Биографии Характеристики Анализ

Высота тона зависит от частоты колебаний. Чем больше частота, тем выше кажется звук

Звуковые волны, как и другие волны, характеризуются такими объективными величинами, как частота, амплитуда, фаза колебаний, скорость распространения, интенсивность звука и другими. Но, кроме этого, они описываются тремя субъективными характеристиками. Это - громкость звука, высота тона и тембр.

Чувствительность человеческого уха различна для разных частот. Для того чтобы вызвать звуковое ощущение, волна должна обладать некоторой минимальной интенсивностью, но если эта интенсивность превышает определенный предел, то звук не слышен и вызывает только болевое ощущение. Таким образом, для каждой частоты колебаний существует наименьшая (порог слышимости ) и наибольшая (порог болевого ощущения ) интенсивность звука, которая способна вызвать звуковое ощущение. На рисунке 1 представлена зависимость порогов слышимости и болевого ощущения от частоты звука. Область, расположенная между этими двумя кривыми, является областью слышимости . Наибольшее расстояние между кривыми приходится на частоты, к которым ухо наиболее чувствительно (1000-5000 Гц).

Если интенсивность звука - величина, объективно характеризующая волновой процесс, то субъективной характеристикой звука является громкость Громкость зависит от интенсивности звука, т.е. определяется квадратом амплитуды колебаний в звуковой волне и чувствительностью уха (физиологическими особенностями). Так как интенсивность звука , то чем больше амплитуда колебаний, тем громче звук.

Высота тона - качество звука, определяемое человеком субъективно на слух и зависящее от частоты звука. Чем больше частота, тем выше тон звука.

Звуковые колебания, происходящие по гармоническому закону, с определенной частотой, воспринимаются человеком как определенный музыкальный тон . Колебания высокой частоты воспринимаются как звуки высокого тона , звуки низкой частоты - как звуки низкого тона . Диапазон звуковых колебаний, соответствующий изменению частоты колебаний в два раза, называется октавой . Так, например, тон "ля" первой октавы соответствует частоте 440 Гц, тон "ля" второй октавы - частоте 880 Гц.

Музыкальным звукам соответствуют звуки, издаваемые гармонически колеблющимся телом.

Основным тоном сложного музыкального звука называется тон, соответствующий наименьшей частоте, которая имеется в наборе частот данного звука. Тоны, соответствующие остальным частотам в составе звука, называются обертонами . Если частоты обертонов кратны частоте основного тона, то обертоны называются гармоническими, причем основной тон с частотой называется первой гармоникой , обертон со следующей частотой - второй гармоникой и т.д.

Музыкальные звуки с одним и тем же основным тоном различаются тембром, который определяется наличием обертонов - их частотами и амплитудами, характером нарастания амплитуд в начале звучания и их спадом в конце звучания.

При одной высоте тона звуки, издаваемые, например, скрипкой и пианино, отличаются тембром .

Восприятие звука органами слуха зависит от того, какие частоты входят в состав звуковой волны.

Шумы - это звуки, образующие сплошной спектр, состоящий из набора частот, т.е. в шуме присутствуют колебания всевозможных частот.

Еще одним качеством звука, которое может различать человек, является высота тона. Например, легко отличить писк комара от гудения шмеля. Звук летящего комара называют высоким тоном, а гудение шмеля - низким тоном. Покажем с помощью опыта, что высота тона является объективным качеством звука и однозначно определяется частотой колебаний в звуковой волне. Приведем во вращение зубчатые колеса одинакового диаметра, но имеющие разное число зубцов (рис. 25.4). Поочередно прижимая небольшой кусок картона к зубцам этих колес, можно установить, что высота тона повышается при увеличении частоты колебаний картона.

Звук, соответствующий строго определенной частоте колебаний, называют тоном. Качество звука, которое определяется частотой колебаний, характеризуют высотой тона, причем большей частоте колебаний соответствует более высокий тон.

В некоторых случаях высоту тона характеризуют длиной звуковых волн в воздухе (§ 24.17). Действительно, из формулы (24.23) для воздуха при 0°С получаем

Из этой формулы видно, что более высокому тону соответствует болег короткая длина волны. Характеризуя высоту тона длиной волны, следует помнить, что к еще зависит и от среды. Поэтому в

различных средах одному и тому же тону соответствуют неодинаковые длины волн. Нетрудно сообразить, что большая длина волны будет соответствовать среде с большей скоростью распространения звуковых волн.

Помимо громкости и высоты тона, существует еще одно качество звука, которое может различать человек. Качество звука, которое позволяет определять источник звука, называют тембром. Так, по тембру звука мы узнаем, кто говорит, кто поет или на каком инструменте играют. Причина различных тембров звука следующая.

