Биографии Характеристики Анализ

История развития медицинской физики. Самые важные открытия в медицине

Открытия не рождаются внезапно. Каждой разработке, до того, как о ней узнали СМИ, предшествует долгая и кропотливая работа. И прежде чем тесты и таблетки появятся в аптеке, а в лабораториях - новые методы диагностики, должно пройти время. За последние 30 лет число медицинских исследований увеличилось почти в 4 раза, и они входят в медицинскую практику.

Биохимический анализ крови у вас дома
Скоро биохимический анализ крови, как и тест на беременность, будет занимать пару минут. Нанобиотехнологи МФТИ уместили высокоточный анализ крови в обычную тест-полоску.

Биосенсорная система, основанная на использовании магнитных наночастиц, позволяет точно измерить концентрацию белковых молекул (маркеров, указывающих на развитие различных заболеваний) и максимально упростить процедуру биохимического анализа.

"Традиционно тесты, которые можно проводить не только в лаборатории, но и в полевых условиях, основаны на применении флуоресцентных или окрашенных меток, а результаты определяются "на глаз", либо с помощью видеокамеры. Мы же используем магнитные частицы, у которых есть преимущество: с их помощью можно проводить анализ, даже окунув тест-полоску в полностью непрозрачную жидкость, скажем, определять вещества прямо в цельной крови", - поясняет, Алексей Орлов, научный сотрудник ИОФ РАН и ведущий автор исследования.

Если привычный тест на беременность сообщает либо "да", либо "нет", то эта разработка позволяет точно определить концентрацию белка (то есть на какой стадии развития она находится).

"Численное измерение выполняют только электронным способом с помощью портативного прибора. Ситуации "то ли да, то ли нет" исключены", - утверждает Алексей Орлов. Согласно исследованию, опубликованному в журнале Biosensors and Bioelectronics, система успешно зарекомендовала себя в диагностике рака предстательной железы, а по некоторым показателям даже превзошла "золотой стандарт" для определения ПСА - иммуноферментный анализ.

Когда тест появится в аптеках, разработчики пока умалчивают. Планируется, что биосенсор кроме прочего сможет проводить экологический мониторинг, анализ продуктов и лекарств, и все это - прямо на месте, без лишних приборов и затрат.

Обучаемые бионические конечности
Сегодняшние бионические руки по функционалу мало чем отличаются от настоящих - они могут шевелить пальцами и брать предметы, но все равно до "оригинала" еще далеко. Чтобы "синхронизировать" человека с машиной, ученые вживляют электроды в мозг, снимают электрические сигналы с мышц и нервов, но процесс трудоемкий и занимает несколько месяцев.

Команда GalvaniBionix, состоящая из студентов и аспирантов МФТИ, нашла способ облегчить обучение и сделать так, чтобы не человек подстраивался под робота, а конечность адаптировалась под человека. Написанная учеными программа с помощью специальных алгоритмов распознает "мышечные команды" каждого пациента.

"Большинство моих однокурсников, обладающих очень крутыми знаниями, уходят в решение финансовых проблем - идут работать в корпорации, создают мобильные приложения. Это не плохо и не хорошо, это просто по-другому. Мне лично хотелось сделать что-то глобальное, в конце концов, чтобы детям было, о чем рассказать. И на Физтехе я нашел единомышленников: все они из различных областей - физиологи, математики, программисты, инженеры - и мы нашли для себя такую задачу", - поделился личным мотивом Алексей Цыганов, член команды GalvaniBionix.

Диагностика рака по ДНК
В Новосибирске разработали сверхточную тест-систему для ранней диагностики рака. По словам научного сотрудника центра вирусологии и биотехнологии "Вектор" Виталия Кузнецова, его команде удалось создать некий онкомаркер - фермент, который по выделенной из слюны (крови или мочи) ДНК способен обнаружить рак на начальной стадии.

Сейчас аналогичный тест проводят путем анализа специфических белков, которые образует опухоль. Новосибирский подход предлагает смотреть модифицированные ДНК раковой клетки, которые появляются задолго до белков. Соответственно, диагностика позволяет обнаружить болезнь в начальной стадии.

Похожая система уже применяется за рубежом, однако в России она не сертифицирована. Ученым удалось "удешевить" имеющуюся технологию (1,5 рублей против 150 евро - 12 млн рублей). Сотрудники "Вектора" рассчитывают, что скоро их анализ войдет в обязательный список при диспансеризации.

Электронный нос
В Сибирском физико-техническом институте создали "электронный нос". Газоанализатор оценивает качество пищевой, косметической и медицинской продукции, а также способен диагностировать ряд заболеваний по выдыхаемому воздуху.

"Мы исследовали яблоки: контрольную часть положили в холодильник, а остальные оставили в помещении при комнатной температуре", - рассказывает создатель прибора Тимур Муксунов, инженер-исследователь лаборатории "Методы, системы и технологии безопасности" Сибирского физико-технического института.

"Через 12 часов при помощи установки удалось выявить, что вторая часть выделяет газы интенсивнее, чем контрольная. Сейчас на овощных базах прием продукции совершается по органолептическим показателям, а при помощи создаваемого устройства можно будет точнее определять срок годности продукции, что скажется на ее качестве", - сказал он. Муксунов возлагает надежды на программу поддержки стартапов - "нос" полностью готов к серийному производству и ждет финансирования.

