Биографии Характеристики Анализ

Законы наследования установленные г менделем. Основные генетические понятия

Закономерности наследственности. Законы Г. Менделя, их статистический характер и цитологические основы

Основные закономерности наследственности установил выдающийся чешский ученый Грегор Мендель. Свои исследования Г. Мендель начал с моногибридного скрещивания, при котором родительские особи отличаются по состоянию одного признака. Выбранный им горох посевной - само-запильна растение, поэтому потомки каждой особи являются чистыми линиями. Вместе горох можно искусственно перекрестно опылить, что делает возможным гибридизацию и получения гетерозиготных (гибридных) форм. Как материнские (Р) были взяты растения чистой линии с желтым цветом семян, а родительской (Р) - с зеленым цветом. В результате такого скрещивания семена растений (гибридов первого поколения - F1) оказалось однообразным - желтого цвета. То есть в фенотипе гибридов F1 проявились лишь доминантные признаки.

Однообразие первого гибридного поколения и выявления у гибридов только доминантного признака называется законом доминирования или И законом Менделя.

Расщепление - явление проявления обоих состояний признаки во втором поколении гибридов (F2), обусловлено различием аллельных генов, которые их определяют.

Есть самоопыляющиеся растения F1 с желтыми семенами дают потомства с желтым и с зелеными семенами; рецессивный признак не исчезает, а только временно подавляется, вновь появляется в F2 в соотношении 1/4 часть зеленых семян и 3/4 - желтых. То есть точно - 3:1.

Проявление в фенотипе четверти гибридов второго поколения рецессивного признака, а трех четвертых - доминантной, получила название закона расщепления, II закона Менделя.

В дальнейшем Г. Мендель усложнил условия в опытах - использовал растения, которые отличались различными состояниями двух (Дигибридное скрещивание) или большего числа признаков (полигибридное скрещивания). При скрещивании растений гороха с желтыми гладкими семенами и морщинистыми зелеными - все гибриды первого поколения имели гладкие желтые семена - проявление И закона Менделя - единообразия гибридов первого поколения. Но среди гибридов F2 оказалось четыре фенотипа.

На основании полученных результатов Г. Мендель сформулировал закон независимого комбинирования состояний признаков (закон независимого наследования признаков). Это ІІІ закон Менделя. При ди-или полигибридном скрещивании расщепления состояний каждого признака у потомков происходит независимо от других. Для дигибридном скрещивания характерно расщепление по фенотипу 9:3:3:1, причем появляются группы с новыми сочетанием признаков.

Неполное доминирование - промежуточный характер наследования. Существуют аллели, которые лишь частично доминируют над рецессивными. Тогда гибридная особь имеет степень признака в фенотипе, что отличает ее от родительских. Это явление получило название неполного доминирования.

Методы проверки генотипа гибридных особей

Как известно, при полном доминировании особи с доминантным и гетерозиготным набором хромосом фенотипически одинаковы. Определить их генотип возможно с помощью анализирующего скрещивания. Оно базируется на том, что особи, гомозиготные по рецессивным признаком , всегда подобные фенотипически. Это скрещивание рецессивного гомозиготной особи с особью с доминантным признаком , но неизвестным генотипом.

При получении однообразной F1 каждая родительская особь образует только один тип гамет. Итак, доминантная особь гомозиготной по генотипу (АА).

Если при скрещивании особи с доминантным признаком с особью с рецессивной гомозиготной признаком полученное потомство имеет расщепление 1:1, то исследуемая особь с доминантным признаком гетерозиготная (Аа).

  1. Особенности метода гибридологического анализа. Законы Менделя.
  2. Типы взаимодействия генов.
  3. Сцепленное наследование признаков.
  4. Цитоплазматическое наследование.

Метод гибридологического анализа , заключающийся в скрещивании и последующем учете расщеплений (соотношений фенотипических и генотипических разновидностей потомков), был разработан чешским естествоиспытателем Г. Менде­лем (1865). К особенностям этого метода относят: 1) учет при скрещивании не всего многообразного комплекса признаков у родителей и потомков, а анализ наследования отдельных, выделяемых исследователем альтернативных признаков ; 2) количе­ственный учет в ряду последовательных поколений гибридных растений, различающихся по отдельным признакам; 3) индивиду­альный анализ потомства от каждого растения.

Работая с самоопыляющимися растениями гороха садового, Г.Мендель выбрал для эксперимента сорта (чистые линии), отличающиеся друг от друга альтернативными проявлениями признаков. Полученные данные Мендель обработал математически, в результате чего раскрылась четкая закономерность наследования отдельных признаков родительских форм их потомками в ряде последующих поколений. Эту закономерность Мендель сформулировал в виде правил наследственности, получивших позднее название законов Менделя .

Скрещивание двух организмов называют гибридизацией. Моногибридным (моногенным ) называют скрещивание двух организмов, при котором прослеживают наследование одной пары альтернативных проявлений какого-либо признака (развитие этого признака обусловлено парой аллелей одного гена). Гибриды первого поколения являются единообразными по исследуемому признаку. В F1 проявляется лишь один из пары альтернативных вариантов признака цвета семян, названный доминантным. Эти результаты иллюстрируют первый закон Менделя - закон единообразия гибридов первого поколения, а также правило доминирования.

Первый закон Менделя можно сформулировать следующим образом: при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения окажутся по этим признакам едино­образными. У гибридов проявятся доминантные признаки родите­лей.

Во втором поколении обнаружилось расщепление по исследуемому признаку

Соотношение потомков с доминантным и рецессивным проявлением признака оказалось близко к ¾ к ¼. Таким образом, второй закон Менделя можно сформулировать следующим образом: при моногибридном скрещивании гетерозигот­ных особей (гибридов F1) во втором поколении наблюдается расщепление по вариантам анализируемого признака в отношении 3:1 по фенотипу и 1:2:1 по генотипу. Чтобы объяснить распределение признаков у гибридов после­довательных поколений, Г. Мендель предположил, что каждый наследственный признак зависит от наличия в соматических клетках двух наследственных факторов, полученных от отца и матери. К настоящему времени установлено, что наследственные факторы Менделя соответствуют генам - локусам хромосом.

Гомозиготные растения с желтыми семенами (АА) образуют гаметы одного сорта с аллелем А; растения с зелеными семенами (аа) образуют гаметы с а. Таким образом, пользуясь современной терминологией, гипоте­зу «чистоты гамет » можно сформулировать следующим образом: "В процессе образования половых клеток в каждую гамету попадает только один ген из аллельной пары, потому что, в процессе мейоза в гамету попадает одна хромосома из пары гомологичных хромосом.

Скрещивание, при котором прослеживается наследование по двум парам альтернативных признаков, называют дигибридным , по нескольким парам признаков- полигибридным . В опытах Менделя при скрещивании сорта гороха, имевшего желтые (А) и гладкие (В) семена, с сортом гороха с зелеными (а) и морщинистыми (Ь) семенами, гибриды F1 имели желтые и гладкие семена, т.е. проявились доминантные признаки (гибриды едино­образны).

Гибридные семена второго поколения (F2) распределились на четыре фенотипические группы в соотношении: 315 - с гладкими желтыми семенами, 101 - с морщинистыми желтыми, 108- с гладкими зелеными, 32 - с зелеными морщинистыми семенами. Если число потомков в каждой группе разделить на число потомков в самой малочисленной группе, то в F2 соотношение фенотипических классов составит приблизительно 9:3:3:1. Итак, согласно третьему закону Менделя , гены разных аллельных пар и соответствующие им признаки передаются потомству независимо друг от друга, комбинируясь во всевозмож­ных сочетаниях.

При полном доминировании одного аллеля над другим гетерозиготные особи фенотипически неотличимы от гомозиготных по доминантному аллелю и различить их можно только с помощью гибридологического анализа, т.е. по потомству, которое получается от определенного типа скрещивания, получившего название анализирующего . Анализирующим является такой тип скрещивания, при котором испытуемую особь с доминантным признаком скрещивают с особью, гомозиготной по рецессивному аплелю.

Если доминантная особь гомозиготна, потомство от такого скрещивания будет единообразным и расщепления не произойдет. В том случае, если особь с доминантным признаком гетерозиготна, расщепление произойдет в отношении 1:1 по фенотипу и генотипу.

Взаимодействие генов

В отдельных случаях действие разных генов относительно независимо, но, как правило, проявление признаков есть результат взаимодействия продуктов разных генов. Эти взаимодействия могут быть связаны как с аллельными , так и с неаллельными генами.

Взаимодействие между аллельными генами осуществляется в виде трех форм: полное доминирование, неполное доминирование и независимое проявление (кодоминирование).

Ранее были рассмотрены опыты Менделя, выявившие полное доминирование одного аллеля и рецессивность другого. Неполное доминирование наблюдается в том случае, когда один ген из пары аллелей не обеспечивает образование в достаточном для нормального проявления признака его белкового продукта. При этой форме взаимодействия генов все гетерозиготы и гомозиготы значительно отличаются по фенотипу друг от друга. При кодоминирсвании у гетерозиготных организмов каждый из аллельных генов вызывает формирование в фенотипе контролируемого им признака. Примером этой формы взаимогействия аллелей служит наследование групп крови человека по системе АВО, детерминируемых геном I. Существует три аллеля этого гена Iо,Iа,IЬ, определяющие антигены групп крови. Наследование групп крови иллюстрирует также явление множественного аллелизма: в генофондах популяций человека ген I существует в виде трех разных аллелей, которые комбинируются у отдельных индивидуумов только попарно.

Взаимодействие неаллельных генов. В ряде случаев на один признак организма могут влиять две (или более) пары неаллельных генов. Это приводит к значитель­ным численным отклонениям фенотипических (но не генотипических) классов от установленных Менделем при дигибридном скрещивании. Взаимодействие неаллельных генов подразделяют на основные формы: комплементарность, эпистаз, полимерию.

При комплементарном взаимодействии признак проявляется лишь в случае одновременного присутствия в генотипе организма двух доминантных неаллельных генов. Примером комплементар­ного взаимодействия может служить скрещивание двух различных сортов душистого горошка с белыми лепестками цветков.

