Биографии Характеристики Анализ

В уравнении гармонического колебания величина, стоящая под знаком косинуса, называется. Уравнение гармонических колебаний В уравнении гармонического колебания x acos

Колебаниями называются движения или процессы, которые характеризуются опреде-ленной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например качание маятника часов, переменный электрический ток и т. д. При колебательном движении маятника изменяется координата его центра масс, в случае переменного тока колеблются напряжение и ток в цепи. Физическая природа колебаний может быть разной, поэтому различают колебания механические, электро-магнитные и др. Однако различные колебательные процессы описываются одинаковы-ми характеристиками и одинаковыми уравнениями. Отсюда следует целесообразность единого подхода к изучению колебаний различной физической природы.

Колебания называются свободными , если они совершаются только под воздействием внутренних сил, действующих между элементами системы, после того как система выведена из положения равновесия внешними силами и предоставлена самой себе. Свободные колебания всегда затухающие колебания , ибо в реальных системах неизбежны потери энергии. В идеализированном случае системы без потерь энергии свободные колебания (продолжающиеся как угодно долго) называются собственными .

Простейшим типом свободных незатухающих колебаний являются гармонические колебания - колебания, при которых колеб-лющаяся величина изменяется со временем по закону синуса (косинуса). Колебания, встречающиеся в природе и технике, часто имеют характер, близкий к гармоническому.

Гармонические колеба-ния описываются уравнением, которое называется уравнением гармонических колебаний:

где А - амплитуда колебаний, максимальное значение колеблющейся величины х ; - круговая (циклическая) частота собственных колебаний; - начальная фаза колебания в мо-мент времени t = 0; - фаза колебания в момент времени t. Фаза колебания определяет значение колеблющейся величины в данный момент времени. Так как косинус изменяется в пределах от +1 до -1, то х может принимать значения от +A до -А .

Время T , за которое система совершает одно полное колебание, называется периодом колебаний . За время Т фаза колебания получает приращение 2π , т. е.

Откуда . (14.2)

Величина , обратная периоду колебаний

т. е. число полных колебаний, совершаемых в единицу времени, называется частотой колебаний. Сравнивая (14.2) и (14.3) получим

Единица частоты - герц (Гц): 1 Гц - частота, при кото-рой за 1с совершается одно полное колебание.

Системы, в которых могут происходить свободные колебания, называются осцилляторами . Какими же свойствами должна обладать система, чтобы в ней могли возникнуть свободные колебания? Механическая система должна иметь положение устойчивого равновесия , при выходе из которого появляется возвращающая сила, направленная к положению равновесия . Этому положению соответствуют, как известно, минимум потенциальной энергии системы. Рассмотрим несколько колебательных систем, удовлетворяющих перечисленным свойствам.

Простейшим видом колебаний являются гармонические колебания - колебания, при которых смещение колеблющейся точки от положения равновесия изменяется с течением времени по закону синуса или косинуса.

Так, при равномерном вращении шарика по окружности его проекция (тень в параллельных лучах света) совершает на вертикальном экране (рис. 1) гармоническое колебательное движение.

Смещение от положения равновесия при гармонических колебаниях описывается уравнением (его называют кинематическим законом гармонического движения) вида:

где х - смешение - величина, характеризующая положение колеблющейся точки в момент времени t относительно положения равновесия и измеряемая расстоянием от положения равновесия до положения точки в заданный момент времени; А - амплитуда колебаний - максимальное смещение тела из положения равновесия; Т - период колебаний - время совершения одного полного колебания; т.е. наименьший промежуток времени, по истечении которого повторяются значения физических величин, характеризующих колебание; - начальная фаза;

Фаза колебании в момент времени t. Фаза колебаний - это аргумент периодической функции, который при заданной амплитуде колебаний определяет состояние колебательной системы (смещение, скорость, ускорение) тела в любой момент времени.

Если в начальный момент времени колеблющаяся точка максимально смещена от положения равновесия, то , а смещение точки от положения равновесия изменяется по закону

Если колеблющаяся точка при находится в положении устойчивого равновесия, то смещение точки от положения равновесия изменяется по закону

Величину V, обратную периоду и равную числу полных колебаний, совершаемых за 1 с, называют частотой колебаний:

Если за время t тело совершает N полных колебаний, то

Величину , показывающую, сколько колебаний совершает тело за с, называют циклической (круговой) частотой .