Таблетка от депрессии
Ученые из совместно с коллегами из им. Н.Н. Ворожцова разработали новый препарат для лечения депрессии. Таблетка повышает концентрацию серотонина в крови, тем самым помогая справиться с хандрой.

Сейчас антидепрессант под рабочим названием ТС-2153 проходит доклинические испытания. Исследователи надеются, что "он успешно пройдет все остальные и поможет достичь прогресса в лечении целого ряда серьезных психопатологий", пишет"Интерфакс".

  • Инновации рождаются в научных лабораториях

    На протяжении ряда лет сотрудники лаборатории эпигенетики развития ФИЦ "Института цитологии и генетики СО РАН" ведут работы по созданию Биобанка клеточных моделей заболеваний человека, который затем будет использоваться при создании препаратов для лечения наследственных нейродегенеративных и сердечнососудистых заболеваний.

  • Наночастицы: невидимые и влиятельные

    Прибор, сконструированный в Институте химической кинетики и горения им. В.В. Воеводского СО РАН, помогает обнаружить наночастицы за несколько минут.- Есть работы российских, украинских, английских и американских исследователей, которые показывают, что в городах с высоким содержанием наночастиц отмечается повышенный уровень заболеваемости сердечными, онкологическими и легочными заболеваниями, - подчеркивает старший научный сотрудник ИХКГ СО РАН кандидат химических наук Сергей Николаевич Дубцов.

  • Новосибирские ученые разработали соединение, которое поможет в борьбе с опухолями

    ​Исследователи Института химической биологии и фундаментальной медицины СО РАН создают соединения-конструкторы на основе белка альбумина, способные эффективно достигать опухолей раковых больных - в будущем эти вещества могут стать основой для лекарств.

  • Сибирские ученые разработали протез клапана для детских сердец

    ​Сотрудники Национального медицинского исследовательского центра имени академика Е. Н. Мешалкина создали новый тип биопротеза клапана для детской кардиохирургии. Он менее других подвержен кальцификации, что позволит сократить количество повторных оперативных вмешательств.

  • Сибирские ингибиторы препаратов против рака проходят доклинические испытания

    ​Ученые Института химической биологии и фундаментальной медицины СО РАН, Новосибирского института органической химии им. Н. Н. Ворожцова СО РАН и ФИЦ «Институт цитологии и генетики СО РАН» нашли эффективные белковые мишени для разработки препаратов против рака прямой кишки, легких и кишечника.

  • Институты СО РАН помогут ООО «СИБУР» разрабатывать биоразлагаемые пластики

    ​На VI Международном форуме технологического развития и выставке "Технопром-2018" состоялось подписание соглашений о сотрудничестве между нефтехимической компанией ООО "СИБУР" и двумя новосибирскими научно-исследовательскими организациями: Новосибирским институтом органической химии им.

  • Прошедший год для науки был очень плодотворным. Особенного прогресса ученые достигли в сфере медицины. Человечество совершило удивительные открытия, научные прорывы и создало множество полезных медикаментов, которые непременно в скором времени окажутся в свободном доступе. Предлагаем ознакомиться с десяткой самых удивительных медицинских прорывов 2015 года, которые обязательно внесут серьезный вклад в развитие медицинских услуг в самое ближайшее время.

    Открытие теиксобактина

    В 2014 году Всемирная организация здравоохранения предупредила всех о том, что человечество вступает в так называемую постантибиотическую эру. И ведь, она оказалась правой. Наука и медицина аж с 1987 не производили, действительно, новых видов антибиотиков. Однако, болезни не стоят на месте. Каждый год появляются новые заразы, более устойчивые к существующим медикаментам. Это стало настоящей мировой проблемой. Тем не менее, в 2015 году ученые совершили открытие, которое, по их мнению, привнесет кардинальные перемены.

    Ученые открыли новый класс антибиотиков из 25 противомикробных препаратов, включая очень важный, получивший название теиксобактин. Этот антибиотик уничтожает микробов, блокируя их способность производить новые клетки. Другими словами, микробы, под воздействием этого лекарства, не могут развиваться и вырабатывать со временем устойчивость к препарату. Теиксобактин, к настоящему моменту, доказал свою высокую эффективность в борьбе с резистентным золотистым стафилококком и несколькими бактериями, вызывающими туберкулез.

    Лабораторные испытания теиксобактина проводились на мышах. Подавляющее большинство экспериментов показали эффективность препарата. Человеческие испытания должны начаться в 2017 году.

    Медики вырастили новые голосовые связки

    Одно из самых интересных и перспективных направлений в медицине является регенерация тканей. В 2015 году список воссозданных искусственным методом органов пополнился новым пунктом. Врачи из Висконсинского университета научились выращивать человеческие голосовые связки, фактически, из ничего.
    Группа ученых под руководством доктора Натана Вельхэна биоинженерным способом создала ткань, способную имитировать работу слизистой оболочки голосовых связок, а именно, ту ткань, которая представляется двумя лепестками связок, которые вибрируя позволяют создавать человеческую речь. Клетки-доноры, из которых впоследствии были выращены новые связки, были взяты у пяти пациентов-добровольцев. В лабораторных условиях за две недели ученые вырастили необходимую ткань, после чего добавили ее к искусственному макету гортани.

    Создаваемый полученными голосовыми связками звук, ученые описывают как металлический и сравнивают его со звуком роботизированного казу (игрушечный духовой музыкальный инструмент). Однако ученые уверены в том, что созданные ими голосовые связки в реальных условиях (то есть при имплантации в живой организм) будут звучать, почти, как настоящие.