Следующим видом взаимодействия неаллельных генов является эпистаз, при котором ген одной аллельной пары подавляет действие гена другой пары. Ген, подавляющий действие другого, называется эпистатическим геном (или супрессором). Подавля­емый ген носит название гипостатического. Эпистаз может быть доминантным и рецессивным. Примером доминантного эпистаза служит наследование окраски оперения кур. Ген С в доминантной форме определяет нормальную продукцию пигмента, но домина­нтный аллель другого гена I является его супрессором. В результате этого куры, имеющие в генотипе доминантный аллель гена окраски, в присутствии супрессора оказываются белыми. Эпистатическое действие рецессивного гена иллюстрнрует наследование окраски шерсти у домовых мышей. Окраска агути (рыжевато-серая окраска шерсти) определяется доминантным геном А. Его рецессивный аллель а в гомозиготном состоянии обусловливает черную окраску. Доминантный ген другой пары С определяет развитие пигмента, гомозиготы по рецессивному аллелю с являются альбиносами с белой шерстью и красными глазами (отсутствие пигмента в шерсти и радужной оболочке глаз).

Наследование признака, передача и развитие которого, обусловлены, как правило, двумя аллелями одного гена, называют моногенным . Кроме того известны гены из разных аллельных пар (их называют полимернымиили полигенами ), примерно одинаково влияющие на признак.

Явление одновременного действия на признак нескольких неаллельных однотипных генов получило название полимерии. Хотя полимерные гены не являются аллельными, но так как они определяют развитие одного признака, их обычно обозначают одной буквой А (а), цифрами указывая число аллельных пар. Действие полигенов чаще всего бывает суммирующим.

Сцепленное наследование

Анализ наследования од­новременно нескольких признаков у дрозофилы, проведенный Т. Морганом, показал, что результаты анализирующего скрещивания гибридов F1 иногда отличаются от ожидаемых в случае их незави­симого наследования. У потомков такого скрещивания вместо свободного комбинирования признаков разных пар наблюдали, тенденцию к наследованию преимущественно родительских соче­таний признаков. Такое наследование признаков было названо сцепленным. Сцепленное наследование объясняется расположением соответствующих генов в одной и той же хромосоме. В составе последней они передаются из поколения в поколение клеток и организмов, сохраняя сочетание аллелей родителей.

Зависимость сцепленного наследования признаков от локали­зации генов в одной хромосоме дает основание рассматривать хромосомы как отдельные группы сцепления. Анализ наследования призна­ка окраски глаз у дрозофилы в лаборатории Т. Моргана выявил некоторые особенности, заставившие выделить в качестве отдель­ного типа наследования признаков сцепленное с полом наследование .

Зависимость результатов эксперимента от того, кто из родителей являлся носителем доминантного варианта признака, позволила высказать предположение, что ген, определяющий окраску глаз у дрозофилы, расположен в Х-хромосоме и не имеет гомолога в У-хромосоме. Все особенности сцепленного с полом наследования объясняются неодинаковой дозой соответствующих генов у пред­ставителей разного - гомо- и гетерогаметного пола. Х-хромосома присутствует в кариотипе каждой особи, поэтому признаки, определяемые генами этой хромосомы, формируются у представителей как женского, так и мужского пола. Особи гомогаметного пола получают эти гены от обоих родителей и через свои гаметы передают их всем потомкам. Представители гетерогаметного пола получают единственную X-хромосому от гомогаметного родителя и передают ее своему гомогаметному потомству. У млекопитающих (в том числе и человека) мужской пол получает Х-сцепленные гены от матери и передает их дочерям. При этом мужской пол никогда не наследует отцовского Х-сцепленного признака и не передает его своим сыновьям

Активно функционирующие гены У-хромосомы, не имеющие аллелей в Х-хромосоме, присутствуют в генотипе только гетерогаметного пола, причем в гемизиготном состоянии. Поэтому они проявляются фенотипически и передаются из поколения в поколение лишь у представителей гетерогаметного пола. Так, у человека признак гипертрихоза ушной раковины («во­лосатые уши») наблюдается исключительно у мужчин и наследуется от отца к сыну.

Мы начнем с изложения законов Менделя, затем поговорим про Моргана, и в конце скажем, зачем генетика нужна сегодня, чем она помогает и каковы ее методы.

В 1860-х годах монах Мендель занялся исследованием наследования признаков. Этим занимались и до него, и впервые об этом говорится в Библии. В Ветхом завете говорится о том, что если владелец скота хотел получить определенную породу, то он одних овец кормил ветками очищенными, если хотел получить потомство с белой шерстью, и неочищенными, если хотел получить шкуру скота черной. То есть как наследуются признаки волновало людей еще до написания Библии. Почему же до Менделя никак не могли найти законы передачи признаков в поколениях?

Дело в том, что до него исследователи выбирали совокупность признаков одного индивида, с которыми было сложнее разбираться, нежели с одним признаком. До него передача признаков рассматривалась часто как единый комплекс (типа - у нее лицо бабушкино, хотя отдельных признаков тут очень много). А Мендель регистрировал передачу каждого признака в отдельности, независимо от того, как передались потомкам другие признаки.

Важно, что Мендель выбрал для исследования признаки, регистрация которых была предельно простой. Это признаки дискретные и альтернативные:

  1. дискретные (прерывистые) признаки: данный признак либо присутствует, либо отсутствует. Например, признак цвета: горошина либо зеленая, либо не зеленая.
  2. альтернативные признаки: одно состояние признака исключает наличие другого состояния. Например, состояние такого признака как цвет: горошина либо зеленая, либо желтая. Оба состояния признака в одном организме проявиться не могут.

Подход к анализу потомков был у Менделя такой, который до него не применяли. Это количественный, статистический метод анализа: все потомки с данным состоянием признака (например - горошины зеленые) объединялись в одну группу и подсчитывалось их число, которое сравнивали с числом потомков с другим состоянием признака (горошины желтые).

В качестве признака Мендель выбрал цвет семян посевного гороха, состояние которого было взаимоисключающим: цвет или желтый, или зеленый. Другой признак - форма семян. Альтернативные состояния признака - форма или морщинистая или гладкая. Оказалось, что эти признаки стабильно воспроизводятся в поколениях, и проявляются либо в одном состоянии, либо в другом. В общей сложности Мендель исследовал 7 пар признаков, следя за каждым по отдельности.

При скрещивании Мендель исследовал передачу признаков от родителей к их потомкам. И вот что он получил. Один из родителей давал в череде поколений при самоопылении только морщинистые семена, другой родитель - только гладкие семена.

Горох - самоопылитель. Для того, чтобы получить потомство от двух разных родителей (гибриды), ему нужно было сделать так, чтобы растения не самоопылялись. Для этого он удалял у одного родительского растения тычинки, и переносил на него пыльцу с другого растения. В этом случае образовавшиеся семена были гибридными. Все гибридные семена в первом поколении оказались одинаковыми. Все они оказались гладкими. Проявившееся состояние признака мы называем доминантным (значение корня этого слова - господствующий). Другое состояние признака (морщинистые семена) у гибридов не обнаруживалось. Такое состояние признака мы называем рецессивным (уступающим).

Мендель скрестил растения первого поколения внутри себя и посмотрел на форму получившихся горошин (это было второе поколение потомков скрещивания). Основная часть семян оказалась гладкой. Но часть была морщинистой, точно такой же у исходного родителя (если б мы говорили про собственную семью, то сказали бы, что внук был точно в дедушку, хоть у папы с мамой этого состояния признака не было совсем). Он провел количественное исследование того, какая доля потомков относится к одному классу (гладкие - доминантные), а какая к другому классу (морщинистые - рецессивные). Оказалось, что морщинистых семян получилась примерно четверть, а три четверти - гладких.

Мендель провел такие же скрещивания гибридов первого поколения по всем остальным признакам: цвету семян, окраски цветка и др. Он увидел, что соотношение 3:1 сохраняется.

Мендель провел скрещивание и в одном направлении (папа с доминантным признаком, мама - с рецессивным) и в другом (папа с рецессивным признаком, мама с доминантным). При этом качественные и количественные результаты передачи признаков в поколениях были одинаковыми. Из этого можно сделать вывод, что и женские и отцовские задатки признака вносят одинаковый вклад в наследование признака у потомства.

То, что в первом поколении проявляется признак только одного родителя, мы называем законом единообразия гибридов первого поколения или законом доминирования.

То, что во втором поколении вновь появляются признаки и одного родителя (доминантный) и другого (рецессивный) позволило Менделю предположить, что наследуется не признак как таковой, а задаток его развития (то, что мы сейчас называем геном). Он также предположил, что каждый организм содержит пару таких задатков для каждого признака. От родителя к потомку переходит только один из двух задатков. Задаток каждого типа (доминантный или рецессивный) переходит к потомку с равной вероятностью. При объединении у потомка двух разных задатков (доминантный и рецессивный) проявляется только один из них (доминантный, он обозначается большой буквой А). Рецессивный задаток (он обозначается малой буквой а) у гибрида не исчезает, поскольку проявляется в виде признака в следующем поколении.

Так как во втором поколении появился точно такой же организм, как и родительский, Мендель решил, что задаток одного признака «не замазывается», при объединении с другим, он остается таким же чистым. В последствии было выяснено то, что от данного организма передается только половина его задатков - половые клетки, они называются гаметами, несут только один из двух альтернативных признаков.

У человека насчитывается около 5 тыс. морфологических и биохимических признаков, которые наследуются достаточно четко по Менделю. Судя по расщеплению во втором поколении, альтернативные задатки одного признака комбинировались друг с другом независимо. То есть доминантный признак мог проявиться при комбинациях типа Аа , аА и АА , а рецессивный только в комбинации аа .

Повторим, что Мендель предположил, что наследуется не признак, а задатки признака (гены) и что эти задатки не смешиваются, поэтому этот закон называется законом чистоты гамет. Через исследование процесса наследования можно было сделать выводы о некоторых характеристиках наследуемого материала, то есть что задатки стабильны в поколениях, сохраняют свои свойства, что задатки дискретны, то есть определяются только одно состояние признака, то, что их два, они комбинируются случайно и т.д.

Во времена Менделя еще ничего не было известно о мейозе, хотя про ядерное строение клетки уже знали. То, что в ядре содержится вещество, названное нуклеином, стало известно только через пару лет после открытия законов Менделя, причем это открытие с ним никак не было связано.

Все выводы вышеизложенного материала можно сформулировать следующим образом:

1) Каждый наследственный признак определяется отдельным наследственным фактором, задатком; в современном представлении эти задатки соответствуют генам;

2) Гены сохраняются в чистом виде в ряду поколений, не утрачивая своей индивидуальности: это явилось доказательством основного положения генетики: ген относительно постоянен;

3) Оба пола в равной мере участвуют в передаче своих наследственных свойств потомству;

4) Редупликация равного числа генов и их редукция в мужских и женских половых клетках; это положение явилось генетическим предвидением существования мейоза;

5) Наследственные задатки являются парными, один - материнский, другой - отцовский; один из них может быть доминантным, другой - рецессивным; это положение соответствует открытию принципа аллелизма: ген представлен минимум двумя аллелями.

