Биографии Характеристики Анализ

Закон электромагнитной индукции фарадея. Законы фарадея

Электролиз - это физико-химический процесс, осуществляемый в растворах различных веществ при помощи электродов (катода и анода). Существует множество веществ, которые химически разлагаются на составляющие при прохождении через их раствор или расплав электрического тока. Они называются электролитами. К ним относятся многие кислоты, соли и основания. Различают сильные и слабые электролиты, но это деление условно. В некоторых случаях слабые электролиты проявляют свойства сильных и наоборот.

При пропускании тока через раствор или расплав электролита на электродах оседают различные металлы (в случае кислот просто выделяется водород). Используя это свойство, можно подсчитать массу выделившегося вещества. Для подобных экспериментов используют раствор медного купороса. На угольном катоде при пропускании тока можно легко увидеть красный медный осадок. Разница между значениями его масс до и после эксперимента и будет массой осевшей меди. Она зависит от количества электричества, прошедшего через раствор.

Первый закон Фарадея можно сформулировать так: масса вещества m, выделившегося на катоде прямо пропорциональна количеству электричества (электрическому заряду q), прошедшему через раствор или расплав электролита. Этот закон выражается формулой: m=KI=Kqt, где K - коэффициент пропорциональности. Его называют электрохимическим эквивалентом вещества. Для каждого вещества он принимает различные значения. Он численно равен массе вещества, выделившегося на электроде за 1 секунду при силе тока 1 ампер.

Второй закон Фарадея

В специальных таблицах можно посмотреть значения электрохимического для различных веществ. Вы заметите, что эти значения существенно отличаются. Объяснение такому различию дал Фарадей. Оказалось, что электрохимический эквивалент вещества прямо пропорционален его химическому эквиваленту. Это утверждение носит название второго закона Фарадея. Его истинность была подтверждена экспериментально.

Формула, выражающая второй закон Фарадея, выглядит так: K=M/F*n, где M - молярная масса, n - валентность. Отношение молярной массы к валентности называется химическим эквивалентом.

Величина 1/F имеет одно и то же значение для всех веществ. F называется постоянной Фарадея. Она равна 96,484 Кл/моль. Эта величина показывает количество электричества, которое нужно пропустить через раствор или расплав электролита, чтобы на катоде осел один моль вещества. 1/F показывает сколько моль вещества осядет на катоде при прохождении заряда в 1 Кл.

1. Первый закон Фарадея - фундаментальный количественный закон электрохимии.

2.Электрохимический эквивалент.

3.Кулонометры.Классификация кулонометров.

4. Выход вещества по току.

5.Способы определения выхода по току при использовании постоянного и импульсного тока.

6.Второй закон Фарадея.

7.Кажущиеся случаи отклонения от законов Фарадея.

1. Первый закон Фарадея

Известны три основных типа кулонометров: весовые (гравиметрические), объемные (волюметрические) и титрационные .

В весовых кулонометрах (к ним относятся серебряные и медные) количество прошедшего в них электричества рассчитывается по изменению массы катода или анода. В объемных кулонометрах расчет производится на основании измерения объема получающихся веществ (газа в водородном кулонометре, жидкой ртути в ртутном кулонометре). В титрационныхкулонометрах количествоэлектричества определяется по данным титрования веществ, образующихся в растворе в результате электродной реакции.

Медный кулонометр наиболее распространен в практике лабораторных исследований, т.к. он является простым в изготовлении и достаточно точным. Точность определения количества электричества составляет 0,1 %. Кулонометр состоит из двух медных анодов и катода из тонкой медной фольги, расположенного между ними. Электролитом в медномкулонометре служит водный раствор состава: CuSO 4 ∙ 5H 2 O, H 2 SO 4 и этанол C 2 H 5 OH.Серная кислота повышает электрическую проводимость электролита и, кроме того, препятствует образованию основных соединений меди в прикатодном пространстве, которые могут адсорбироваться на катоде, увеличивая тем самым его массу. H 2 SO 4 в электролите медного кулонометра необходима для предотвращения накопления соединений Cu 1+ , которые могут образовываться в результате реакции диспропорционирования:

Cu 0 + Cu 2+ → 2Cu +

Этиловый спирт добавляют в электролит для получения более мелкокристаллических, компактных катодных осадков и с целью предотвращения окисления медных электродов кулонометра.