Каждый источник звука создает стоячие волны. Например, струна колеблется как одно целое и издает определенный тон, который называют основным тоном или первой гармоникой (§ 24.22). Кроме того, на струне образуются еще добавочные стоячие волны, подобные изображенным на рис. 24.22, создающие дополнительные тоны других частот, кратных частоте основного тона. Их называют высшими гармоническими тонами или обертонами.

Каждый источник звука имеет свой набор обертонов с различной относительной громкостью (с различной амплитудой), т. е. имеет свой спектр (24.22). Этой создает характерный оттенок (тембр) его звука, позволяющий отличать его от звуков, создаваемых другими источниками, даже при одинаковой высоте основного тона. Заметим, что наиболее чистый звук, соответствующий определенному тону, создают камертоны. Поэтому ими пользуются для воспроизведения звуков определенной частоты, например, при настройке музыкальных инструментов.

Часто встречаются сложные звуки, в которых нельзя выделить отдельные тоны. Такие звуки называют шумом.

Высота звука

Высота звука - свойство звука, определяемое человеком на слух и зависящее в основном от его частоты , т. е. от числа колебаний среды (обычно воздуха) в секунду, которые воздействуют на барабанную перепонку . С увеличением частоты колебаний растёт высота звука. В первом приближении субъективная высота звука пропорциональна логарифму частоты - согласно закону Вебера-Фехнера . Звук, обладающий определённой высотой, в музыке называется тоном.

Основные сведения

Высота звука - субъективное качество слухового ощущения, наряду с громкостью и тембром , позволяющее располагать все звуки по шкале от низких к высоким. Для чистого тона она зависит главным образом от частоты (с ростом частоты высота звука повышается), но при субъективном восприятии также и от его интенсивности - при возрастании интенсивности высота звука кажется ниже . Высота звука со сложным спектральным составом зависит от распределения энергии по шкале частот.

Единицами измерения высоты звука в музыке являются тон , полутон , цент .

Также высоту звука измеряют в мелах - шкале высот, разность между которыми слушатель воспринимает как равную. Тону с частотой 1 кГц и звуковым давлением 2·10 −3 Па приписывают высоту 1000 мел; в диапазоне 20 Гц - 9000 Гц укладывается около 3000 мел. Измерение высоты произвольного звука основано на способности человека устанавливать равенство высот двух звуков или их отношение (во сколько раз один звук выше или ниже другого).

Измерение

Высота звука измеряется по относительной шкале: октавы, внутри октав - ноты. Октава - это музыкальный интервал, соответствующий отношению частот двух звуков, равному 2. (То есть для ноты с тем же названием в следующей октаве частота, выраженная в герцах, будет ровно в 2 раза выше, чем в текущей октаве).

Внутри октавы наименьший музыкальный интервал - полутон (музыкальный интервал между двумя ближайшими нотами в октаве, приблизительно соответствующий отношению частот двух звуков, равному . «Приблизительно», потому что в природе ноты внутри октавы расположены неравномерно (см. Пифагорейский строй , комма).

Соответствие нот в октавах конкретным частотам (в герцах) задаётся стандартами.

Во всём диапазоне значений высот их получить можно с помощью интервалов между короткими импульсами, например одиночными отсчётами интенсивности в дискретном времени t = ndt, где dt =22,7 мкс.

Звук с кажущейся постоянно повышающейся или понижающейся высотой - один из видов акустических иллюзий - называется тоном Шепарда .

Частотные сигналы сложного спектра без основной частоты (первой гармоники в спектре) называются резидуальными. Восприятие высоты частотного сигнала совпадает с восприятием высоты резидуальной версии такого же сигнала.

Примечания

Литература

  • Газарян С. В мире музыкальных инструментов: Кн. для учащихся ст. классов. - 2-е изд. - М.: Просвещение, 1989. - 192 с.: ил.

См. также

  • Критическая полоса слуха
  • Изменение высоты звука (англ. )

Wikimedia Foundation . 2010 .

Смотреть что такое "Высота звука" в других словарях:

    Форма восприятия человеком частоты колебаний звучащего тела. С ростом частоты высота звука увеличивается. * * * ВЫСОТА ЗВУКА ВЫСОТА ЗВУКА, качество звука, форма восприятия человеком частоты колебаний звучащего тела. С ростом частоты высота звука… … Энциклопедический словарь

    высота звука - субъективное качество звуков, обусловленное их частотой. По частоте звуки могут определяться как низкие или высокие. Словарь практического психолога. М.: АСТ, Харвест. С. Ю. Головин. 1998. высота звука … Большая психологическая энциклопедия

    Качество звука, форма восприятия человеком частоты колебаний звучащего тела. С ростом частоты высота звука увеличивается … Большой Энциклопедический словарь