Кинематический закон гармонического движения можно записать в виде:

Графически зависимость смещения колеблющейся точки от времени изображается косинусоидой (или синусоидой).

На рисунке 2, а представлен график зависимости от времени смещения колеблющейся точки от положения равновесия для случая .

Выясним, как изменяется скорость колеблющейся точки со временем. Для этого найдем производную по времени от этого выражения:

где - амплитуда проекции скорости на ось х.

Эта формула показывает, что при гармонических колебаниях проекция скорости тела на ось х изменяется тоже по гармоническому закону с той же частотой, с другой амплитудой и опережает по фазе смешение на (рис. 2, б).

Для выяснения зависимости ускорения найдем производную по времени от проекции скорости:

где - амплитуда проекции ускорения на ось х.

При гармонических колебаниях проекция ускорения опережает смещение по фазе на к (рис. 2, в).

Гармонические колебания - колебания, при которых физическая величина изменяется с течением времени по гармоническому (синусоидальному, косинусоидальному) закону. Уравнение гармонического колебания можно записать таким образом:
X(t) = A∙cos(ω t+φ )
или
X(t) = A∙sin(ω t+φ )

X - отклонение от положения равновесия в момент времени t
A - амплитуда колебания, размерность A совпадает с размерностью X
ω - циклическая частота, рад/c (радиан в секунду)
φ - начальная фаза, рад
t - время, с
T - период колебания, с
f - частота колебаний, Гц (Герц)
π - константа, примерно равная 3.14, 2π=6.28

Период колебаний, частота в герцах и циклическая частота связаны соотношениями.
ω=2πf , T=2π/ω , f=1/T , f=ω/2π
Чтобы запомнить эти соотношения нужно понять следующее.
Каждый из параметров ω, f, T однозначно определяет остальные. Для описания колебаний достаточно использовать какой-то один из этих параметров.

Период T — время одного колебания, удобно использовать для построения графиков колебаний.
Циклическая частота ω — используется для записи уравнений колебаний, позволяет проводить математические вычисления.
Частота f — количество колебаний в единицу времени, применяется повсеместно. В герцах мы измеряем частоту на которую настроены радиоприемники, а также диапазон работы мобильных телефонов. В герцах измеряется частота колебаний струн, при настройке музыкальных инструментов.

Выражение (ωt+φ) — называется фазой колебания, а величина φ — начальной фазой, так как она равна фазе колебания в момент времени t=0.

Функции синуса и косинуса описывают отношения сторон в прямоугольном треугольнике. Поэтому многие не понимают, каким образом эти функции связаны с гармоническими колебаниями. Эту связь демонстрирует равномерно вращающийся вектор. Проекция равномерно вращающегося вектора совершает гармонические колебания.
На картинке ниже, показан пример трех гармонических колебаний. Одинаковых по частоте, но разных по фазе и по амплитуде.

Изменения какой- либо величины описывают с помощью законов синуса или косинуса, то такие колебания называют гармоническими. Рассмотрим контур, из конденсатора (который перед включением в цепь зарядили) и катушки индуктивности (рис.1).

Рисунок 1.

Уравнение гармонических колебаний можно записать следующим образом:

$q=q_0cos({\omega }_0t+{\alpha }_0)$ (1)

где $t$-время; $q$ заряд, $q_0$-- максимальное отклонение заряда от своего среднего (нулевого) значения в ходе изменений; ${\omega }_0t+{\alpha }_0$- фаза колебаний; ${\alpha }_0$- начальная фаза; ${\omega }_0$- циклическая частота. За период фаза меняется на $2\pi $.

Уравнение вида:

уравнение гармонических колебаний в дифференциальном виде для колебательного контура, который не будет содержать активного сопротивления.

Любой вид периодических колебаний можно точности представить как сумму гармонических колебаний, так называемого гармонического ряда.

Для периода колебаний цепи, которая состоит из катушки и конденсатора мы получим формулу Томсона:

Если мы продифференцируем выражение (1) по времени, то можем получить формулу фунци $I(t)$:

Напряжение на конденсаторе, можно найти как:

Из формул (5) и (6) следует, что сила тока опережает напряжение на конденсаторе на $\frac{\pi }{2}.$

Гармонические колебания можно представлять как в виде уравнений, функций так и векторными диаграммами.