К законам наследования относятся закон расщепления наследственных признаков в потомстве гибрида и закон независимого комбинирования наследственных признаков. Эти два закона отражают процесс передачи наследственной информации в клеточных поколениях при половом размножении. Их открытие явилось первым фактическим доказательством существования наследственности как явления.

Законы наследственности имеют другое содержание, и они формулируются в следующем виде:

  • Первый закон - закон дискретной (генной) наследственной детерминации признаков; он лежит в основе теории гена.
  • Второй закон - закон относительного постоянства наследственной единицы - гена.
  • Третий закон - закон аллельного состояния гена (доминантность и рецессивность).

То, что законы Менделя связаны с поведением хромосом при мейозе, было обнаружено в начале ХХ века во время повторного открытия законов Менделя сразу тремя группами ученых независимо друг от друга. Как вам уже известно, особенность мейоза заключается в том, что число хромосом в клетке уменьшается вдвое, хромосомы могут меняться своими частями при мейозе. Такая особенность характеризует ситуацию с жизненным циклом у всех эукариот.

Для того, чтобы проверить предположение о наследовании задатков в таком виде, как мы уже говорили, Мендель провел также скрещивание потомков первого поколения, имеющие желтые семена с родительскими зелеными (рецессивными). Скрещивание на рецессивный организм он назвал анализирующим. В результате он получил расщепление один к одному: (Аа х аа = Аа + Аа + аа + аа ). Таким образом, Мендель подтвердил предположение, что в организме первого поколения есть задатки признаков каждого из родителей в соотношении 1 к 1. Состояние, когда оба задатка признака одинаковы, Мендель назвал гомозиготным, а когда разные - гетерозиготным.


Мендель учитывал результаты, полученные на тысячах семян, то есть он проводил статистические исследования, которые отражают биологическую закономерность. Открытые им самые законы будут действовать и на других эукариотах, например грибах. Здесь показаны грибы, у которых четыре споры, получаемые в результате одного мейоза, остаются в общей оболочке. Анализирующее скрещивание у таких грибов приводит к тому, в одной оболочке присутствуют 2 споры с признаком одного родителя и две с признаком другого. Таким образом, расщепление 1:1 в анализирующем скрещивании отражает биологическую закономерность расщепления задатков одного признака в каждом мейозе, которая будет выглядеть как закономерность статистическая, если все споры смешать.

То, что у родителей были разные состояния одного признака, говорит о том, что задатки к развитию признака могут как-то меняться. Эти изменения называются мутациями. Мутации бывают нейтральными: форма волос, цвет глаз и др. Некоторые мутации приводят к изменениям, нарушающим нормальное функционирование организма. Это коротконогость у животных (крупный рогатый скот, овцы и др.), безглазость и бескрылость у насекомых, бесшерстность у млекопитающих, гигантизм и карликовость.

Некоторые мутации могут быть и безвредными, например бесшерстность у людей, хотя все приматы имеют волосяной покров. Но иногда встречаются изменения интенсивности волосяного покрова на теле и у людей. Н.И.Вавилов назвал такое явление законом гомологических рядов наследственной изменчивости: то есть признак, типичный только для одного из двух родственных видов, может быть обнаружен с какой-то частотой и у особей родственного вида.

На этом слайде показано то, что мутации могут быть достаточно заметными, мы видим негритянскую семью, в которой родился белый негр - альбинос. У него дети, скорее всего, будут пигментированными, поскольку мутация эта рецессивная, а частота ее встречаемости низка.

Мы говорили до этого о признаках, которые проявляются полностью. Но это не для всех признаков так. Например, фенотип гетерозигот может быть промежуточным между доминантным и рецессивным признаком родителей. Так, окраска плода у баклажан в первом поколении меняется с темно-синей на менее интенсивную фиолетовую. При этом во втором поколении расщепление по наличию окраски осталось 3:1, но если учитывать интенсивность окраски расщепление стало 1:2:1 (цвет темно-синий - АА , фиолетовый - 2Аа и белый - аа , соответственно) В данном случае видно, что проявление признака зависит от дозы доминантного аллеля. Расщепление по фенотипу соответствует расщеплению по генотипу: классы АА , Аа и аа , в соотношении 1:2:1.

Еще раз выделим роль Менделя в развитии науки. Никто до него не размышлял, что вообще могут существовать задатки признаков. Считалось, что в каждом из нас сидит маленький человечек, внутри его - еще маленький человечек и т.д. Зачатие имеет к его появлению какое-то отношение, но по механизму, готовый маленький человечек уже присутствует с самого начала своего роста. Такими были доминирующие представления, у которых, безусловно, был недостаток - по этой теории, при большом числе поколений гомункулус должен был получиться по размеру меньше элементарной частицы, но тогда про частицы еще не знали J.

Откуда Мендель знал, какой признак является доминантным, а какой рецессивным? Ничего такого он не знал, просто взял некоторый принцип организации опыта. Удобно, что признаки, за которыми он наблюдал, были разными: рост, размер, цвет цветка, цвет боба и т.д. У него не было априорной модели механизма наследования, он вывел ее из наблюдения за передачей признака в поколениях. Еще одна особенность его метода. Он получил, что доля особей с рецессивным признаком во втором поколении составляет четверть от всего потомства. То есть вероятность того, что данная горошина зеленая - 1/4. Допустим получилось в среднем по 4 горошины в одном стручке. Будет ли в каждом стручке (это потомство от двух и только от двух родителей) 1 горошина зеленая и 3 желтых? Нет. Например, вероятность того, что там будет 2 зеленых горошины равна 1/4 х 1/4 = 1/16, а того, что все четыре зеленые - 1/256. То есть, если взять кучу бобов, с четырьмя горошинами в каждом, то у каждой 256-ой все горошины будут с рецессивными признаками, то есть зелеными. Мендель анализировал потомство множества одинаковых пар родителей. О скрещивании было рассказано, потому что они показывают, что законы Менделя проявляются как статистические, а в основе имеют биологическую закономерность - 1:1. То есть гаметы разных типов в КАЖДОМ мейозе у гетерозиготы образуются в равном соотношении - 1:1, а закономерности проявляется статистически, поскольку анализируются потомки сотен мейозов - Мендель анализировал более 1000 потомков в скрещивании каждого типа.

Сначала Мендель исследовал наследование одной пары признаков. Затем он задался вопросом, что будет происходить, если одновременно наблюдать за двумя парами признаков. Выше на рисунке, в правой части проиллюстрировано такое исследование по дум парам признаков - цвету горошин и форме горошин.

Родители одного типа давали при самоопылении горошины желтые и круглой формы. Родители другого типа давали при самоопылении горошины зеленые и морщинистой формы. В первом поколении он получил все горошины желтые, а по форме - круглые. Получившееся расщепление во втором поколении удобно рассмотреть с помощью решетки Пенета. Получили расщепление по признакам 9:3:3:1 (желтые и круглые: желтые и морщинистые: зеленые и круглые: зеленые и морщинистые). Расщепление по каждой паре признаков происходит независимо друг от друга. Соотношение 9жк + 3жм + 3зк + 1зм соответствует независимой комбинации результатов двух скрещиваний (3ж + 1з) х (3к + 1 м). То есть и задатки признаков этих пар (цвет и форма) комбинируются независимо.

Посчитаем, сколько разных фенотипических классов мы получили. У нас было 2 фенотипических класса: желтые и зеленые; и по другому признаку 2 фенотипических класса: круглые и морщинистые. А всего будет 2*2=4 фенотипических класса, что мы и получили выше. Если рассматривать три признака, то фенотипических классов будет 2 3 =8 классов. Мендель доходил до дигибридных скрещиваний. Задатки всех признаков, к счастью Менделя, находились у гороха на разных хромосомах, а всего хромосом у гороха - 7 пар. Поэтому, оказалось, что он взял признаки, которые комбинировались независимо в потомстве.

У человека 23 пары хромосом. Если рассмотреть какой-то один гетерозиготный признак для каждой хромосомы, может у человека может наблюдаться 2 23 ~ 8*10 6 фенотипических классов в потомстве одной супружеской пары. Как упоминалось на первой лекции, каждый из нас содержит между папиными и мамиными хромосомами порядка 1 различия на 1000 позиций, то есть всего порядка миллиона различий между папиными и мамиными хромосомами. То есть каждый из нас является потомком миллионногибридного скрещивания, при котором число фенотипических классов составляет 2 1000000 . Практически это число фенотипических классов в потомстве одной пары не реализуется, потому что хромосом у нас всего 23, а не миллион. Получается, что 8*10 6 - это нижний предел величины возможного разнообразия в потомстве данной супружеской пары. Исходя из этого, можно понять, что не может быть двух абсолютно одинаковых людей. Вероятность мутации данного нуклеотида в ДНК за одно поколение составляет около 10 -7 - 10 -8 , то есть на весь геном (3*10 9) получится около 100 изменений de novo между родителем и ребенком. А всего отличий в папиной половинке вашего генома от маминой половинки - около 1 000 000. Это значит, что старые мутации в вашем геноме гораздо более частые, чем вновь возникшие (в 10 000 раз).

Также Мендель проводил анализирующее скрещивание - скрещивание с рецессивной гомозиготой. У потомка первого поколения комбинация генов имеет вид АаВ b . Если скрестить его с представителем с полностью рецессивным набором генов (aabb ), то получится четыре возможных класса, которые будут находиться в соотношении 1:1:1:1, в отличие от рассмотренного выше скрещивания, когда мы получили расщепление 9:3:3:1.

Ниже показаны некоторые статистические критерии - какие соотношения чисел следует считать соответствующими ожидаемым, скажем, 3:1. Например, для 3:1 - из четырехсот горошин вряд ли получится точно 300 к 100. Если получится, к примеру, 301 к 99, то это отношение наверное можно считать равным 3 к 1. А 350 к 50 уже, наверное, не равно 3 к 1.

Статистический тест хи-квадрат (χ 2) используется для проверки гипотезы соответствия наблюдаемого распределения ожидаемому. Произносится эта греческая буква в русском языке как «хи», а в английском - как «чи» (chi).