О количестве прошедшего электричества судят по изменению массы катода, до и после электролиза.

катодом, а анод готовится из чистого серебра.

В качестве электролита в серебряном кулонометре используется нейтральный или слабокислый 30% раствор нитрата серебра.

Газовый водородно-кислородный кулонометр применяется для приближенных измерений малых количеств электричества. В нем измеряют общий объем водорода и кислорода, выделяющихся при электролизе водного раствора H 2 SO 4 или NaOH, а из этой величины вычисляют количество прошедшего электричества. Применяют эти кулонометры сравнительно редко, т.к. точность их небольшая, а в работе они менее удобны, чем весовые кулонометры.

К объемным кулонометрам относится также ртутный кулонометр . Он применяется главным образом в промышленности для измерений количества электричества. Точность ртутного кулонометра составляет 1%, но он может работать при больших плотностях тока. Анодом служит ртуть. Уголь – катод. Электролитом служит раствор иодида ртути и иодида калия. По уровню ртути в трубке рассчитывают количество электричества.

Наиболее распространенные из титрационныхкулонометров – йодный

и кулонометрКистяковского .

Йодныйкулонометр представляет собой сосуд с разделенными катодным и анодным пространствами платиновоиридиевыми электродами. В анодное отделение вводят концентрированный раствор иодида калия с добавлением соляной кислоты, в катодное отделение – раствор соляной кислоты. При пропускании тока на аноде выделяется йод, который затем титруют тиосульфатом натрия (Na 2 S 2 O 3). По результатам титрования рассчитывают количество электричества.

Кулонометр Кистяковского - это стеклянный сосуд. Анодом служит серебряная проволока, впаянная в стеклянную трубку со ртутью, для обеспечения контакта. Сосуд заполняют раствором нитрата калия (15-20%). В этот раствор погружают платиновоиридиевый катод. При пропускании тока происходит анодное растворение серебра. И также по результатам титрования раствора рассчитывают количество электричества.

4. Выход по току

Zn 2+ +2ē →Zn

Если на электроде протекает несколькопараллельных электрохимических реакций, то I закон Фарадея будет справедлив для каждой из них.

Для практических целей, для того, чтобы учесть какая доля тока или количества прошедшего через электрохимическую систему электричества расходуется на каждую конкретную реакцию введено понятие выхода вещества по току .

Таким образом, ВТ позволяет определить часть количества прошедшего через электрохимическую систему электричества, которая приходится на долю данной электрохимической реакции.

Знание ВТ необходимо, как при решении теоретических вопросов: например, при построении парциальных поляризационных кривых и выяснении механизма электрохимической реакции, так и в практике электроосаждения металлов, неметаллов, сплавов, с целью оценки эффективности технологической операции. ВТ на практике чаще всего определяют делением практической массы вещества на теоретическую массу, определенную по закону Фарадея.

m практ – масса вещества, практически превратившегося в результате прохождения определенного количества электричества; m теор - масса вещества, которая должна превратиться теоретически при прохождении того же количества электричества.

ВТ для процессов, протекающих на катоде, как правило, не совпадают с ВТ анодных процессов, поэтому следует различать катодный и анодный выход по току. До сих пор были рассмотрены случаи определения ВТ когда через границу раздела проводник I рода - проводник II рода протекает постоянный электрический ток.

5. Способы определения ВТ при использовании импульсного тока

Если же через границу раздела фаз протекает импульсный ток, то при определении ВТ возникают большие трудности. Единой методики или прибора для определения ВТ при импульсномэлектролизе не существует. Сложность определения ВТ в условиях импульсногоэлектролиза обусловлена тем, что проходящий через систему ток расходуется не только на электрохимическую реакцию, но и на заряжение двойного электрического слоя. Электрический ток, проходящий через границу раздела и вызывающий электрохимическое превращение, называется часто фарадеевским током. Ток заряжения расходуется на заряжение двойного электрического слоя, реорганизацию растворителя, самого реагента, т.е. на все на то, что создает условия для протекания электрохимической реакции, поэтому выражение для общего тока, проходящего через электрохимическую систему, будет выглядеть следующим образом:

I = Iз + Iф, где Iз – ток заряжения, Iф – фарадеевский ток.