Уравнение (1) представляет свободные незатухающие колебания.

Уравнение затухающих колебаний

Изменение заряда ($q$) на обкладках конденсатора в контуре, при учете сопротивления (рис.2) будет описываться дифференциальным уравнением вида:

Рисунок 2.

Если сопротивление, которое входит в состав контура $R \

где $\omega =\sqrt{\frac{1}{LC}-\frac{R^2}{4L^2}}$ -- циклическая частота колебаний. $\beta =\frac{R}{2L}-$коэффициент затухания. Амплитуда затухающих колебаний выражается как:

В том случае, если при $t=0$ заряд на конденсаторе равен $q=q_0$, тока в цепи нет, то для $A_0$ можно записать:

Фаза колебаний в начальный момент времени (${\alpha }_0$) равна:

При $R >2\sqrt{\frac{L}{C}}$ изменение заряда не является колебаниями, разряд конденсатора называют апериодическим.

Пример 1

Задание: Максимальное значение заряда равно $q_0=10\ Кл$. Он изменяется гармонически с периодом $T= 5 c$. Определите максимально возможную силу тока.

Решение:

В качестве основания для решения задачи используем:

Для нахождения силы тока выражение (1.1) необходимо продифференцировать по времени:

где максимальным (амплитудным значением) силы тока является выражение:

Из условий задачи нам известно амплитудное значение заряда ($q_0=10\ Кл$). Следует найти собственную частоту колебаний. Ее выразим как:

\[{\omega }_0=\frac{2\pi }{T}\left(1.4\right).\]

В таком случае искомая величина будет найдена при помощи уравнений (1.3) и (1.2) как:

Так как все величины в условиях задачи представлены в системе СИ, проведем вычисления:

Ответ: $I_0=12,56\ А.$

Пример 2

Задание: Каков период колебаний в контуре, который содержит катушку индуктивности $L=1$Гн и конденсатор, если сила тока в контуре изменяется по закону: $I\left(t\right)=-0,1sin20\pi t\ \left(A\right)?$ Какова емкость конденсатора?

Решение:

Из уравнения колебаний силы тока, которое приведено в условиях задачи:

мы видим, что ${\omega }_0=20\pi $, следовательно, мы можем вычислить период Колебаний по формуле:

\ \

По формуле Томсона для контура, который содержит катушку индуктивности и конденсатор, мы имеем:

Вычислим емкость:

Ответ: $T=0,1$ c, $C=2,5\cdot {10}^{-4}Ф.$

§ 6. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ Основные формулы

Уравнение гармонических колебаний

где х - смещение колеблющейся точки от положения равновесия; t - время; А, ω, φ- соответственно амплитуда, угловая частота, начальная фаза колебаний; - фаза колебаний в моментt .

Угловая частота колебаний

где ν и Т - частота и период колебаний.

Скорость точки, совершающей гармонические колебания,

Ускорение при гармоническом колебании

Амплитуда А результирующего колебания, полученного при сложении двух колебаний с одинаковыми частотами, происходящих по одной прямой, определяется по формуле

где a 1 и А 2 - амплитуды составляющих колебаний; φ 1 и φ 2 - их начальные фазы.

Начальная фаза φ результирующего колебания может быть найдена из формулы

Частота биений, возникающих при сложении двух колебаний, происходящих по одной прямой с различными, но близкими по зна­чению частотами ν 1 и ν 2 ,

Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях с амплитудами A 1 и A 2 и начальны­ми фазами φ 1 и φ 2 ,

Если начальные фазы φ 1 и φ 2 составляющих колебаний одинако­вы, то уравнение траектории принимает вид

т. е. точка движется по прямой.

В том случае, если разность фаз , уравнение принимает вид

т. е. точка движется по эллипсу.

Дифференциальное уравнение гармонических колебаний ма­териальной точки

, или ,где m - масса точки; k - коэффициент квазиупругой силы (k =т ω 2).

Полная энергия материальной точки, совершающей гармони­ческие колебания,

Период колебаний тела, подвешенного на пружине (пружин­ный маятник),

где m - масса тела; k - жесткость пружины. Формула справедлива для упругих колебаний в пределах, в ко­торых выполняется закон Гука (при малой массе пружины в срав­нении с массой тела).