    В рамках одного из последних экспериментов на лабораторных мышах с привитым человеческим иммунитетом исследователи решили проверить, будет ли организм грызунов отторгать новую ткань. К счастью, этого не случилось. Доктор Вельхэм уверен, что ткань не будет отторгаться и человеческим организмом.

    Лекарство от рака может помочь и пациентам с болезнью Паркинсона

    Тисинга (или нилотиниб) является проверенным и одобренным лекарством, которое обычно используют для лечения людей с признаками лейкемии. Однако, новое исследование, проведенное медицинским центром Джорджтаунского университета, показывает, что лекарство Тасинга может являться очень сильным средством для контроля моторных симптомов у людей с болезнью Паркинсона, улучшая их моторные функции и контролируя немоторные симптомы этой болезни.

    Фернандо Паган, один из докторов, проводивших данное исследование, считает, что нилотинибная терапия может являться первым в своем роде эффективным методом снижения деградации когнитивных и моторных функции у пациентов с нейродегенеративными заболеваниями, такими как болезнь Паркинсона.

    Ученые в течение шести месяцев давали увеличенные дозы нилотиниба 12 пациентам-добровольцам. У всех 12 пациентов, прошедших данное испытание препарата до конца, наблюдалось улучшение моторных функций. У 10 из них отметили значительное улучшение.

    Основной задачей данного исследования была проверка безопасности и безвредности нилотиниба на человеческий организм. Используемая доза препарата была гораздо меньше той дозы, которая обычно дается пациентам с лейкемией. Несмотря на то, что препарат показал свою эффективность, исследование все же проводилось на небольшой группе людей без привлечения контрольных групп. Поэтому перед тем, как Тасингу начнут использовать в качестве терапии болезни Паркинсона, придется провести еще несколько испытаний и научных исследований.

    Первая в мире 3D-напечатанная грудная клетка

    Последние несколько лет технология 3D-печати проникает во многие сферы, приводя к удивительным открытиям, разработкам и новым методам производства. В 2015 году доктора из университетского госпиталя Саламанка в Испании провели первую в мире операцию по замене поврежденной грудной клетки пациента на новый 3D-напечатанный протез.

    Человек страдал редким видом саркомы, и у врачей не осталось другого выбора. Чтобы избежать распространение опухоли дальше по организму, специалисты удалили у человека почти всю грудину и заменили кости титановым имплантатом.

    Как правило, имплантаты для крупных отделов скелета производят из самых разных материалов, которые со временем могут изнашиваться. Помимо этого, замена столь сложного сочленения костей, как кости грудины, которые, как правило, уникальны в каждом отдельном случае, потребовала от врачей провести тщательное сканирование грудины человека, чтобы разработать имплантат нужного размера.

    В качестве материала для новой грудины было решено использовать титановый сплав. После проведения высокоточной трехмерной компьютерной томографии, ученые использовали принтер Arcam стоимостью 1,3 миллиона долларов и создали новую титановую грудную клетку. Операция по установке новой грудины пациенту прошла успешно, и человек уже прошел полный курс реабилитации.

    Из клеток кожи в клетки мозга

    Ученые из калифорнийского Института Солка в Ла-Холья посвятили ушедший год исследованиям человеческого мозга. Они разработали метод трансформирования клеток кожи в мозговые клетки и уже нашли несколько полезных сфер применения новой технологии.

    Следует отметить, что ученые нашли способ превращения кожных клеток в старые мозговые клетки, что упрощает дальнейшее их использование, например, при исследованиях болезней Альцгеймера и Паркинсона и их взаимосвязи с эффектами, вызываемыми старением. Исторически сложилось, что для таких исследований применялись клетки мозга животных, однако, ученые, в этом случае, были ограничены в своих возможностях.

    Относительно недавно, ученые смогли превратить стволовые клетки в клетки мозга, которые можно использовать для исследований. Однако, это довольно трудоемкий процесс, и на выходе получаются клетки, не способные имитировать работу мозга пожилого человека.

    Как только, исследователи разработали способ искусственного создания клеток мозга, они направили свои усилия на создание нейронов, которые обладали бы возможностью производства серотонина. И хотя, полученные клетки обладают лишь крошечной долей возможностей работы человеческого мозга, они активно помогают ученым в исследованиях и поиске лекарств от таких болезней и расстройств, как аутизм, шизофрения и депрессия.

    Противозачаточные таблетки для мужчин

    Японские ученые из Научно-исследовательского института исследований микробных заболеваний в Осаке опубликовали новую научную работу, согласно которой в недалеком будущем мы сможем производить реально действующие противозачаточные таблетки для мужчин. В своей работе ученые описывают исследования препаратов «Такролимус» и «Цикслоспорин А».

    Обычно, эти лекарства используются после проведения операций по трансплантации органов для подавления иммунной системы организма, чтобы та не отторгала новую ткань. Блокада происходит благодаря ингибированию производства энзима кальцинейрина, который содержит белки PPP3R2 и PPP3CC, обычно имеющиеся в мужском семени.

    В своем исследовании на лабораторных мышах ученые обнаружили, что как только в организмах грызунов производится недостаточно белка PPP3CC, то их репродуктивные функции резко сокращаются. Это натолкнуло исследователей к выводу, что недостаточный объем этого белка может привести к стерильности. После более тщательного изучения специалисты заключили, что данный белок дает клеткам спермы гибкость и необходимые силу и энергию для проникновения через мембрану яйцеклетки.