Величина χ 2 рассчитывается как сумма квадратов отклонений наблюдаемых величин от ожидаемой, деленных на ожидаемую величину. Затем по специальной таблице для данного значения χ 2 находят величину вероятности того, что такое различие между наблюдаемой и ожидаемой величиной является случайным. Если вероятность оказывается меньше 5% то отклонение считается не случайным (цифра в пять процентов выбрана по договоренности).


Всегда ли будет проявляться какой-либо наследственно предопределенный признак? Ведь это предположение по умолчанию лежит в основе интерпретации данных полученных Менделем.

Оказывается, это может зависеть от многих причин. Есть такая наследуемая черта у человека - шестипалость. Хотя у нас, как и у всех позвоночных, пальцев в норме пять.

Вероятность проявления задатка признака в виде наблюдаемого признака (здесь - шестипалость) может быть меньше 100%. На фотографии у человека на обеих ногах по 6 пальцев. А у его близнеца этот признак не обязательно проявится. Доля индивидов с данным генотипом, у которых проявляется соответствующий фенотип, была названа пенетрантностью (этот термин ввел российский генетик Тимофеев-Ресовский).

В некоторых случаях шестой палец может быть просто обозначен некоторым кожным приростом. Степень выраженности признака у индивида Тимофеев-Ресовский предложил называть экспрессивностью.

Особенно ясно не 100% связь генотипа с фенотипом прослеживается при исследовании идентичных близнецов. Генетическая конституция у них один в один, а признаки у них совпадают в разной степени. Ниже представлена табличка, в которой представлено совпадение признаков для близнецов идентичных и неидентичных. В качестве признаков в этой таблице взяты различные болезни.


Признак, который присутствует у большинства особей в естественных условиях обитания, называется диким типом. Наиболее распространенный признак часто оказывается доминантным. Такая связь может иметь приспособительное значение, полезное для вида. У человека доминантными признаками являются, к примеру, черные волосы, темные глаза, кудрявые волосы. Кстати, поскольку соответствующие гены находятся на разных хромосомах, то может получиться кудрявый негр, который будет блондином - ничто это не запрещает.

Почему так получается, что в при моногибридном скрещивании трем генотипическим классам в потомстве второго поколения соответствует в некоторых случаях три фенотипических класса (баклажаны синие фиолетовые и белые), а в другом случае - два класса (желтая или зеленая горошина)? Почему в одном случае проявление доминантного признака неполное, а в другом - полное? Можно провести аналогию с фотопленкой. В зависимости от количества света, кадр может получиться совсем прозрачным, серым и совсем черным. То же самое - с генами. Например, есть у кукурузы ген Y, который определяет образование витамина А. Когда доза гена Y на клетку растет от одного до трех, то линейно изменяется активность фермента, который он кодирует и, в данном случае, усиливается образование витамина А и окраска зерна. (У кукурузы основная часть зерна - эндосперм. В каждой клетке эндосперма три генома - два от мамы и один от папы). То есть, многие признаки зависят от дозы аллеля количественно. Чем больше копий аллеля нужного типа, тем больше будет величина контролируемого им признака. Такая связь постоянно используется в биотехнологии.


Мендель мог благополучно свои законы и не открыть. Исследования на горохе позволили Менделю открыть свои законы, потому что горох - самоопыляемое растение, а потому без принуждения - гомозиготный. При самоопылении доля гетерозигот уменьшается пропорционально двум в степени номера поколения. В этом заключалось везение Менделя - если бы доля гетерозигот была большой, то никаких бы закономерностей не наблюдалось. Когда он затем взял перекрестные опылители, то закономерности нарушились, что сильно расстроило Менделя, потому что он подумал, что открыл нечто частное. Оказалось, что нет.


Выше было рассказано о наследовании признаков качественных, а обычно большинство признаков - количественные. Их генетический контроль достаточно сложен. Количественные признаки описываются через среднюю величину значения признака и размахом варьирования, которая называется нормой реакции. И величина средней, и норма реакции - это видоспецифические показатели, которые зависят как от генотипа, так и от условий среды. К примеру, продолжительность жизни человека. Хоть в Библии и написано, что пророки жили по 800 лет, но сейчас ясно, что больше 120-150 лет никто не живет. А, мышь, например, живет два года, хотя она тоже млекопитающее. Наш рост, наш вес - это все количественные признаки. Нет людей 3-4 метрового роста, хотя слоны, к примеру, есть. У каждого вида своя средняя по каждому количественному признаку и свой размах его варьирования.


Закономерности наследования открыты при исследовании качественных признаков.

Большинство наших признаков - количественные.

Величины значений признаков в представительной выборке особей данного вида характеризуются определенной средней и широтой ее варьирования, которая называется нормой реакции и зависит как от генотипа, так и от условий формирования признака.

Тема 4.2 Основные закономерности

наследственности

Терминология 1. Альтернативные – контрастные признаки. 2. Чистые линии – растения, в ряду которых при самоопылении не наблюдается расщепления. 3. Гибридиологический метод – получение гибридного потомства и его анализ. 4. Родительские особи – Р. 5. Мужские особи – ♂. 6. Женские особи – ♀. 7. Скрещивание – X. 8. Гибриды F 1 , F 2 , F n . 9. Моногибридное – скрещивание особей с одним контрастным признаком. Закономерности наследования признаков Количественные закономерности наследования признаков открыл чешский ботаник-любитель Г. Мендель. Поставив цель выяснить закономерности наследования признаков, он, прежде всего, обратил внимание на выбор объекта исследования. Для своих опытов Г. Мендель выбрал горох – те его сорта, которые чётко отличались друг от друга по целому ряду признаков. Одним из самых существенных моментов во всей работе было определение числа признаков, по которым должны различаться скрещиваемые растения. Г. Мендель впервые осознал, что начав с самого простого случая – различия родителей по одному-единственному признаку и постепенно усложняя задачу, можно надеяться распутать весь клубок закономерностей передачи признаков из поколения в поколение, т.е. их наследования. Здесь выявилась строгая математичность его мышления. Именно такой подход позволил Г. Менделю чётко планировать дальнейшее усложнение экспериментов. В этом отношении Мендель стоял выше всех современных ему биологов. Другой важной особенностью его исследований было то, что он выбрал для экспериментов организмы, относящиеся к чистым линиям, т.е. такие растения, в ряду поколений которых при самоопылении не наблюдалось расщепления по изучаемому признаку. Не менее важно и то, что он наблюдал за наследованием альтернативных, т.е. контрастных признаков. Например, цветки одного растения были пурпурные, а другого – белыми, рост растения высокий или низкий, бобы гладкие или морщинистые т.д. Сравнивая результаты опытов и теоретические расчёты, Г. Мендель особенно подчёркивал среднестатистический характер открытых им закономерностей. Таким образом, метод скрещивания особей, отличающихся альтернативными признаками, т.е. гибридизации, с последующим строгим учётом распределения родительских признаков у потомков, получил название гибридиологического. Закономерности наследования признаков, выявление Г. Менделем и подтверждение многими биологами на самых разных объектах, в настоящее время формулируют в виде законов, носящих всеобщий характер. Закон единообразия первого поколения гибридов Моногибридное скрещивание. Для иллюстрации закона единообразия первого поколения – первого закона Менделя, воспроизведём его опыты по моногибридному скрещиванию растений гороха. Моногибридным называется скрещивание двух организмов, отличающихся друг от друга по одной паре альтернативных признаков. Следовательно, при таком скрещивании прослеживаются закономерности наследования только двух вариантов признака, развитие которого обусловлено парой аллельных генов. Например, признак – цвет семян, варианты – жёлтый или зелёный. Все остальные признаки, свойственные данным организмам, во внимание не принимаются. Если скрестить растения гороха с жёлтыми и зелёными семенами, то у всех полученных в результате этого скрещивания потомков – гибридов семена будут жёлтыми. Такая же картина наблюдается при скрещивании растений, имеющих гладкую и морщинистую форму семян – все семена у гибридов будут гладкими. Следовательно, у гибрида первого поколения из каждой пары альтернативных признаков проявляется только один. Второй признак как бы исчезает, не проявляется. Преобладание у гибрида признака одного из родителей Мендель назвал доминированием. Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным, противоположный, т.е. подавляемый признак – рецессивным. Доминантный признак принято обозначать прописной буквой (А), рецессивный – строчной (а). Мендель использовал в опытах растения, относящиеся к разным чистым линиям, или сортам, потомки которых в длинном ряду поколений были сходны с родителями. Следовательно, у этих растений оба аллельных гена одинаковы. Таким образом, если в генотипе организма есть два одинаковых аллельных гена, т.е. два абсолютно идентичных по последовательности нуклеотидов гена, такой организм называется гомозиготным. Организм может быть гомозиготным по доминантным (АА) или рецессивным (аа) генам. Если же аллельные гены отличаются друг от друга по последовательности нуклеотидов, например, один доминантный, а другой рецессивный (Аа) такой организм называется гетерозиготным. Первый закон Менделя называют также законом доминирования или единообразия, так как все особи первого поколения имеют одинаковое проявление признака, присущего одному из родителей. Формулируется он так: При скрещивании двух организмов, относящихся к разным чистым линиям (двух гомозигот), отличающихся друг от друга по паре альтернативных признаков, всё первое поколение гибридов (F 1) окажется единообразным и будет нести признак одного родителя. В отношении окраски Мендель установил, что красный или чёрный цвет будет доминировать над белым, промежуточными цветами будут розовый и серый, разной насыщенности. Мендель предложил графические обозначения признаков: Р – родители, ♂ – мужская особь, ♀ – женская особь,
, – гаметы, X – скрещивание, F 1 , F 2 , F n – потомство. Первый закон Менделя представлен на рисунке 1.

Рисунок 1. Первый закон Менделя

Всё потомство имеет одинаковую промежуточную окраску, что не противоречит первому закону Менделя.

Контрольные вопросы

1. Биологический материал Менделя. 2. Альтернативные признаки в опытах Менделя. 3. Чистые линии и их определение. 4. Сущность гибридиологического метода. 5. Моногибридное скрещивание. 6. Доминантные и рецессивные признаки. 7. Аллельные гены. 8. Первый закон Менделя. Закон единообразия.