Период колебаний математического маятника

где l - длина маятника; g - ускорение свободного падения. Период колебаний физического маятника

где J - момент инерции колеблющегося тела относительно оси

колебаний; а - расстояние центра масс маятника от оси колебаний;

Приведенная длина физического маятника.

Приведенные формулы являются точными для случая бесконеч­но малых амплитуд. При конечных амплитудах эти формулы дают лишь приближенные результаты. При амплитудах не болееошибка в значении периода не превышает 1 %.

Период крутильных колебаний тела, подвешенного на упругой нити,

где J - момент инерции тела относительно оси, совпадающей с упругой нитью; k - жесткость упругой нити, равная отношению упругого момента, возникающего при закручивании нити, к углу, на который нить закручивается.

Дифференциальное уравнение затухающих колебаний , или ,

где r - коэффициент сопротивления; δ - коэффициент затухания: ;ω 0 - собственная угловая частота колебаний *

Уравнение затухающих колебаний

где A (t) - амплитуда затухающих колебаний в момент t; ω - их угловая частота.

Угловая частота затухающих колебаний

О Зависимость амплитуды затухающих колебаний от времени

I

где А 0 - амплитуда колебаний в момент t =0.

Логарифмический декремент колебаний

где A (t) и A (t+T) - амплитуды двух последовательных колеба­ний, отстоящих по времени друг от друга на период.

Дифференциальное уравнение вынужденных колебаний

где - внешняя периодическая сила, действующая наколеблющуюся материальную точку и вызывающая вынужденные колебания; F 0 - ее амплитудное значение;

Амплитуда вынужденных колебаний

Резонансная частота и резонансная амплитуда и

Примеры решения задач

Пример 1. Точка совершает колебания по закону x(t)= , где А=2 см. Определить начальную фазу φ, если

x (0)=см их , (0)<0. Построить векторную диаграмму для мо-­ мента t =0.

Решение. Воспользуемся уравнением движения и выразим смещение в момент t =0 через начальную фазу:

Отсюда найдем начальную фазу:

* В приведенных ранее формулах гармонических колебаний та же величина обозначалась просто ω (без индекса 0).

Подставим в это выражение заданные значения x (0) и А: φ= =. Значению аргументаудовлетворяютдва значения угла:

Для того чтобы решить, какое из этих значений угла φ удовлет-­ воряет еще и условию , найдем сначала:

Подставив в это выражение значение t =0 и поочередно значения начальных фаз и, найдем

Так как всегдаA >0 и ω>0, то условиюудовлетворяет толь­ко первое значение начальной фазы. Таким образом, искомая начальная фаза

По найденному значению φ постро-­ им векторную диаграмму (рис. 6.1). Пример 2. Материальная точка массой т =5 г совершает гармоничес-­ кие колебания с частотой ν =0,5 Гц. Амплитуда колебаний A =3 см. Оп-­ ределить: 1) скорость υ точки в мо-­ мент времени, когда смещение х= = 1,5 см; 2) максимальную силу F max , действующую на точку; 3) Рис. 6.1 полную энергию Е колеблющейся точ­ ки.

а формулу скорости получим, взяв первую производную по времени от смещения:

Чтобы выразить скорость через смещение, надо исключить из формул (1) и (2) время. Для этого возведем оба уравнения в квад­рат, разделим первое на А 2 , второе на A 2 ω 2 и сложим:

, или

Решив последнее уравнение относительно υ, найдем

Выполнив вычисления по этой формуле, получим

Знак плюс соответствует случаю, когда направление скорости совпадает с положительным направлением оси х, знак минус - ког­да направление скорости совпадает с отрицательным направлением оси х.

Смещение при гармоническом колебании кроме уравнения (1) может быть определено также уравнением

Повторив с этим уравнением такое же решение, получим тот же ответ.

2. Силу действующую на точку, найдем по второму закону Нью­тона:

где а - ускорение точки, которое получим, взяв производную по времени от скорости:

Подставив выражение ускорения в формулу (3), получим

Отсюда максимальное значение силы

Подставив в это уравнение значения величин π, ν, т и A, найдем

3. Полная энергия колеблющейся точки есть сумма кинетической и потенциальной энергий, вычисленных для любого момента вре­мени.