    Проверка на здоровых мышах только подтвердила их открытие. Всего пять дней применения препаратов «Такролимус» и «Цикслоспорин А» привело к полной бесплодности мышей. Однако, их репродуктивная функция полностью восстановилась всего через неделю после того, как им перестали давать эти препараты. Важно отметить, что кальцинейрин не является гормоном, поэтому применение препаратов никоим образом не снижает половое влечение и возбудимость организма.

    Несмотря на многообещающие результаты, потребуется несколько лет для создания реальных мужских противозачаточных таблеток. Около 80 процентов исследований на мышах не применимы для человеческих случаев. Однако, ученые по-прежнему надеются на успех, так как эффективность препаратов была доказана. Кроме того, аналогичные препараты уже прошли человеческие клинические испытания и широко используются.

    Печать ДНК

    Технологии 3D-печати привели к появлению уникальной новой индустрии - печати и продаже ДНК. Правда, термин «печать» здесь скорее используется именно для коммерческих целей, и необязательно описывает то, что же в этой сфере происходит на самом деле.

    Исполнительный директор компании Cambrian Genomics объясняет, что данный процесс лучше всего описывает фраза «проверка на ошибки», нежели «печать». Миллионы частей ДНК помещаются на крошечные металлические подложки и сканируются компьютером, который отбирает те цепи, которые в конечном итоге должны будут составлять всю последовательность ДНК-цепочки. После этого, лазером аккуратно вырезаются нужные связи и помещаются в новую цепочку, предварительно заказанную клиентом.

    Такие компании, как Cambrian, считают, что в будущем люди смогут благодаря специальному компьютерному оборудованию и программному обеспечению создавать новые организмы просто для развлечения. Конечно же, такие предположения сразу же вызовут праведный гнев людей, сомневающихся в этической корректности и практической пользе данных исследований и возможностей, но рано или поздно, как бы мы этого хотели или не хотели, мы к этому придем.

    Сейчас же ДНК-печать демонстрирует немногообещающий потенциал в медицинской сфере. Производители лекарств и исследовательские компании - вот, список первых клиентов таких компаний, как Cambrian.

    Исследователи из Каролинского института в Швеции пошли еще дальше и начали создавать из ДНК-цепочек различные фигурки. ДНК-оригами, как они это называют, может на первый взгляд показаться обычным баловством, однако, практический потенциал использования у этой технологии тоже имеется. Например, его можно будет применять при доставке лекарственных средств в организм.

    Наноботы в живом организме

    В начале 2015 года сфера робототехники одержала большую победу, когда группа исследователей из Калифорнийского университета в Сан-Диего объявила о том, что провела первые успешные тесты с применением наноботов, которые выполнили поставленную перед ними задачу, находясь внутри живого организма.

    Живым организмом в данном случае выступали лабораторные мыши. После помещения наноботов внутрь животных микромашины направились к желудкам грызунов и доставили помещенный на них груз, в качестве которого выступали микроскопические частички золота. К концу процедуры ученые не отметили никаких повреждений внутренних органов мышей и, тем самым, подтвердили полезность, безопасность и эффективность наноботов.

    Дальнейшие тесты показали, что доставленных наноботами частичек золота в желудках остается больше, чем тех, которые были просто введены туда с приемом пищи. Это натолкнуло ученых на мысль о том, что наноботы в будущем смогут гораздо эффективные доставлять нужные лекарства внутрь организма, чем при более традиционных методах их введения.

    Моторная цепь крошечных роботов состоит из цинка. Когда она попадает в контакт с кислотно-щелочной средой организма, происходит химическая реакция, в результате которой производятся пузырьки водорода, которые и продвигают наноботов внутри. Спустя какое-то время, наноботы просто растворяются в кислотной среде желудка.

    Несмотря на то, что данная технология разрабатывается уже почти десятилетие, только в 2015 году ученые смогли провести ее фактические тесты в живой среде, а не обычных чашках Петри, как делалось много раз до этого. В будущем наноботов можно будет использовать для определения и даже лечения различных болезней внутренних органов, путем воздействия нужными лекарствами на отдельные клетки.

    Инъекционный мозговой наноимплантат

    Группа ученых из Гарварда разработала имплантат, обещающий возможность лечения ряда нейродегенеративных расстройств, которые приводят к параличу. Имплантат представляет собой электронное устройство, состоящее из универсального каркаса (сетки), к которому в дальнейшем можно будет подсоединять различные наноустройства уже после введения его в мозг пациента. Благодаря имплантату, можно будет следить за нейронной активностью мозга, стимулировать работу определенных тканей, а также ускорять регенерацию нейронов.

    Электронная сетка состоит из проводящих полимерных нитей, транзисторов или наноэлектродов, которые соединяют между собой пересечения. Почти вся площадь сетки состоит из отверстий, что позволяет живым клеткам образовывать новые соединения вокруг нее.

    К началу 2016 года команда ученых из Гарварда, по-прежнему, проводит тесты безопасности использования подобного имплантата. Например, двум мышам имплантировали в мозг устройство, состоящее из 16 электрических компонентов. Устройства успешно используются для мониторинга и стимуляции определенных нейронов.