Тема 4.2.1 Неполное доминирование генов

Терминология 1. Аллельные гены – гены, расположенные в одинаковых локусах гомологичных хромосом. 2. Доминантный признак – подавляющий развитие другого. 3. Рецессивный признак – подавляемый. 4. Гомозигота – зигота имеющая одинаковые гены. 5. Гетерозигота – зигота имеющая разные гены. 6. Расщепление – расхождение признаков в потомстве. 7. Кроссинговер – перехлест хромосомы. В гетерозиготном состоянии доминантный ген не всегда полностью подавляет проявление рецессивного гена. В ряде случаев гибрид F 1 не воспроизводит полностью не одного из родительских признаков и выражение признака носит промежуточный характер с большим или меньшим уклонением к доминантному или рецессивному состоянию. Но все особи этого поколения проявляют единообразие по данному признаку. Промежуточный характер наследования в предыдущей схеме не противоречит первому закону Менделя, так как все потомки F 1 единообразны. Неполное доминирование – широко распространённое явление. Оно обнаружено при изучении наследования окраски цветка у львиного зева, строения перьев птиц, окраска шерсти крупного рогатого скота и овец, биохимических признаков у человека и т.д. Множественный аллелизм. До сих пор разбирались примеры, в которых один и тот же ген был представлен двумя аллелями – доминантной (А) и рецессивной (а). Эти два состояния гена возникают вследствие мутирования. Ген может мутировать неоднократно. В результате возникает несколько вариантов аллельных генов. Совокупность этих аллельных генов, определяющих многообразие вариантов признака, называется серией аллельных генов. Возникновение такой серии вследствие неоднократного мутирования одного гена называется множественным аллелизмом или множественным аллеломорфизмом. Ген А может мутировать в состояние а 1 , а 2 , а 3 , а n . Ген В, находящийся в другом локусе – в состояние b 1 , b 2 , b 3 , b n . Например, у мухи дрозофилы известна серия аллелей по гену окраски глаз, состоящая из 12 членов: красная, коралловая, вишнёвая, абрикосовая и т.д. до белой, определяемым рецессивным геном . У кроликов существует серия множественных аллелей по окраске шерсти. Это обусловливает развитие сплошной окраски или отсутствие пигментации (альбинизм). Члены одной серии аллелей могут находиться в разных доминантно-рецессивных отношениях друг с другом. Следует помнить, что в генотипе диплоидных организмов могут находиться только два гена из серии аллелей. Остальные аллели данного гена в разных сочетаниях попарно входят в генотипы других особей данного вида. Таким образом, множественный аллелизм характеризует разнообразие генофонда, т.е. совокупность всех генов, входящих в состав генотипов определённой группы особей или целого вида. Другими словами, множественный аллелизм является видовым, а не индивидуальным признаком. Второй закон Менделя – Закон расщепления Если потомков первого поколения, одинаковых по изучаемому признаку, скрестить между собой, то во втором поколении признаки обоих родителей появляются в определённом числовом соотношении: 3 / 4 особей будут иметь доминантный признак, 1 / 4 – рецессивный. По генотипу в F 2 окажется 25% особей, гомозиготных по доминантным аллелям, 50% организмов будут гетерозиготны и 25% потомства составят гомозиготные по рецессивным аллелям организмы. Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть – рецессивный, называется расщеплением. Следовательно, расщепление – это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении. Таким образом, второй закон Менделя (см. рис.2) можно сформулировать следующим образом: при скрещивании двух потомков первого поколения между собой (двух гетерозигот) во втором поколении наблюдается расщепление в определённом числовом соотношении: по фенотипу 3:1, по генотипу 1:2:1.


Рисунок 2. Второй закон Менделя

При неполном доминировании в потомстве гибридов F 2 , расщепление по генотипу и фенотипу совпадает (1:2:1). Закон чистоты гамет Этот закон отражает сущность процесса образования гамет в мейозе. Мендель предположил, что наследственные факторы (гены) при образовании гибридов не смешиваются, а сохраняются в неизменном виде. В теле гибрида F, от скрещивания родителей, различающихся по альтернативным признакам, присутствуют оба фактора – доминантный и рецессивный. В виде признака проявляется доминантный наследственный фактор, рецессивный же подавляется. Связь между поколениями при половом размножении осуществляется через половые клетки – гаметы. Следовательно, необходимо допустить, что каждая гамета несёт только один фактор из пары. Тогда при оплодотворении слияние двух гамет, каждая из которых несёт рецессивный наследственный фактор, будет приводить к образованию организма с рецессивным признаком, проявляющимся фенотипически. Слияние же гамет, несущих по доминантному фактору, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении (F 2) рецессивного признака одного из родителей (Р) может иметь место только при соблюдении двух условий: 1. Если у гибридов наследственные факторы сохраняются в неизменном виде. 2. Если половые клетки содержат только один наследственный фактор из аллельной пары. Расщепление признаков в потомстве при скрещивании гетерозиготных особей, Мендель объяснил тем, что гаметы генетически чисты, т.е. несут только один ген из аллельной пары. Закон чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один ген из аллельной пары (из каждой аллельной пары). Цитологическим доказательством закона чистоты гамет является поведение хромосомы в мейозе: в первом мейотическом делении в разные клетки попадают гомологичные хромосомы, а в анафазе второго – дочерние хромосомы, которые вследствие кроссинговера могут содержать разные аллели одного и того же гена. Известно, что в каждой клетке организма имеется совершенно одинаковый диплоидный набор хромосом. Две гомологичные хромосомы содержат два одинаковых аллельных гена. Образование генетически «чистых» гамет показано на схеме на рисунке 3.


Рисунок 3. Образование «чистых» гамет

При слиянии мужских и женских гамет образуется гибрид, имеющий диплоидный набор хромосом (см. рис.4).

Рисунок 4. Образование гибрида

Как видно из схемы, половину хромосом зигота получает от отцовского организма, половину – от материнского. В процессе образования гамет у гибрида гомологичные хромосомы во время первого мейотического деления так же попадают в разные клетки (см. рис.5).

Рисунок 5. Образование двух сортов гамет

Образуется два сорта гамет по данной аллельной паре. Таким образом, цитологической основой закона чистоты гамет, а так же расщепление признаков у потомства при моногибридном скрещивании является расхождение гомологических хромосом и образование гаплоидных клеток в мейозе. Анализирующее скрещивание Разработанный Менделем гибридиологический метод изучения наследственности позволяет установить, гомозиготен или гетерозиготен организм, имеющий доминантный фенотип по исследуемому гену. Чиста ли порода? Для этого скрещивают особь с неизвестным генотипом и организм, гомозиготный по рецессивной аллели, имеющий рецессивный фенотип. Если доминантная особь гомозиготна, потомство от такого скрещивания будет единообразным и расщепления не произойдёт (см. рис.6).

Рисунок 6. Скрещивание доминантных особей.

Иная картина получится, если исследуемый организм гетерозиготен (см. рис.7).


Рисунок 7. Скрещивание гетерозиготеных особей.

Расщепление произойдёт в отношении 1:1 по фенотипу. Такой результат скрещивая – доказательство образования у одного из родителей двух сортов гамет, т.е. его гетерозиготность – не чистая порода (см. рис. 8).


Рисунок 8. Расщепление произойдёт в отношении 1:1 по фенотипу.

Контрольные вопросы

1. Неполное доминирование и его проявление в природе. 2. Сущность множественного аллелизма. 3. II-закон Менделя. Закон расщепления. 4. Закон чистоты гамет. 5. Цитологические доказательства закона чистоты гамет. 6. Анализирующее скрещивание, его сущность и значение.

Тема 4.2.2 III закон Менделя - закон независимого

комбинирования признаков

Терминология 1. Дигибритное скрещивание – скрещивание по двум контрастным признакам. 2. Дигетерозиготные организмы – организмы гетерозиготные по двум парам аллельных генов. 3. Решетка Паннета – графический метод подсчета результатов скрещивания. 4. Рекомбинация – перекомбинирование признаков. 5. Кроссинговер – появление новых признаков при перехлесте хромосом. 6. Морганида – расстояние между генами. Дигибридное и полигибридное скрещивание Организмы отличаются друг от друга по многим признакам. Установить закономерности наследования двух и более пар альтернативных признаков можно путём дигибридного или полигибридного скрещивания. Для дигибридного скрещивания, Мендель использовал гомозиготные растения гороха, отличающиеся по двум парам признаков – окраске семян (жёлтые и зелёные) и форме семян (гладкие и морщинистые). Доминантными были – жёлтая окраска (А) и гладкая форма семян (В). Каждое растение образует один сорт гамет по изучаемым аллелям. При слиянии гамет всё потомство будет единообразным (см. рис.9).


Рисунок 9. Слияние гамет

Организмы, гетерозиготные по двум парам аллельных генов, называются дигетерозиготными. При образовании гамет у гибрида из каждой пары аллельных генов в гамету попадает только один, при этом вследствие случайности расхождения отцовских и материнских хромосом в первом делении мейоза, ген А может попасть в одну гамету с геном В или с геном b, точно так же, как ген а может объединиться в одной гамете с геном В или с геном b (см. рис.10).


Рисунок 10. Образование гамет у гибрида

Таблица 1.

Обработка результатов дигибридного скрещивания

AB AABB AABb AaBB AaBb
Ab AABb AAbb AaBb Aabb
aB AaBB AaBb aaBB aaBb
ab AaBb Aabb aaBb aabb
↓ → А – жёлтая окраска. а – зелёная окраска. В – круглая форма. b – морщинистая форма. Поскольку в каждом организме образуется много половых клеток, в силу статистических закономерностей у гибрида образуется четыре сорта гамет в одинаковом количестве (по 25%) АВ, Аb, аВ, аb. Во время оплодотворения, каждая из четырёх типов гамет одного организма случайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощью решетки Паннета. По вертикали и горизонтали выписаны гаметы родителей. В квадратах – генотипы зигот, образующиеся при слиянии гамет. Видно, что по фенотипу потомство делится на четыре группы: 9 жёлтых гладких, 3 жёлтых морщинистых, 3 зелёных гладких, 1 жёлтая морщинистая. Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа гладких к числу морщинистых для каждой пары равно 3:1. Таким образом, в дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведёт себя так же, как в моногибридном скрещивании, т.е. независимо от другой пары признаков. При оплодотворении гаметы соединяются по правилам случайных сочетаний, но с равной вероятностью для каждой. В образующихся зиготах возникают различные комбинации генов. Независимое распределение генов в потомстве и возникновение различных комбинаций этих генов при дигибридном скрещивании возможно лишь в том случае, если пары аллельных генов расположены в разных парах гомологичных хромосом. Третий закон Менделя , или закон независимого комбинирования, можно сформулировать следующим образом: при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум парам альтернативных признаков, гены и соответствующие признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях. Третий закон применим лишь к наследованию аллельных пар, находящихся в разных парах гомологичных хромосом. На законах Менделя основан анализ расщепления и в более сложных случаях – при различии особей по трём и более парам признаков. Если родительские особи различаются по одной паре признаков, во втором поколении наблюдается расщепление признаков в отношении 3:1, для дигибридного скрещивания это будет (3:1) 2 или 9:3:3:1, для тригибридного (3:1) 3 и т.д. Можно также рассчитать число сортов гамет, образующихся у гибридов, по формуле 2 n , где n – число пар генов, по которым различаются родительские особи.

