес француз Антуан Лоран Лавуазье (1743–1794).

Правда, дело обстоит гораздо сложнее, чем кажется на первый взгляд. Существует мнение, что Лавуазье ничего сам не сделал, а лишь присвоил себе чужие открытия, прежде всего шведа Шееле и англичанина Пристли, открывших кислород. Как в этом разобраться?

Карл Вильгельм Шееле (1742–1786) даже среди сторонников Шталя выделялся своей ортодоксальностью, но он был прирождённый экспериментатор. За свою короткую жизнь на простейшем оборудовании, преодолевая отчаянную нужду и болезнь, успел сделать невероятно много. Открыл хлор и марганец, занимался исследованиями сероводорода, фосфора, синтезировал винную, лимонную, щавелевую и другие кислоты, глицерин и эфиры…

В 1768 г. он приступил к исследованиям, которые привели к открытию газа, поддерживающего горение («огненного воздуха»), но опубликовал свои результаты лишь через семь лет в «Химическом трактате о воздухе и огне». А ещё через два года издал книгу. И Пристли, и Лавуазье к этому времени уже опубликовали результаты своих исследований.

Джозеф Пристли (1733–1804) - священник, что не мешало ему быть материалистом и радикалом - он бурно приветствовал Великую французскую революцию. Химиком был по призванию - никакого специального химического образования не имел. Тем не менее именно ему удалось усовершенствовать пневматическую ванну Гейлса, что позволило собирать и анализировать вещества, до этого считавшиеся неуловимыми, т. е. газы. 1 августа 1774 г., нагревая красную окись ртути с помощью линзы, он получил газ, который напоминал обычный воздух: в нём хорошо горела свеча - даже ещё ярче, а тлеющая лучина вспыхивала. Пристли был, как и Шееле, предан флогистону, поэтому открытый газ назвал «дефлогистированным воздухом». Он и умер с мыслью опровергнуть «новую химию» Лавуазье и защитить «превосходную теорию флогистона».

Первые выступления Лавуазье против флогистона (впрочем, без конкретного его упоминания) относятся к 1772 г., когда он представил Французской академии описание опытов по сжиганию фосфора и серы. Вывод тогда он предлагал такой: при горении воздух вступает в соединение с горящим материалом. Через два года горением он стал заниматься ещё более интенсивно и пришёл к твёрдому убеждению, что «первоэлемент» воздух - не простое тело, а смесь газов. Одна часть этих газов нужна для горения, другая - нет. В 1783 г. Лавуазье счёл, видимо, себя вполне подготовленным, чтобы открыто выступить против флогистона. Он издаёт мемуар: «Размышления о флогистоне, являющиеся продолжением теории горения и кальцинации, опубликованной в 1777 году». «Настало время, - решительно говорит Лавуазье, - когда я должен объясниться более чётко и формально по поводу мнения, которое я считаю пагубным заблуждением в химии, задержавшим, как я полагаю, значительным образом прогресс, вводя дурную манеру философствования».

Флогистон Шталя - воображаемое вещество, твёрдо заявляет Лавуазье. Все явления горения проще и яснее объясняются без него, чем с ним.

Ф.Энгельс назвал кислород элементом, «…которому суждено было ниспровергнуть все флогистонные воззрения и революционизировать химию…» И главную роль в этой революции Энгельс отвёл Лавуазье, который открыл, что «…новая разновидность воздуха была вполне новым химическим элементом, что при горении не таинственный флогистон выделяется из горящего тела, а этот новый элемент соединяется с телом, и таким образом, он впервые поставил на ноги всю химию, которая в своей флогистонной форме стояла на голове. И если даже Лавуазье и не дал описания кислорода, как он утверждает впоследствии, одновременно с другими и независимо от них, то всё же по существу дела открыл кислород он, а не те двое, которые только описали его, даже не догадываясь о том, что именно они описывали».

Первым на сторону Лавуазье стал его соотечественник Клод Бертолле, затем Антуан Фуркруа и Гитон де Морво. Спустя некоторое время энергичным сторонником «новой химии» оказался англичанин Джозеф Блэк. Подавляющее же большинство химиков продолжало стоять на флогистонных позициях.

В 1786–1787 гг. Лавуазье совместно с обращёнными в свою веру Фуркруа и Гитоном де Морво разработал «Химическую номенклатуру». Старые воззрения тяжким грузом ещё висели на ногах новой химии: в «Химической номенклатуре» Лавуазье и его коллег наряду с действительно «простыми телами» (элементами) можно найти и «невесомые флюиды» - свет и теплоту…