    Искусственное производство тетрагидроканнабинола

    Многие годы марихуана использовалась в медицине в качестве обезболивающего средства и в частности, для улучшения состояний больных раком и СПИДом. В медицине также активно используется и синтетический заменитель марихуаны, а точнее ее основного психоактивного компонента тетрагидроканнабинола (или THC).

    Однако, биохимики из Технического университета Дортмунда объявили о создании нового вида дрожжевого грибка, производящего THC. Более того, по неопубликованным данным известно, что эти же ученые создали еще один вид дрожжевого грибка, который производит каннабидиол, другой психоактивный компонент марихуаны.

    В марихуане содержится сразу несколько молекулярных соединений, которые интересуют исследователей. Поэтому, открытие эффективного искусственного способа создания этих компонентов в больших количествах могло бы принести медицине огромную пользу. Однако, метод обычного выращивания растений и последующая добыча необходимых молекулярных соединений является сейчас наиболее эффективным способом. Внутри 30 процентов сухой массы современных видов марихуаны может содержаться нужный компонент THC.

    Несмотря на это, дортмундские ученые уверены, что смогут найти более эффективный и быстрый способ добычи THC в будущем. К настоящему моменту, созданный дрожжевой грибок повторно выращивается на молекулах такого же грибка, вместо предпочтительной альтернативы в виде простых сахаридов. Все это приводит к тому, что с каждой новой партией дрожжей уменьшается и количество свободного компонента THC.

    В будущем, ученые обещают оптимизировать процесс, максимизировать производство THC и увеличить масштабы до индустриальных нужд, что, в конечном итоге, удовлетворит нужды медицинских исследований и европейских регуляторов, которые ищут новый способы производства тетрагидроканнабинола без выращивания самой марихуаны.

    Доктор биологических наук Ю. ПЕТРЕНКО.

    Несколько лет назад в Московском государственном университете был открыт факультет фундаментальной медицины, на котором готовят врачей, обладающих широкими знаниями в естественных дисциплинах: математике, физике, химии, молекулярной биологии. Но вопрос о том, насколько необходимы фундаментальные знания врачу, продолжает вызывать острые споры.

    Наука и жизнь // Иллюстрации

    Среди символов медицины, изображенных на фронтонах здания библиотеки Российского государственного медицинского университета, - надежда и исцеление.

    Настенная роспись в фойе Российского государственного медицинского университета, на которой изображены великие врачи прошлого, сидящие в раздумье за одним длинным столом.

    У. Гильберт (1544-1603), придворный врач английской королевы, естествоиспытатель, открывший земной магнетизм.

    Т. Юнг (1773-1829), известный английский врач и физик, один из создателей волновой теории света.

    Ж.-Б. Л. Фуко (1819-1868), французский врач, увлекавшийся физическими исследованиями. С помощью 67-метрового маятника доказал вращение Земли вокруг оси и сделал много открытий в области оптики и магнетизма.

    Ю. Р. Майер (1814-1878), немецкий врач, установивший основные принципы закона сохранения энергии.

    Г. Гельмгольц (1821-1894), немецкий врач, занимался физиологической оптикой и акустикой, сформулировал теорию свободной энергии.

    Надо ли преподавать физику будущим врачам? В последнее время этот вопрос волнует многих, и не только тех, кто готовит профессионалов в области медицины. Как обычно, существуют и сталкиваются два крайних мнения. Те, кто "за", рисуют мрачную картину, которая явилась плодом пренебрежительного отношения к базисным дисциплинам в образовании. Те, кто "против", считают, что в медицине должен доминировать гуманитарный подход и врач прежде всего должен быть психологом.

    КРИЗИС МЕДИЦИНЫ И КРИЗИС ОБЩЕСТВА

    Современная теоретическая и практическая медицина достигла больших успехов, и физические знания ей сильно в этом помогли. Но в научных статьях и публицистике не перестают звучать голоса о кризисе медицины вообще и медицинского образования в частности. Факты, свидетельствующие о кризисе, определенно есть - это и появление "божественных" целителей, и возрождение экзотических методов врачевания. Заклинания типа "абракадабры" и амулеты вроде лягушачьей лапки вновь в ходу, как в доисторические времена. Приобретает популярность неовитализм, один из основоположников которого, Ханс Дриш, считал, что сущность жизненных явлений составляет энтелехия (своего рода душа), действующая вне времени и пространства, и что живое не может сводиться к совокупности физико-химических явлений. Признание энтелехии в качестве жизненной силы отрицает значение физико-химических дисциплин для медицины.

    Можно привести множество примеров того, как псевдонаучные представления подменяют и вытесняют подлинно научные знания. Почему так происходит? По мнению нобелевского лауреата, открывателя структуры ДНК Фрэнсиса Крика, когда общество становится очень богатым, молодежь проявляет нежелание работать: она предпочитает жить легкой жизнью и заниматься пустяками, вроде астрологии. Это справедливо не только для богатых стран.

    Что касается кризиса в медицине, то преодолеть его можно, только повышая уровень фундаментальности. Обычно считают, что фундаментальность - это более высокий уровень обобщения научных представлений, в данном случае - представлений о природе человека. Но и на этом пути можно дойти до парадоксов, например, рассматривать человека как квантовый объект, полностью абстрагируясь от физико-химических процессов, протекающих в организме.

    ВРАЧ-МЫСЛИТЕЛЬ ИЛИ ВРАЧ-ГУРУ?