Законы наследования признаков Г. Менделя описывают первичные принципы передачи наследственных характеристик от родительских организмов к их детям; эти принципы лежат в основе классической генетики. Эти законы были открыты Менделем в результате скрещивания организмов (в данном случае, растений) с различными генотипами. Обычно описывают одно правило и два закона.

Правило единообразия гибридов первого поколения

При скрещивании посевного гороха с устойчивыми признаками - пурпурными и белыми цветками, Мендель заметил, что взошедшие гибриды были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыты, использовал другие признаки. Например, если он скрещивал горох с жёлтыми и зелёными семенами, у потомков семена были жёлтыми, при скрещивании гороха с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким.

Итак, гибриды первого поколения всегда приобретают один из родительских признаков . Один признак (более силь­ный, доминантный) всегда подавляет другой (более слабый, рецессивный). Такое явление называется полным доминированием .

Если применить вышеуказанное правило к человеку, скажем, на примере карих и голубых глаз , то оно объясняется сле­дующим образом. Если у одного гомозиготного родителя в геноме оба гена определяют карий цвет глаз (обозначим такой генотип как АА ), а у другого, тоже гомозиготного, оба гена определяют голубой цвет глаз (обозначим такой генотип как аа ), то гаплоидные гаметы, продуцируемые ими, всегда будут нести либо ген А , либо а (см. схему ниже).

Схема передачи признаков при скрещивании гомозиготных организмов

Тогда все дети будут иметь генотип Аа , но у всех глаза будут карие, поскольку ген карих глаз доминирует над геном голубых глаз.

Теперь рассмотрим, что произойдёт, если скрещиваются гетерозиготные организмы (или гибриды первого поколения). В этом случае произойдёт расщепление признаков в определённых количественных отношениях.

Закон расщепления признаков, или Первый закон Менделя

Если гетерозиготных потомков первого поколения, одинаковых по изучаемому признаку, скрестить между собой, то во втором поколении признаки обоих родителей появляются в определённом численном соотноше­нии: 3/4 особей будут иметь доминантный признак, 1/4 - рецессивный (см. схему ниже).

Схема наследования признаков при скрещивании гетерозиготных организмов

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть - рецессивный, называется расщеплением . Как мы понимаем, рецессивный признак у гибридов первого поколения не ис­чез, а был всего лишь подавлен и проявился во втором гибридном по­колении. Мендель первым понял, что при образовании гибридов наследственные факторы не смеши­ваются и не «размываются», а со­храняются в неизменном виде. В гибридном организме присутствуют оба фактора (гена), но в виде при­знака проявляет себя только доми­нантный наследственный фактор.

Связь между поколениями при по­ловом размножении осуществляется через половые клетки, каждая гамета несёт только один фактор из па­ры. Слияние двух гамет, каждая из которых несёт один рецессив­ный наследственный фактор, приведёт к появлению организма с рецессивным признаком. Слияние гамет, каждая из которых несёт доминантный фактор, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, приводит к развитию организма с доминантным признаком.

Расщепление при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы несут только один ген из аллельной пары (закон чистоты гамет ). Действительно, такое возможно только если гены остаются неизменными и гаметы содержат только по одному гену из пары. Изучать соотношения признаков удобно при помощи так называемой решётки Пеннета:

А (0,5) а (0,5)
А (0,5) АА (0,25) Аа (0,25)
а (0,5) Аа (0,25) аа (0,25)

В силу статистической вероятности при достаточно большом количестве гамет в потомстве 25% генотипов будут гомозиготными доминантными, 50% - гетерозиготными, 25% - гомозиготными рецессивными, т. е. устанавливается математическое соотношение 1АА :2Аа :1аа . Соответственно, по фенотипу потомство второго поколения при моногибридном скрещивании распределяется в отношении 3:1 - 3 части особей с доминантным признаком, 1 часть особей с рецессивным.

Не следует забывать, что распределение генов и их попадание в гаметы носит вероятностный характер. Подход к анализу потомков был у Менделя количественный, статистический: все потомки с данным состоянием призна­ка (например - горошины гладкие или морщинистые) объединялись в одну груп­пу, подсчитывалось их число, которое сравнивали с числом потомков с другим состоянием признака (горошины морщинистые). Такой попарный анализ обес­печил успех его наблюдений. В случае с человеком наблюдать такое распреде­ление бывает очень сложно - нужно, чтобы у одной пары родителей была хотя бы дюжина детей, что бывает довольно редким явлением в современном обществе. Так что вполне может случиться, что у кареглазых родителей рождается один единственный ребенок, и тот голубоглазый, что, на первый взгляд, нарушает все законы генетики. В то же время, если экспериментиро­вать с дрозофилой или лабораторными мышами, менделевские законы наблю­дать довольно легко.

Следует сказать, что в известном смысле Менделю повезло - он с самого начала избрал в качестве объекта подходящее растение - цветной горошек. Если бы ему попались, например, такие растения как ночная красавица или львиный зев, то результат был бы непред­сказуем. Дело в том, что у львиного зева гетерозиготные растения, полученные при скрещивании гомозиготных растений с красными и белыми цветками, имеют розовые цветки. При этом ни один из аллелей не может быть назван ни доминантным, ни рецессивным. Такое явление можно объяснить тем, что сложные биохимические процессы, обусловленные разной работой аллелей, не обязательно приводят к альтернативным взаимоисключающим результатам. Результат может быть и промежуточным, в зависимости от особенностей обмена веществ в данном организме, в котором всегда есть множество вариантов, шунтирующих механизмов или параллельно существующих процессов с различными внешними проявлениями.

Это явление называется неполным доминированием или кодоминированием, оно достаточно часто встречается, в том числе и у человека. Примером является система групп крови человека MN (заметим попутно, что это лишь одна из систем, существует множество классификаций групп крови). В своё время Ландштейнер и Левин объяснили это явление тем, что эритро­циты могут нести на своей поверхности либо один антиген (М), либо другой (N), либо оба вместе (МN). Если в двух первых случаях мы имеем дело с гомозиготами (ММ и NN), то при гетерозиготном состоянии (МN) проявляют себя оба аллеля, при этом оба проявляются (доминируют), отсюда и название - кодоминирование.

Закон независимого наследования признаков, или Второй за­кон Менделя

Этот закон описывает распределение признаков при так называемом дигибридном и полигибридном скрещивании, т. е. когда скрещива­емые особи отличаются по двум и более признакам. В опытах Менде­ля скрещивались растения, отличающиеся по нескольким парам признаков, таким как: 1) белые и пурпурные цветы, и 2) жёлтые или зелёные семена. При этом наследование каждого признака следовало первым двум законам, и признаки комбинировались независимо друг от друга . Как и положено, первое поколение после скрещивания об­ладало доминантным фенотипом по всем признакам. Второе поколе­ние следовало формуле 9:3:3:1, то есть 9/16 экземпляров были с пурпурными цветами и жёлтыми горошинами, 3/16 - с белыми цвета­ми и жёлтыми горошинами, ещё 3/16 - с пурпурными цветами и зелё­ными горошинами и, наконец, 1/16 - с белыми цветами и зелёными горошинами. Это происходило потому, что Мендель удачно выбрал признаки, гены которых находились на разных хромосомах гороха. Второй закон Менделя выполняется как раз только в случаях, когда анализируемые пары генов расположены на разных хромосомах. По правилу частоты гамет признаки комбинируются независимо друг от друга, а если они находятся на разных хромосомах, то и наследование признаков происходит независимо.

1-й и 2-й законы Менделя универсальны, а вот из 3-го закона постоянно встречаются исключения. Причина этого становится понятной, если вспомнить, что в одной хромосоме находится множество генов (у человека - от нескольких сотен до тысячи и более). Если же гены находятся на одной и той же хромосоме, то может иметь место сцепленное наследование . В этом случае признаки передаются попарно или группами. Гены, находящиеся на одной хромосоме, получили в генетике название группы сцепления . Чаще всего вместе передаются признаки, определяемые генами, находящимися на хромосоме близко друг к другу. Такие гены называются тесно сцепленными . В то же время, иногда сцепленно наследуются гены, расположенные далеко друг от друга. Причиной такого разного поведения генов является особое явление обмена материалом между хромосомами во время гаметообразования, в частности, на стадии профа­зы первого деления мейоза.

Это явление было детально изучено Барбарой Мак-Клинток (Нобелевская премия по физиологии и медицине в 1983 г.) и получило название кроссинговера. Кроссинговер - это не что иное, как обмен гомологичными участ­ками между хромосомами. Получается, что каждая конкретная хромосома при передаче из поколения в поколение не остаётся неизменной, она может «прихватить с собой» гомологичный участок из своей парной хромосомы, отдав той, в свою очередь, участок своей ДНК.

В случае человека довольно трудно бывает установить сцепление генов, а также выявить кроссинговер из-за невозможности произволь­ных скрещиваний (нельзя же заставить людей давать потомство в соответствии с какими-то научными задачами!), поэтому такие данные получены в основном на растениях, насекомых и животных. Тем не менее, благодаря исследованию многодетных се­мей, в которых присутствуют несколько поколений, известны приме­ры аутосомного сцепления (т. е. совместной передачи генов, расположенных на аутосомах) и у человека. Например, существует тесное сцепление между генами, контролирующими резус-фактор (Rh) и систему антигенов групп крови MNS. У человека более известны случаи сцепления тех или иных признаков с полом, т. е. в связи с половыми хромосомами.

Кроссинговер в целом усиливает комбинативную изменчивость , т. е. способствует большему многообразию человеческих генотипов. В связи с этим, этот процесс имеет большое значение для. Используя тот факт, что чем дальше друг от друга расположены на одной хромосоме гены, тем в большей степени они подвержены кроссинговеру, Альфред Стертевант построил первые карты хромосом дрозофилы. Сегодня получены полные физические карты всех человеческих хромосом, т. е. известно, в какой последовательности и какие гены на них расположены.