Если не требуется определения абсолютных значений ВТ, то в качестве критерия оценки эффективности импульсного электролиза можно использовать отношения количества электричества, затраченного на растворение осадка к количеству электричества, затраченного на его формирование.

6. Второй закон Фарадея.

Математически этот закон выражается уравнением:

Второй закон Фарадея является непосредственным следствием первого закона. Во втором законе Фарадея отражена связь, существующая между количеством прореагировавшего вещества и его химической природой.

Согласно второму закону Фарадея:

Если на границе раздела проводник I рода - проводник II рода протекает одна и только одна, электрохимическая реакция, в которой участвует несколько веществ, то массы участников реакции, претерпевших превращения, относятся друг к другу как их химические эквиваленты.

7. Кажущиеся случаи отклонения от законов Фарадея

I закон Фарадея , базирующийся на атомистической природе вещества и электричества, является точным законом природы. Отклонений от него быть не может. Если на практике при расчетах наблюдаются отклонения от этого закона, то они всегда обусловлены неполным учетом процессов, сопутствующих основной электрохимической реакции. Например, при электролизе водного раствора NaCl в системе с платиновыми электродами и разделенными пористой диафрагмой анодным и катодным пространствами на катоде протекает реакция:

2H 2 O + 2ē = H 2 + 2OH -

а на аноде: 2Cl - - 2ē = Cl 2

Количество образующегося газообразного хлора всегда меньше, чем это следует по закону Фарадея из-за того, что Cl 2 растворяется в электролите и вступает в реакцию гидролиза:

Cl 2 + H 2 O → HCl+ HClO

Если учесть массу хлора, прореагировавшего с водой, получим результат, соответствующий рассчитанному по закону Фарадея.

Или при анодном растворении многих металлов параллельно идут два процесса – образование ионов нормальной валентности и так называемых субионов – т.е. ионов низшей валентности, например: Cu 0 - 2ē → Cu 2+ и

Cu- 1ē → Cu + . Поэтому расчет по закону Фарадея в предположении, что образуются только ионы высшей валентности, оказывается неправильным.

Часто на электроде протекает не одна электрохимическая реакция, а несколько самостоятельных параллельных реакций. Например, при выделении Zn из кислого раствора ZnSO 4 наряду с разрядом ионов Zn:

Zn 2+ +2ē →Zn

протекает реакция восстановления ионов гидроксония: 2Н 3 О + +2ē → Н 2 + 2H 2 O.

Если на электроде протекает несколько параллельных электрохимических реакций, то I закон Фарадея будет справедлив для каждой из них.

В 1831 году мир впервые узнал о понятии электромагнитной индукции. Именно тогда Майкл Фарадей обнаружил это явление, ставшее в итоге важнейшим открытием в электродинамике.

История развития и опыты Фарадея

До середины XIX века считалось, что электрическое и магнитное поле не имеют никакой связи, и природа их существования различна. Но М. Фарадей был уверен в единой природе этих полей и их свойств. Явление электромагнитной индукции, обнаруженное им, впоследствии стало фундаментом для устройства генераторов всех электростанций. Благодаря этому открытию знания человечества о электромагнетизме шагнули далеко вперед.

Фарадей проделал следующий опыт: он замыкал цепь в катушке I и вокруг нее возрастало магнитное поле. Далее линии индукции данного магнитного поля пересекали катушку II, в которой возникал индукционный ток.

Рис. 1. Схема опыта Фарадея

На самом деле, одновременно с Фарадеем, но независимо от него, другой ученый Джозеф Генри обнаружил это явление. Однако Фарадей опубликовал свои исследования раньше. Таким образом, автором закона электромагнитной индукции стал Майкл Фарадей.

Сколько бы экспериментов не проводил Фарадей, неизменным оставалось одно условие: для образования индукционного тока важным является изменение магнитного потока, пронизывающего замкнутый проводящий контур (катушку).

Закон Фарадея

Явление электромагнитной индукции определяется возникновением электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура.

Основной закон Фарадея заключается в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.