    Никто не отрицает, что вера больного в исцеление играет важную, иногда даже решающую роль (вспомним эффект плацебо). Так какой же врач нужен больному? Уверенно произносящий: "Ты будешь здоров" или же долго раздумывающий, какое лекарство выбрать, чтобы получить максимальный эффект и при этом не навредить?

    По воспоминаниям современников, знаменитый английский ученый, мыслитель и врач Томас Юнг (1773-1829) нередко застывал в нерешительности у постели больного, колебался в установлении диагноза, часто и надолго умолкал, погружаясь в себя. Он честно и мучительно искал истину в сложнейшем и запутанном предмете, о котором писал так: "Нет науки, сложностью превосходящей медицину. Она выходит за пределы человеческого разума".

    С точки зрения психологии врач-мыслитель мало соответствует образу идеального врача. Ему недостает смелости, самонадеянности, безапелляционности, нередко свойственных именно невеждам. Наверное, такова природа человека: заболев, уповать на быстрые и энергичные действия врачующего, а не на размышления. Но, как сказал Гёте, "нет ничего страшнее деятельного невежества". Юнг как врач большой популярности у больных не приобрел, а вот среди коллег его авторитет был высоким.

    ФИЗИКУ СОЗДАВАЛИ ВРАЧИ

    Познай самого себя, и ты познаешь весь мир. Первым занимается медицина, вторым - физика. Изначально связь между медициной и физикой была тесной, недаром совместные съезды естествоиспытателей и врачей проходили вплоть до начала XX века. И между прочим, физику во многом создали врачи, а к исследованиям их часто побуждали вопросы, которые ставила медицина.

    Врачи-мыслители древности первыми задумались над вопросом, что есть теплота. Они знали, что здоровье человека связано с теплотой его тела. Великий Гален (II век н.э.) ввел в обиход понятия "температура" и "градус", ставшие основополагающими для физики и других дисциплин. Так что врачи древности заложили основы науки о тепле и изобрели первые термометры.

    Уильям Гильберт (1544-1603), лейб-медик английской королевы, изучал свойства магнитов. Он назвал Землю большим магнитом, доказал это экспериментально и придумал модель для описания земного магнетизма.

    Томас Юнг, о котором уже упоминалось, был практикующим врачом, но при этом сделал великие открытия во многих областях физики. Он по праву считается, вместе с Френелем, создателем волновой оптики. Кстати, именно Юнг открыл один из дефектов зрения - дальтонизм (неспособность различать красный и зеленый цвета). По иронии судьбы это открытие обессмертило в медицине имя не врача Юнга, а физика Дальтона, который оказался первым, у кого обнаружился этот дефект.

    Юлиус Роберт Майер (1814-1878), внесший огромный вклад в открытие закона сохранения энергии, служил врачом на голландском корабле "Ява". Он лечил матросов кровопусканием, которое считалось в то время средством от всех болезней. По этому поводу даже острили, что врачи выпустили больше человеческой крови, чем ее было пролито на полях сражений за всю историю человечества. Майер обратил внимание, что, когда корабль находится в тропиках, при кровопускании венозная кровь почти такая же светлая, как артериальная (обычно венозная кровь темнее). Он предположил, что человеческий организм, подобно паровой машине, в тропиках, при высокой температуре воздуха, потребляет меньше "топлива", а потому и "дыма" выделяет меньше, вот венозная кровь и светлеет. Кроме того, задумавшись над словами одного штурмана о том, что во время штормов вода в море нагревается, Майер пришел к выводу, что всюду должно существовать определенное соотношение между работой и теплотой. Он высказал положения, которые легли по существу в основу закона сохранения энергии.

    Выдающийся немецкий ученый Герман Гельмгольц (1821-1894), тоже врач, независимо от Майера сформулировал закон сохранения энергии и выразил его в современной математической форме, которой до настоящего времени пользуются все, кто изучает и использует физику. Помимо этого Гельмгольц сделал великие открытия в области электромагнитных явлений, термодинамике, оптике, акустике, а также в физиологии зрения, слуха, нервных и мышечных систем, изобрел ряд важных приборов. Получив медицинское образование и будучи профессиональным медиком, он пытался применить физику и математику к физиологическим исследованиям. В 50 лет профессиональный врач стал профессором физики, а в 1888 году - директором физико-математического института в Берлине.

    Французский врач Жан-Луи Пуазейль (1799-1869) экспериментально изучал мощность сердца как насоса, качающего кровь, и исследовал законы движения крови в венах и капиллярах. Обобщив полученные результаты, он вывел формулу, оказавшуюся чрезвычайно важной для физики. За заслуги перед физикой его именем названа единица динамической вязкости - пуаз.

    Картина, показывающая вклад медицины в развитие физики, выглядит достаточно убедительной, но можно добавить к ней еще несколько штрихов. Любой автомобилист слышал о карданном вале, передающем вращательное движение под разными углами, но мало кто знает, что изобрел его итальянский врач Джероламо Кардано (1501-1576). Знаменитый маятник Фуко, сохраняющий плоскость колебаний, носит имя французского ученого Жан-Бернара-Леона Фуко (1819-1868), врача по образованию. Знаменитый русский врач Иван Михайлович Сеченов (1829-1905), чье имя носит Московская государственная медицинская академия, занимался физической химией и установил важный физико-химический закон, описывающий изменение растворимости газов в водной среде в зависимости от присутствия в ней электролитов. Этот закон и сейчас изучают студенты, причем не только в медицинских вузах.