Проще всего вычислить полную энергию в момент, когда кинети­ческая энергия достигает максимального значения. В этот момент потенциальная энергия равна нулю. Поэтому полная энергия E колеблющейся точки равна максимальной кинетической энергии

Максимальную скорость определим из формулы (2), положив : . Подставив выражение скорости в фор­-мулу (4), найдем

Подставив значения величин в эту формулу и произведя вычис­ления, получим

или мкДж.

Пример 3. На концах тонкого стержня длиной l = 1 м и массой m 3 =400 г укреплены шарики малых размеров массами m 1 =200 г и m 2 =300г. Стержень колеблется около горизонтальной оси, перпен-

дикулярной стержню и проходящей через его середину (точка О на рис. 6.2). Определить период Т колебаний, совершаемых стержнем.

Решение. Период колебаний физического маятника, каким является стержень с шариками, определяется соотношением

гдеJ - т - его масса; l С - расстояние от центра масс ма­ятника до оси.

Момент инерции данного маятника равен сумме моментов инерции шариков J 1 и J 2 и стержня J 3:

Принимая шарики за материальные точки, вы­разим моменты их инерции:

Так как ось проходит через середину стержня, то его момент инерции относительно этой оси J 3 = =. Подставив полученные выражения J 1 , J 2 и J 3 в формулу (2), найдем общий момент инерции фи-­ зического маятника:

Произведя вычисления по этой формуле, найдем

Рис. 6.2 Масса маятника состоит из масс шариков и массы стержня:

Расстояние l С центра масс маятника от оси колебаний найдем, исходя из следующих соображений. Если ось х направить вдоль стержня и начало координат совместить с точкой О, то искомое рас­стояние l равно координате центра масс маятника, т. е.

Подставив значения величин m 1 , m 2 , m , l и произведя вычисле­ния, найдем

Произведя расчеты по формуле (1), получим период колебаний физического маятника:

Пример 4. Физический маятник представляет собой стержень длиной l = 1 м и массой 3т 1 с прикрепленным к одному из его концов обручем диаметром и массойт 1 . Горизонтальная ось Oz

маятника проходит через середину стержня перпендикулярно ему (рис. 6.3). Определить период Т колебаний такого маятника.

Решение. Период колебаний физического маятника опреде­ляется по формуле

(1)

где J - момент инерции маятника относительно оси колебаний; т - его масса; l C - расстояние от центра масс маятника до оси колебаний.

Момент инерции маятника равен сумме мо­ментов инерции стержня J 1 и обруча J 2:

(2).

Момент инерции стержня относительно оси, перпендикулярной стержню и проходящей через его центр масс, определяется по форму-­ ле . В данном случает= 3т 1 и

Момент инерции обруча найдем, восполь-­ зовавшись теоремой Штейнера ,где J - момент инерции относительно про-­ извольной оси; J 0 - момент инерции отно-­ сительно оси, проходящей через центр масс параллельно заданной оси; а - расстояние между указанными осями. Применив эту фор-­ мулу к обручу, получим

Подставив выражения J 1 и J 2 в форму­лу (2), найдем момент инерции маятника относительно оси вра­щения:

Расстояние l С от оси маятника до его центра масс равно

Подставив в формулу (1) выражения J , l с и массы маятника , найдем период его колебаний:

После вычисления по этой формуле получим T =2,17 с.

Пример 5. Складываются два колебания одинакового направле-­ ния, выражаемых уравнениями ;х 2 = =, гдеА 1 = 1 см, A 2 =2 см, с,с,ω = =. 1. Определить начальные фазыφ 1 и φ 2 составляющих коле-

баний. 2. Найти амплитуду А и начальную фазу φ результирующего колебания. Написать уравнение результирующего колебания.

Решение. 1. Уравнение гармонического колебания имеет вид

Преобразуем уравнения, заданные в условии задачи, к такому же виду:

Из сравнения выражений (2) с равенством (1) находим начальные фазы первого и второго колебаний:

Рад и рад.

2. Для определения амплитуды А результирую­щего колебания удобно воспользоваться векторной диаграммой, представленной на рис. 6.4. Согласно теореме косинусов, получим

где - разность фаз составляющих колебаний.Так как , то, подставляя найденныезначения φ 2 и φ 1 получим рад.

Подставим значения А 1 , А 2 и в формулу(3) и произведем вычисления:

A = 2,65 см.

Тангенс начальной фазы φ результирующего колебания опреде-­ лим непосредственно из рис. 6.4: ,отку-­ да начальная фаза