Формула закона электромагнитной индукции Фарадея выглядит следующим образом:

Рис. 2. Формула закона электромагнитной индукции

И если сама формула, исходя из вышесказанных объяснений не порождает вопросов, то знак «-» может вызвать сомнения. Оказывается существует правило Ленца – русского ученого, который проводил свои исследования, основываясь на постулатах Фарадея. По Ленцу знак «-» указывает на направление возникающей ЭДС, т.е. индукционный ток направлен так, что магнитный поток, который он создает, через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток.

Закон Фарадея-Максвелла

В 1873 Дж.К.Максвелл по-новому изложил теорию электромагнитного поля. Уравнения, которые он вывел, легли в основу современной радиотехники и электротехники. Они выражаются следующим образом:

  • Edl = -dФ/dt – уравнение электродвижущей силы
  • Hdl = -dN/dt – уравнение магнитодвижущей силы.

Где E – напряженность электрического поля на участке dl; H – напряженность магнитного поля на участке dl; N – поток электрической индукции, t – время.

Симметричный характер данных уравнений устанавливает связь электрических и магнитных явлений, а также магнитных с электрическими. физический смысл, которым определяются эти уравнения, можно выразить следующими положениями:

  • если электрическое поле изменяется, то это изменение всегда сопровождается магнитным полем.
  • если магнитное поле изменяется, то это изменение всегда сопровождается электрическим полем.

Рис. 3. Возникновение вихревого магнитного поля

Также Максвелл установил, что распространение электромагнитного поля равна скорости распространения света.

Всего получено оценок: 134.

В §40 мы видели, что при прохождении тока через некоторые растворы, например через раствор серной кислоты, происходит разложение воды на составные части – водород и кислород, выделяющиеся на пластинах, соединенных соответственно с отрицательным и положительным полюсами батареи. Такого рода растворы, разлагающиеся химически при прохождении через них тока, мы будем называть электролитами, а сам процесс разложения вещества электрическим током – электролизом. Далее мы будем называть проводники, погруженные в электролит для подведения к нему тока, электродами: положительный электрод – анодом, а отрицательный – катодом.

Продукты разложения электролита, например водород и кислород в опыте, описанном в § 40, выделяются на электродах все время, пока идет ток. Массу выделившегося вещества можно измерить. Если подобрать такой раствор, при котором выделяющееся вещество оседает в виде твердого осадка на электроде, то эту массу можно измерить без затруднений. Так, если пропускать ток через раствор медного купороса (), то на катоде оседает медь. Это явление легко наблюдать, если сделать катод, например, из угля; на черной поверхности угля ясно заметен красноватый слой выделившейся меди. Взвешивая катод до и после опыта, можно точно определить массу осадившегося металла.

Измерения показывают, что масса вещества, выделившегося на электродах, зависит от силы тока и времени электролиза. Замыкая цепь на разные промежутки времени, можно убедиться в том, что масса выделившегося вещества пропорциональна времени прохождения тока. Для того чтобы установить, как она зависит от силы тока, поступим следующим образом. Изготовим несколько совершенно одинаковых электролитических ванн и составим из них цепь, как показано на рис. 105,а. Так как процесс установившийся (§ 42), то через ванны I и II проходит ток одной и той же силы. Такой же ток проходит и через обе ванны 1 и 2 вместе, а так как эти ванны одинаковы, то очевидно, что токи через ванны 1 и 2 равны друг другу и, следовательно, каждый из них равен половине тока, идущего через ванну I или II. Точно так же, поместив в разветвлении три одинаковые ванны (рис. 105,б), мы получим способ пропустить через каждую из этих ванн ток, втрое меньший тока, идущего через ванну I или II, ит. д. Измеряя массу вещества (например, меди или серебра), выделившегося на катодах каждой из этих ванн, мы убедимся, что массы вещества, выделившегося в ваннах 1 и 2 (или 1, 2 и 3 и т. д.), равны между собой и составляют половину (или треть и т. д.) массы вещества, выделившегося в ванне I или II. Таким образом, опыт показывает, что масса выделившегося вещества пропорциональна силе тока.