Законы Менделя

Схема первого и второго закона Менделя. 1) Растение с белыми цветками (две копии рецессивного аллеля w) скрещивается с растением с красными цветками (две копии доминантного аллеля R). 2) У всех растений-потомков цветы красные и одинаковый генотип Rw. 3) При самооплодотворении у 3/4 растений второго поколения цветки красные (генотипы RR + 2Rw) и у 1/4 - белые (ww).

Законы Менделя - это принципы передачи наследственных признаков от родительских организмов к их потомкам, вытекающие из экспериментов Грегора Менделя . Эти принципы послужили основой для классической генетики и впоследствии были объяснены как следствие молекулярных механизмов наследственности. Хотя в русскоязычных учебниках обычно описывают три закона, «первый закон» не был открыт Менделем. Особое значение из открытых Менделем закономерностей имеет «гипотеза чистоты гамет» .

История

В начале XIX века Дж. Госс, экспериментируя с горохом, показал, что при скрещивании растений с зеленовато-голубыми горошинами и с желтовато-белыми в первом поколении получались жёлто-белые. Однако, при втором поколении, не проявляющиеся у гибридов первого поколения, и названные позже Менделем рецессивными признаки вновь проявлялись, причём растения с ними не давали расщепление при самоопылении .

О. Саржэ, проводя опыты на дынях сравнивал их по отдельным признакам(мякоть, кожура и т.д.) также установил отсутствие смешения признаков, которые не исчезали у потомков, а только перераспределялись среди них. Ш. Ноден , скрещивая различные виды дурмана, обнаружил преобладание признаков дурмана Datula tatula над Datura stramonium , причём это не зависело от того, какое растение материнское, а какое - отцовское .

Таким образом к середине XIX века было открыто явление доминантности, единообразие гибридов в первом поколении(все гибриды первого поколения похожи друг на друга), расщепление и комбинаторику признаков во втором поколении. Тем не менее, Мендель, высоко оценивая работы предшественников указывал, что всеобщего закона образования и развития гибридов ими не было найдено, и их опыты не обладают достаточной достоверностью для определения численных соотношений. Нахождение такого достоверного метода и математический анализ результатов, которые помогли создать теорию наследственности, является главной заслугой Менделя .

Методы и ход работы Менделя

  • Мендель изучал, как наследуются отдельные признаки.
  • Мендель выбрал из всех признаков только альтернативные - такие, которые имели у его сортов два чётко различающихся варианта (семена либо гладкие, либо морщинистые; промежуточных вариантов не бывает). Такое сознательное сужение задачи исследования позволило чётко установить общие закономерности наследования .
  • Мендель спланировал и провёл масштабный эксперимент. Им было получено от семеноводческих фирм 34 сорта гороха, из которых он отобрал 22 «чистых» (не дающих расщепления по изучаемым признакам при самоопылении) сорта. Затем он проводил искусственную гибридизацию сортов, а полученные гибриды скрещивал между собой. Он изучил наследование семи признаков, изучив в общей сложности около 20 000 гибридов второго поколения. Эксперимент облегчался удачным выбором объекта: горох в норме - самоопылитель , но легко проводить искусственную гибридизацию.
  • Мендель одним из первых в биологии использовал точные количественные методы для анализа данных. На основе знания теории вероятностей он понял необходимость анализа большого числа скрещиваний для устранения роли случайных отклонений.

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

Закон единообразия гибридов первого поколения (первый закон Менделя) - при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака - на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный ), всегда подавлял другой (рецессивный) .

Кодоминирование и неполное доминирование

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования . Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот .

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть - рецессивный, называется расщеплением. Следовательно, расщепление - это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Объяснение

Закон чистоты гамет : в каждую гамету попадает только одна аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный «Закон» носит наиболее общий характер (выполняется при наиболее широком круге условий).

Закон независимого наследования признаков

Иллюстрация независимого наследования признаков

Определение

Закон независимого наследования (третий закон Менделя) - при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

Объяснение

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

Основные положения теории наследственности Менделя

В современной интерпретации эти положения следующие:

  • За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы - гены (термин «ген» предложен в 1909 г. В.Иоганнсеном)
  • Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один из них получен от отца, другой - от матери.
  • Наследственные факторы передаются потомкам через половые клетки. При формировании гамет в каждую из них попадает только по одному аллелю из каждой пары (гаметы «чисты» в том смысле, что не содержат второго аллеля).

Условия выполнения законов Менделя

В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования.

Условия выполнения закона расщепления при моногибридном скрещивании

Расщепление 3: 1 по фенотипу и 1: 2: 1 по генотипу выполняется приближенно и лишь при следующих условиях.

Закономерности наследования были сформулированы в 1865г Грегори Менделем в работе "Опыты над растительными гибридами". В своих экспериментах он проводил скрещивание различных сортов гороха (Чехия / Австро-Венгрия). В 1900г закономерности наследования переоткрыты Корренсем, Чермаком и Гого де Фризом.

Первый и второй законы Менделя основаны на моногибридном скрещивании, а третий - на ди и полигибридном. Моногибридное скрещивание идет по одной паре альтернативных признаков, дигибридное по двум парам, полигибридное - более двух. Успех Менделя обусловлен особенностями примененного гибридлогического метода:

Анализ начинается со скрещивания чистых линий: гомозиготных особей.

Анализируются отдельные альтернативные взаимоисключающие признаки.

Точный количественный учет потомков с различной комбинацией признаков

Наследование анализированных признаков прослеживается в ряду поколений.

Правило выписывания гамет по формуле 2n , где n - количество гетерозигот: для моногибридов - 2 сорта гамет, для дигибридов - 4, для тригибридов - 8.

1 ый закон Менделя: "Закон единообразия гибридов 1ого поколения"

При скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, у гибридов 1 ого поколения проявляются только доминантные признаки и наблюдается единообразие по фенотипу и генотипу.

В своих опытах Мендель скрещивал чистые линии растений гороха с желтыми (АА) и зелеными (аа) семенами. Оказалось, что все потомки в первом поколении одинаковы по генотипу (гетерозиготны) и фенотипу (желтые).

2 ой закон Менделя: "Закон расщепления"

При скрещивании гетерозиготных гибридов 1 ого поколения, анализируемых по одной паре альтернативных признаков, у гибридов второго поколения наблюдается расщепление по фенотипу 3:1, и по генотипу 1:2:1

В своих опытах Мендель скрестил полученные в первом опыте гибриды (Аа) между собой. Оказалось, что во втором поколении подавляемый рецессивный признак появился вновь. Данные этого опыта свидетельствуют выщеплении рецессивного признака: он не теряется, а проявляется снова в следующем поколении.

Цитологические основы 2 ого закона Менделя

Цитологические основы 2 ого закона Менделя раскрываются в гипотезе "чистоты гамет" . Из схем скрещивания видно, что каждый признак определяется сочетанием двух аллельных генов. При образовании гетерозиготных гибридов, аллельные гены не смешиваются, а остаются в неизменном виде. В результате мейоза в гаметогенезе, в каждую гамету попадает только 1 из пары гомологичных хромосом. Следовательно, только один из пары аллельных генов, т.е. гамета чиста относительно другого аллельного гена.

3 ий закон Менделя: "Закон независимого комбинирования признаков"

При скрещивании гомозиготных организмов, анализируемых по двум и более парам альтернативных признаков, у гибридов 3 его поколения (получены при скрещивании гибридов 2 ого поколения) наблюдается независимое комбинирование признаков и соответствующих им генов разных аллельных пар.

Для изучения закономерности наследования растений , отличавшихся по одной паре альтернативных признаков, Мендель использовал моногибридное скрещивание . Далее он перешел к опытам по скрещиванию растений, отличающимся по двум парам альтернтивных признаков: дигибридное скрещивание , где использовал гомозиготные растения гороха, отличающиеся по цвету и форме семян. В результате скрещивания гладких(В) и желтых(А) с морщинистыми(в) и зелеными(а), в первом поколении все растения были с желтыми гладкими семенами.

Таким образом, закон единообразия первого поколения проявляется не только при моно, но и при полигибридном скрещивании, если родительские особи гомозиготны.

При оплодотворении образуется диплоидная зигота вследствие слияния разных сортов гамет. Английский генетик Беннет для облегчения расчета вариантов их сочетания предложил запись в виде решетки - таблицы с числом строк и столбцов по числу типов гамет, образованых скрещивающимися особями.

Анализирующее скрещивание

Поскольку особи с доминантным признаком в фенотипе, могут иметь различный генотип (Аа и АА), Мендель предложил скрещивать этот организм с рецессивной гомозиготой .

Гомозиготная особь даст единобразное поколение,

а геторозиготная - расщепление по фенотипу и генотипу 1:1.

Хромосомная теория Мограна. Сцепленное наследование

Устанавливая закономерности наследования, Мендель скрещивал растения гороха. Таким образом, его опыты проводились на организменном уровне. Развитие микроскопа в начале 20 века позволило выявить клетки - материальный носитель наследственной инф, переведя исследования на клеточный уровень. Основываясь на результатах многочисленных опытов с мошками-дрозофилами, в 1911г Томас Морган сформулировал основные положения хромосомной теории наследственности .

Гены в хромосоме расположены в линейно в определенных локусах . Аллельные гены занимают одинаковые локусы гомологичных хромосом.

Гены,расположенные в одной хромосоме, образуют группу сцепления и наследуются преимущественно вместе. Число групп сцепления равно n набору хромосом.

Между гомологичными хромосомами возможен кроссинговер - обмен участками, который может нарушить сцепление генов. Вероятность того, что гены останутся сцеплены прямо пропорциональна расстоянию между ними: чем ближе расположены гены в хромосоме, тем выше вероятность их сцепления. Это расстояние исчисляется в морганидах: 1 морганиде соответствует 1% образования кроссоверных гамет.

Для своих экспериментов, Морган использовал плодовых мушек, различающихся по 2 парам признаков: цвет серый(В) и черный(b); длина крыльев норма(V) и короткие(v).

1) Дигибридное скрещивание – сначала скрещивали гомозиготные особи ААВВ и ааbb. Таким образом были получены аналогичные Менделю результаты: все особи с серым телом и нормальными крыльями.

2) Анализирующее скрещивание проводилось с целью выведения генотипа гибридов 1 ого поколения. Дигетерозиготный самец был скрещен с рецессивной дигомозиготной самкой. Согласно 3 ему закону Менделя, можно было ожидать появление 4 фенотипов из-за независимой комбинации признаков: сн (BbVv), чк (bbvv), cк (Bbvv), чн (bbVv) в соотношении 1:1:1:1. Однако были получены лишь 2 комбинации: сн (BbVv) чк (bbvv).