    "НАМ ФОРМУЛ НЕ ПОНЯТЬ!"

    В отличие от врачей прошлого многие современные студенты-медики попросту не понимают, зачем им преподают естественно-научные дисциплины. Вспоминается одна история из моей практики. Напряженная тишина, второкурсники факультета фундаментальной медицины МГУ пишут контрольную. Тема - фотобиология и ее применение в медицине. Заметим, что фотобиологические подходы, основанные на физических и химических принципах действия света на вещество, признаются сейчас самыми перспективными для лечения онкологических заболеваний. Незнание этого раздела, его основ - серьезный ущерб в медицинском образовании. Вопросы не слишком сложные, все в рамках материала лекционных и семинарских занятий. Но итог неутешителен: почти половина студентов получили двойки. И для всех, кто не справился с заданием, характерно одно - в школе физику не учили или учили спустя рукава. На некоторых этот предмет наводит самый настоящий ужас. В стопке контрольных работ мне попался листок со стихами. Студентка, не сумевшая ответить на вопросы, в поэтической форме жаловалась, что ей приходится зубрить не латынь (вечное мучение студентов-медиков), а физику, и в конце восклицала: "Что делать? Ведь мы - медики, нам формул не понять!" Юная поэтесса, назвавшая в своих стихах контрольную "судным днем", испытания физикой не выдержала и в конце концов перевелась на гуманитарный факультет.

    Когда студенты, будущие медики, оперируют крысу, никому и в голову не придет спрашивать, зачем это надо, хотя организмы человека и крысы различаются довольно сильно. Зачем будущим врачам физика - не так очевидно. Но сможет ли врач, не понимающий основных физических законов, грамотно работать со сложнейшим диагностическим оборудованием, которым "напичканы" современные клиники? Кстати, многие студенты, преодолев первые неудачи, начинают с увлечением заниматься биофизикой. В конце учебного года, когда были изучены такие темы, как "Молекулярные системы и их хаотические состояния", "Новые аналитические принципы рН-метрии", "Физическая природа химических превращений веществ", "Антиоксидантное регулирование процессов перекисного окисления липидов", второкурсники написали: "Мы открывали фундаментальные законы, определяющие основу живого и, возможно, мироздания. Открывали их не на основе умозрительных теоретических построений, а в реальном объективном эксперименте. Нам было тяжело, но интересно". Возможно, среди этих ребят есть будущие Федоровы, Илизаровы, Шумаковы.

    "Лучший способ изучить что-либо - это открыть самому, - утверждал немецкий физик и писатель Георг Лихтенберг. - То, что вы были принуждены открыть сами, оставляет в вашем уме дорожку, которой вы сможете снова воспользоваться, когда в том возникнет необходимость". Этот самый эффективный принцип обучения стар как мир. Он лежит в основе "метода Сократа" и носит название принципа активного обучения. Именно на этом принципе построено обучение биофизике на факультете фундаментальной медицины.

    РАЗВИВАЯ ФУНДАМЕНТАЛЬНОСТЬ

    Фундаментальность для медицины - залог ее сегодняшней состоятельности и будущего развития. По-настоящему достичь цели можно, рассматривая организм как систему систем и идя путем более углубленного ее физико-химического осмысления. А как быть с медицинским образованием? Ответ ясен: повышать уровень знаний студентов в области физики и химии. В 1992 году в МГУ создан факультет фундаментальной медицины. Цель состояла в том, чтобы не только вернуть в университет медицину, но и, не снижая качества врачебной подготовки, резко усилить естественно-научную базу знаний будущих врачей. Такая задача требует интенсивной работы и преподавателей и студентов. Предполагается, что студенты сознательно выбирают фундаментальную медицину, а не обычную.

    Еще раньше серьезной попыткой в этом направлении стало создание медико-биологического факультета в Российском государственном медицинском университете. За 30 лет работы факультета подготовлено большое число врачей-специалистов: биофизиков, биохимиков и кибернетиков. Но проблема этого факультета в том, что до сих пор его выпускники могли заниматься только медицинскими научными исследованиями, не имея права лечить больных. Сейчас эта проблема решается - в РГМУ совместно с Институтом повышения квалификации врачей создан учебно-научный комплекс, который позволяет студентам старших курсов пройти дополнительную врачебную подготовку.

    Доктор биологических наук Ю. ПЕТРЕНКО.

    Изменили наш мир и существенно повлияли на жизнь многих поколений.

    Великие ученые физики и их открытия

    (1856-1943) — изобретатель в области электротехники и радиотехники сербского происхождения. Николу называют отцом современного электричества. Он сделал множество открытий, и изобретений получив более 300 патентов на свои творения во всех странах, где работал. Никола Тесла был не только физиком теоретиком, но и блестящим инженером, создававшим и испытывавшим свои изобретения.
    Тесла открыл переменный ток, беспроводную передачу энергии, электричества, его работы привели к открытию рентгена, создал машину, которая вызывала колебания поверхности земли. Никола предсказывал наступление эры роботов, способных выполнять любую работу.

    (1643-1727) — один из отцов классической физики. Обосновал движение планет Солнечной системы вокруг Солнца, а также наступление приливов и отливов. Ньютон создал фундамент для современной физической оптики. Верхом его работ является известный закон всемирного тяготения.