Рис. 105. Схема опыта по установлению зависимости массы выделенного током вещества от силы тока: а) ток между ваннами I и II распределяется между двумя одинаковыми ваннами 1 и 2; б) ток между ваннами I и II распределяется между тремя одинаковыми ваннами 1, 2 и 3

Итак, масса выделившегося вещества пропорциональна и силе тока и времени электролиза, т. е. их произведению. Но это произведение, согласно формуле (42.1), равно заряду, прошедшему через электролит. Мы видим, что масса вещества, выделившегося на электроде, пропорциональна заряду, или количеству электричества, прошедшему через электролит. Этот важный закон был установлен впервые Фарадеем и носит название первого закона Фарадея.

Если – масса выделившегося вещества, – сила тока, – время электролиза, a – полный заряд, прошедший через ванну за время , то первый закон Фарадея можно записать так:

где – коэффициент пропорциональности. Полагая в формуле (65.1) заряд Кл, мы получим, что коэффициент равен массе вещества, выделяемого зарядом 1 Кл, или иначе – массе вещества, выделяемого током 1 А за 1 с.

Исследования Фарадея показали, что величина является характерной для каждого вещества. Так, например, при электролизе раствора ляписа (азотнокислого серебра, ) 1 Кл выделяет 1,1180 мг серебра; точно столько же серебра выделяет 1 Кл при электролизе любой серебряной соли, например хлористого серебра (AgCl) и т. д. При электролизе соли другого металла масса выделившегося вещества будет иной. Величина называется электрохимическим эквивалентом данного вещества. Таким образом, электрохимическим эквивалентом вещества называется масса этого вещества, выделяемая при электролизе одним кулоном протекшего через раствор электричества.

В табл. 5 приведены значения электрохимического эквивалента для некоторых веществ.

Таблица 5. Электрохимический эквивалент некоторых веществ

Как уже известно, при электролизе на электродах происходит выделение вещества. Попробуем выяснить, от чего будет зависеть масса это вещества. Масса выделившегося вещества m будет равна произведению массы одного иона m0i на число ионов Ni, которые достигли электрода за промежуток времени равный ∆t: m = m0i*Ni. Масса иона m0i будет вычисляться по следующей формуле:

  • m0i = M/Na,

где М - молярная масса вещества, а Na - постоянная Авогадро.

Число ионов, которые достигнут электрода, вычисляется по следующей формуле:

  • Ni = ∆q/q0i,

где ∆q = I*∆t - заряд, прошедший через электролит за время, равное ∆t, q0i - заряд иона.

Для того, чтобы определить заряд иона, используется следующая формула:

  • q0i = n*e,

где n - валентность, e - элементарный заряд.

Собирая воедино все представленные формулы, получаем формулу для вычисления массы выделившегося на электроде вещества:

  • m = (M*I*∆t)/(n*e*Na).

Теперь обозначим через k коэффициент пропорциональности между массой вещества и зарядом ∆q.

  • k = M/(e*n*Na).

Этот коэффициент k будет зависеть от природы вещества. Тогда формулу массы вещества можно переписать в следующем виде:

  • m = k*I*∆t.

Второй закон Фарадея

Масса вещества, выделившегося на электроде за время, равное ∆t, при прохождении электрического тока пропорциональна силе тока и времени. Коэффициент k называют электрохимическим эквивалентом данного вещества. Единицей измерения служит кг/Кл. Разберемся с физическим смыслом электрохимического эквивалента. Так как:

  • M/Na = m0i,
  • e*n = qi,

то формулу электрохимического эквивалента можно переписать в следующем виде:

  • k = m0i/q0i.

Таким образом, k - отношение массы иона к заряду этого иона.

Для того, чтобы удостовериться в справедливости закона Фарадея, можно провести опыт. Лабораторная установка, необходимая для него, показана на следующем рисунке.

Все три емкости заполнены одинаковым электролитическим раствором. Через них будут протекать различные электрические токи, причем I1 = I2+I3. После включения установки в цепь подождем некоторое время. Потом отключим её и измерим массы веществ, выделившихся на электродах в каждом из сосудов m1, m2, m3. Можно будет убедиться, что массы веществ будут пропорциональны силам тока, которые проходили через соответствующий сосуд.

Из формулы

  • m = (M*I*∆t)/(n*e*Na)

можно выразить значение заряда электрона

  • e = (M*I*∆t)/(n*m*Na).