    Качество звука, определяемое человеком субъективно на слух и зависящее в осн. от частоты звука. С ростом частоты В. з. увеличивается (т. е. звук становится «выше»), с уменьшением частоты понижается. В небольших пределах В. з. изменяется также в… … Физическая энциклопедия

    Субъективное качество звуков, обусловленное их частотой, т.е. числом колебаний в секунду. На этом основании звуки могут быть определены как низкие или высокие. В качестве единицы высоты звука выступает мел … Психологический словарь

    Высота звука - характеристика слухового восприятия, позволяющая распределить звуки по шкале от низких до высоких частот. Зависит преимущественно от частоты, но также от величины звукового давления и формы волны звука … Российская энциклопедия по охране труда

    высота звука - Качественная характеристика звука по частоте колебаний, определяемая органолептическим методом при помощи слуха. [ГОСТ 24415 80] Тематики пианино … Справочник технического переводчика

    ВЫСОТА ЗВУКА - ВЫСОТА ЗВУКА. Субъективная характеристика восприятия звуков, определяемая их частотой (числом колебаний в единицу времени). Эта количественная характеристика слухового ощущения позволяет расположить звуки от низких к высоким. См. слух, тембр.… … Новый словарь методических терминов и понятий (теория и практика обучения языкам)

    Если малыша, конечно такого, который слышал раньше, как играют на рояле, видел вблизи клавиши, попросить изобразить на инструменте птичку, то он начнет быстро перебирать клавиши на правой стороне клавиатуры, чтобы получить высокие звуки. Если же… … Музыкальный словарь

    высота звука - зависит не только от частоты основного тона, но и от ряда дополнительных факторов, таких, как громкость, длительность и спектральный состав звучания. Высота звука сложного сигнала определяется самой низкой (основной) частотой, или присутствующей… … Русский индекс к Англо-русскому словарь по музыкальной терминологии

Говоря о строении слухового аппарата, мы переходим постепенно к принципу анализа мозгом полученного сигнала от слуховой улитки. В чем он заключается? И как мозг расшифровывает его? Как он определяет высоту тона звука? Сегодня мы как раз поговорим о последнем, так как в нем автоматически раскрываются ответы и на первые два вопроса.

Надо отметить, что мозг определяет только периодические синусоидальные компоненты звука. Восприятие высоты тона человеком так же зависит от громкости и длительности. В прошлой статье мы говорили о базилярной мембране и ее строении. Как известно, она обладает неоднородностью по жесткости строения. Это позволяет ей механически разбивать звук на компоненты, у которых есть особое место размещение на ее поверхности. Откуда волосковые клетки позже подают сигнал в мозг. Из-за этой особенности строения мембраны, «звуковая» волна, пробегающая по ее поверхности, имеет разные максимумы: низкие частоты – вблизи вершины мембраны, высокие – у овального окна. Мозг автоматически пытается определить высоту по этой «топографической карте», находя на ней локализацию фундаментальной частоты. Этот метод можно ассоциировать с многополосным фильтром. Отсюда взята теория «критических полос», которую мы обсуждали ранее:

Но это не единственный подход! Второй способ – это определение высоты тона по гармоникам: если найти минимальную частотную разницу между ними, то она всегда равна фундаментальной частоте – [(n +1) f 0 — (nf 0)]= f 0, где n – номера гармоник. А также вместе с ним используется и третий метод: нахождение общего сомножителя от деления всех гармоник на последовательные числа и, толкаясь от него, определяется высота звука. Эксперименты полностью подтвердили обоснованность этих способов: слуховая система, находя максимумы гармоник, проводит над ними вычислительные операции и если даже вырезать основной тон или расставить гармоники в нечетной последовательнос ти, при котором метод 1 и 2 не помогут, то человек определяет высоту звука 3 методом.

Но как оказалось – это не все возможности мозга! Были проведены хитрые эксперименты, которые удивили ученых. Дело заключается в том, что три метода работаю только с первыми 6-7 гармониками. Когда в каждую «критическую полосу» попадает по одной гармонике звукового спектра мозг спокойно «определяет» их. Но стоит, каким либо гармониками находиться настолько близко друг к другу, что в одну область слухового фильтра попадает их несколько, то мозг их распознает хуже или вообще не определяет: это относиться к звукам с гармониками выше седьмой. Вот здесь вступает четвертый метод – метод «времени»: мозг начинает анализировать время поступления сигналов с органа Корти с фазой колебания всей базилярной мембраны. Этот эффект получил название «запирание фазы». Дело заключается в том, что при колебании мембраны, когда она движется в сторону волосковых клеток, те соприкасаются с ней, образуя нервный импульс.
При движении обратно, ни какого электрического потенциала не появляется. Появляется взаимосвязь – время между импульсами в любом отдельном волокне будет равно целому числу 1, 2, 3 и так далее, умноженному на период в основной звуковой волне f = nT . Как это помогает в работе в купе вместе с критическими полосами? Очень просто: мы знаем, что когда две гармоники находятся настолько близко, что попадают в одну «частотную область», то между ними возникает эффект «биения» (которую музыканты слышат при настройке инструмента) – это просто одно колебание со средней частотой, равной разности частот. При этом период у них будет T =1/ f 0. Таким образом, все периоды выше шестой гармоники одинаковы или имеют разряд в цело число, то есть значение n / f 0. Далее мозг просто высчитывает частоту основного тона.