    Джон Дальтон — английский физико-химик. Открыл закон равномерного расширения газов при нагревании, закон кратных отношений, явление полимерии (на примере этилена и бутилена).Создатель атомной теории строения вещества.

    Майкл Фарадей (1791 - 1867) - английский физик и химик, основоположник учения об электромагнитном поле. Сделал за свою жизнь столько научных открытий, что их хватило бы десятку ученых, чтобы обессмертить свое имя.

    (1867 - 1934) - физик и химик польского происхождения. Совместно с мужем открыла элементы радий и полоний. Занималась проблемами радиоактивности.

    Роберт Бойль (1627 - 1691) - английский физик, химик и богослов. Совместно с Р. Тоунлеем установил зависимость объёма одной и той же массы воздуха от давления при неизменной температуре (Бойля - Мариотта закон).

    Эрнест Резерфорд — английский физик, разгадал природу индуцированной радиоактивности, открыл эманацию тория, радиоактивный распад и его закон. Резерфорда нередко справедливо называют одним из титанов физики ХХ века.

    — немецкий физик, создатель общей теории относительности. Предположил, что все тела не притягивают друг друга, как считалось со времен Ньютона, а искривляют окружающее пространство и время. Эйнштейн написал больше 350 работ по физике. Является создателем специальной (1905) и общей теории относительности (1916), принципа эквивалентности массы и энергии (1905). Разработал множество научных теорий: квантового фотоэффекта и квантовой теплоемкости. Вместе с Планком, разработал основы квантовой теории, представляющие основой современной физике.

    Александр Столетов — русский физик, нашел, что величина фототока насыщения пропорциональна световому потоку, падающему на катод. Вплотную подошел к установлению законов электрических разрядов в газах.

    (1858-1947) - немецкий физик, создатель квантовой теории, совершившей подлинную революцию в физике. Классическая физика в противоположность современной физике ныне означает «физика до Планка».

    Поль Дирак — английский физик, открыл статистическое распределение энергии в системе электронов. Получил Нобелевскую премию по физике «за открытие новых продуктивных форм атомной теории».

    Достижения медицины

    История медицины – это неотъемлемая часть человеческой культуры. Медицина развивалась и формировалась по законам, которые были едиными для всех наук. Но если древние лекари следовали религиозным догмам, то позже развитие медицинской практики проходило уже под знаменем грандиозных открытий науки. Портал Samogo.Net предлагает Вам ознакомиться с самыми значимыми достижениями в мире медицины.

    Андреасом Везалием изучалась анатомия человека на основе проводимых им вскрытий. Для 1538 года анализ человеческих трупов был необычным, но Везалий считал, что понятие анатомии очень важно для проведения оперативных вмешательств. Андреас создал анатомические схемы нервной и кровеносной систем, а в 1543 году опубликовал работу, которая стала началом в зарождении анатомии, как науки.

    В 1628 году Уильям Харви установил, что сердце – это орган, который отвечает за кровообращение и что кровь циркулирует по человеческому организму. Его очерк про работу сердца и циркуляцию крови у животных стал основой для науки физиологии.

    В 1902 году в Австрии, биолог Карл Ландштейнер и его сотрудники обнаружили у человека четыре группы крови, а также разработали классификацию. Знание групп крови имеет большое значение при переливании крови, что широко используется в лечебной практике.

    В период с 1842 по 1846 годы некоторые из ученых обнаруживают, что химические вещества можно использовать в анестезии для обезболивания операций. Еще в 19 веке в стоматологии использовали веселящий газ и серный эфир.

    Революционные открытия

    В 1895 году Вильгельм Рентген, проводя эксперименты с выбросом электронов, случайно обнаружил рентгеновские лучи. Это открытие принесло Рентгену Нобелевскую премию в истории физики в 1901 году и стало революцией в области медицины.

    В 1800 году Пастер Луи формулирует теорию и считает, что болезни вызывают разные виды микробов. Пастер поистине считается «отцом» бактериологии и его работа стала толчком для дальнейших исследований в науке.

    Ф. Хопкинс и ряд других ученых в 19 веке обнаружили, что недостаток определенных веществ вызывает заболевания. Эти вещества позже назвали витаминами.

    В период с 1920 по 1930 годы А. Флеминг случайно открывает плесень и называет ее пенициллином. Позже, Г. Флори и Э. Борис выделяют пенициллин в чистом виде и подтверждают его свойства на мышах, которые имели бактериальную инфекцию. Это дало толчок в развитии антибиотикотерапии.

    В 1930 году Г. Домагк выясняет, что оранжево-красный краситель влияет на стрептококковую инфекцию. Это открытие позволяет синтезировать химиотерапевтические препараты.

    Дальнейшие исследования

    Врач Э. Дженнер, в 1796 году, впервые проводит вакцинацию от оспы и определяет, что эта прививка обеспечивает иммунитет.

    Ф. Бантинг и сотрудники в 1920 году выявили инсулин, который помогает уравновесить сахар в крови у людей, которые болеют сахарным диабетом. До открытия этого гормона таким больным нельзя было спасти жизнь.

    В 1975 году Г. Вармус и М. Бишоп открыли гены, которые стимулируют развитие опухолевых клеток (онкогены).

    Независимо друг от друга в 1980 году ученые Р. Галло и Л. Монтанье открывают новый ретровирус, который позже назвали вирусом иммунодефицита человека. Также эти ученые классифицировали вирус как возбудителя синдрома приобретенного иммунодефицита.