Музыкальные звуки с одним и тем же основным тоном различаются тембром, который, в основном, определяется частотами и амплитудами обертонов. Мы узнаем знакомые голоса и музыкальные инструменты именно по тембру.

Громкость звука зависит от интенсивности звука .

Наименьшая интенсивность звуковой волны, которая может быть воспринята органами слуха называется порогом слышимости I 0 .

Стандартный порог слышимости принимается равным

I0 =10-12 Вт/м2

при основной частоте 1 кГц.

Наибольшая интенсивность звуковой волны, при которой восприятие звука не вызывает болевого ощущения, называется порогом болевогоощущения илипорогом осязания . Порог осязания зависит от частоты звука и изменяется от0,1 Вт/м 2 при 6 кГц до10 Вт/м 2 при низких и звуковых частотах.

Диапазон интенсивностей воспринимаемых нами звуков очень велик.

22) Закон Вебера-Фехнера. Шкала уровней громкости звука. Кривые равной громкости.

В основе создания шкалы уровней громкости лежит психофизический закон Вебера-Фехнера:

если раздражение увеличивается в геометрической прогрессии (т.е. в одинаковое число раз), то ощущение этого раздражения возрастает в арифметической прогрессии (т.е. на одинаковую величину).

Применительно к звуку это означает, что если интенсивность звука принимает ряд последовательных значений, например aI 0 , a 2 I 0 , а 3 I 0 , (а – некоторый коэффициент,а>1 ), то соответствующие им ощущения громкости звукаЕ 0 , 2Е 0 , 3Е 0 ,

Математически это означает, что громкость звука пропорциональна логарифму интенсивности звука. Если действуют два звуковых раздражения с интенсивностямиI иI 0 , причемI 0 порог слышимости, то на основании закона Вебера-Фехнера громкость относительноI 0 связана с интенсивностью следующим образом:

где k -коэффициент пропорциональности

Условно считают, что на частоте 1 кГц шкалы громкости и интенсивности звука полностью совпадают

Для отличия от шкалы интенсивности звука в шкале громкости децибелы называют фонами (фон).

Громкость на других частотах можно измерить, сравнивая исследуемый звук со звуком частотой 1 кГц.

На практике громкость звука можно оценить по так называемым кривым равной громкости ,

Каждая из кривых объединяет звуки одной и той же громкости, измеряемой в фонах. При этом принято, что громкость любого звука в фонах совпадает с уровнем интенсивности равногромкого звука (в децибелах) на частоте 1 кГц: кривой порога слышимости соответствует уровень громкости 0 фон.

Каждая промежуточная кривая отвечает одинаковой громкости, но разной интенсивности звука для разных частот.По отдельной кривой равной громкости можно найти интенсивности, которые при определенных частотах вызывают ощущение этой громкости. Используя совокупность кривых равной громкости, можно найти для разных частот громкости, соответствующие определенной интенсивности.

Метод измерения остроты слуха называется аудиометрией: на специальном приборе(аудиометре) определяют порог слухового ощущения на разных частотах; полученная кривая называетсяаудиограммой .Сравнивая аудиограмму пациента с нормальной кривой порога слухового ощущения, можно диагностировать заболевание органов слуха.

А теперь второй лист, т. е. молекулярная физика

Термодинамическая система

Термодинамической системой можно считать любую совокупность материальных тел, взаимодействующих потоками энергии и вещества друг с другом и с телами внешней среды

Термодинамическая система может быть открытой, закрытой,изолированной и идеальная терм.ден.система – адиабатная

Свойствами являются, например, давление, температура, удельный объём, плотность(характеризуют состояние рассм. Системы)

Давление р – макроскопическая характеристика, отражающая молекулярную природу жидкости или газа. Давление численно равно силе воздействия молекул на некоторую поверхность, отнесённую к величине этой поверхности Единица измерения давления – паскаль (Па),

Температура t физическая величина, характеризующая степень нагретости тела, °С. Она, как и давление, проявляет микроскопическую при-

роду вещества, выводя её на наглядный макроскопический уровень. Температура выступает как мера интенсивности теплового движения молекул Абсолютная температура Т, К, отсчитывается по шкале Кельвина:Т = t + 273,15.

Удельный объём v – это объём единицы массы вещества, м3/кг. Обратную удельному объёму величину называют плотностью: ρ, кг/м3.