Таким образом, во втором поколении наблюдались только исходные фенотипы в соотношении 1:1.

Такое отклонение от свободного комбинирования признаков обусловлено тем, что гены, определяющие цвет тела и длину крыльев у мушек дрозофил расположены в одной хромосоме и наследуются сцеплено . Получается, что дигетерозиготный самец дает лишь 2 сорта некроссоверных гамет, а не 4, как при дигибридном скрещивании организмов с несцепленными признаками.

3) Анализирующее рецепроктное скрещивание - система скрещиваний, при которой генотипически различные родительские особи используются один раз в качестве материнской формы, другой раз в качестве отцовской.

В этот раз Морган использовал дигетерозиготную самку и гомозиготного рецессивного самца. Так были получены 4 фенотипа, однако их соотношение не соответствовало тому, которое наблюдалось у Менделя при независимом комбинировании признаков. Число сн и чк составило 83% от всего потомства, а число ск и чн - всего 17%.

Сцепление между генами, локализованными в одной хромосоме, нарушается в результате кроссинговера . Если точка разрыва хромосом лежит между сцепленными генами, то сцепление нарушается, и один из них переходит в гомологичную хромосому. Так, помимо двух сортов некроссоверных гамет , образуются еще два сорта кроссоверных гамет , в которых хромосомы обменялись гомологичными участками. Из них при слиянии развиваются кроссоверные особи. Согласно положению хромосомной теории, расстояние между генами, определяющими цвет тела и длину крыльев у дрозофил - 17 морганид - 17% кроссоверных гамет и 83% некроссоверных.

Аллельное взаимодействие генов

1) Неполное доминирование: при скрещивании гомозиготных растений душистого горошка с красными и белыми цветками, все потомство в первом поколении имеет розовые цветки - промежуточная форма. Во втором поколении расщепление по фенотипу соответствует расщеплению по генотипу в отношении 1кр: 2роз: 1бел.

2) Сверхдоминирование : у доминантного аллеля в гетерозиготе признак выражен сильнее, чем в гомозиготе. При этом гетерозиготный организм Аа обладает лучшей приспособленностью, чем оба типа гомозигот.

Серповидная клеточная анемия обусловлена мутантным аллелем s. В районах, где распространена малярия, гетерозиготы Ss более устойчивы к ней, чем гомозиготы SS.

3) Кодоминирование : в фенотипе гетерозигот проявляются оба аллельных гена, в результате чего формируется новый признак. Но назвать один аллель доминантным, а другой рецессивным нельзя, тк они в равной степени влияют на фенотип.

Формирование 4ой группы крови у человека. Аллель Ia определяет присутствие на эритроцитах антигена а, аллель Ib - присутствие антигена b. Присутствие в генотипе обоих аллелей обуславливает образование на эритроцитах обоих антигенов.

4) Множественные аллели: в популяции оказывается больше двух аллельных генов. Такие гены возникают в результате мутации одного и того же локуса хромосомы. Помимо доминантного и рецессивного генов, появляются промежуточные аллели , которые по отношению к доминанте ведут себя как рецессивные, а по отношению к рецессиве - как доминантные. У каждой диплоидной особи аллельных генов может быть не более двух, но в популяции их число не ограничено. Чем больше аллельных генов, тем больше вариантов их комбинаций. Все аллели одного гена обозначаются одной буквой с разными индексами: А1, А2, а3 и тд.

У морских свинок окраска шерсти определяется 5ю аллеями одного локуса, которые в различных сочетаниях дают 11 вариантов окраски. У человека по типу множественных аллелей наследуются группы крови по системе АВО. Три гена Io, Ia, Ib определяют наследование 4 групп крови человека (гены Ia Ib доминантные по отношению к Io).

Неаллельные взаимодействие генов

1) Комплиментарность или комплиментарное взаимодействие генов - явление, при котором два неаллельных доминантных или рецессивных гена дают новый признак . Такое взаимодействие генов наблюдается при наследовании форм гребня у кур:

А гороховидный (А-вв); В- розовидный (ааВ-); АВ ореховидный; аавв листовидный.

При скрещивании кур с гороховидным и розовидным гребнями, у всех гибридов 1 ого поколения будет ореховидный гребень. При скрещивании дигибридов 1 ого поколения с ореховидными гребнями, во 2 ом поколении появляются особи со всеми видами гребней в соотношении 9ор: 3роз: 3гор: 1лист. Однако, в отличие от расщепления при 3 ем законе Менделя, здесь отсутствует расщепление каждого аллеля в отношении 3:1. В других случаях комплиментарности, возможно 9:7 и 9:6:1.

2) Эпистаз или эпистатическое взаимодействие генов - подавление действия генов одного аллеля генами другого. Подавляющий ген является супрессером или ингибитором.

Доминантный эпистаз - ген-супрессор доминантный: наследование окраски перьев у кур. С - синтез пигмента, I - ген-подавитель. Куры с генотипом С-ii будут окрашенные. Остальные особи будут белые, так как в присутствии доминантного гена-супрессора подавляемый ген окраски не проявляется, или отсутствует ген, отвечающий за синтез пигмента (ссii). В случае скрещивания дигибридов, расщепление во втором поколении будет 13:3 или 12:3:1.

Рецессивный эпистаз - геном подавителем является рецессивный ген, например наследование окраски мышей. В - синтез серого пигмента, b - черного; А способствует проявлению цветности, а - подавляет ее. Эпистаз будет проявляться лишь в тех случаях, где в генотипе будут два гена-супрессора аа. При скрещивании дигибридных особей при рецессивном эпистазе, расщепление во втором поколении 9:3:4.

Бомбейский феномен проявляется в наследовании групп крови по системе АВО. Женщина с 1 группой крови (IoIo), которая вышла замуж за мужчину со 2 группой (IaIo), родила двух девочек с 4 (IaIb) и 1 (IoIo) группами. Это объясняется тем, что их мать обладала аллелем Ib, но его действие подавлялось редким рецессивным геном, который в гомозиготном состоянии оказал свое эпистатическое действие. В результате у женщины фенотипически проявлялась 1 группа.

3) Полимерия - один и тот же признак определяется несколькими аллеями. При этом доминантные гены из разных аллельных пар влияют на степень проявления одного признака. Она зависит от количества доминантных генов в генотипе (чем больше доминантных генов, тем сильнее выражен признак) и от влияний условий среды.

Полимерные гены принято обозначает одной буквой латинского алфавита с цифровыми индексами А 1 А 2 а 3 и тд. Ими определяются полигенные признаки . Так наследуются многие количественные и некоторые качественные признаки у животных и человека: рост, вес, цвет кожи. Наследование цвета зёрен пшеницы: каждый из доминантных генов определяет красный цвет, рецессивные гены - белый цвет. С увеличением количества доминантных генов интенсивность окраски повышается. И только если организм гомозиготен по всем парам рецессивных генов, зерна не окрашены. Так при скрещивании дигибридов расщепление в отношении 15окр:1бел.

4) Плейотропия - один ген влияет на несколько признаков. Явление было описано Менделем, который обнаружил, что наследственных фактор у растений гороха может определять несколько признаков: красную окраску цветков, серую окраску семян и розовое пятно у основания листьев. Часто распространяется на эволюционно важные признаки: плодовитость, продолжительность жизни, способность выживать в крайних условиях среды.

В некоторых случаях плеетропный ген является по отношению к одному признаку доминантным, а по отношению к другому - рецессивным. Если плеетропный ген только доминантный или только рецессивный по отношению ко всем определяемым им признакам, то характер наследования аналогичен закономерностям законов Менделя.

Своеобразное расщепление наблюдается тогда, когда один из признаков рецессивен или летален (гомозигота ведет к смерти). Например черная шерсть каракульских овец и развитие рубца определяются одним геном, а серая шерсть и недоразвитый рубец определяются аллельными ему геном. Серый доминирует над черным, норма над аномалией. Гомозиготные особи по гену недоразвития рубца и серого цвета погибают, поэтому при скрещивании гетерозиготных особей четвертая часть потомства (серые гомозиготы) оказываются нежизнеспособны. Расщепление в соотношении 2:1.

Пенетрантность и экспрессивность

Генотип особи определяет лишь потенциальную возможность развития признака: реализация гена в признак зависит от влияния других генов и условий среды, поэтому одна и та же наследственная информация в разных условиях проявляется по-разному. Следовательно, наследуется не готовый признак, а тип реакции на действие среды.

Пенетрантность - пробиваемость гена в признак. Выражается в процентах числа особей, несущих признак, к общему числу носителей гена, потенциально способного реализоваться в этот признак. Полная пенетрантность (100%) - у всех носителей гена имеется фенотипическое проявление признака. Неполная - действие гена проявляется не у всех носителей.

Если ген побился в признак, он пенетрантен, но проявляться он может по-разному. Экспрессивность - степень выраженности признака. Различной экспрессивностью обладает ген, вызывающий уменьшение числа фасеток глаза у дрозофил. У гомозигот наблюдается различное число фасеток, вплоть до их полного отсутствия.

Пенетрантность и экспрессивность зависят от влияния других генов и внешней среды.

Изменчивость

Изменчивость - способность приобретать новые признаки под действием внешних и внутренних факторов среды (морфологические, физиологические, биохимические). С изменчивостью связано разнообразие особей одного вида, что служит материалом для эволюционных процессов. Единство наследственности и изменчивости - условие непрекращающейся биологической эволюции. Различают несколько видов:

1) Наследственная, генотипическая, неопределенная, индивидуальная

Носит наследственных характер, и обусловлена рекомбинацией генов в генотипе и мутациями, передается по наследству. Бывает комбинативная и мутационная

2) Ненаследственная, модификационная, фенотипическая, групповая, определенная

Модификационная изменчивость - эволюционно закрепленные адаптивные реакции организма в ответ на изменение условий внешней среды, следствие взаимодействия среды и генотипа.Не передается по наследству, тк не приводит к изменению генотипа. В отличие от мутаций, многие модификации обратимы: загар, удойность коров и тд.

Краткая форма обратной связи

Раздел ЕГЭ: 3.5. Закономерности наследственности, их цитологические основы. Закономерности наследования, установленные Г. Менделем, их цитологические основы (моно-и дигибридное скрещивание)…

Мендель , проводя опыты по скрещиванию различных сортов гороха, установил ряд законов наследования, положивших начало генетике. Он разработал гибридно-логический метод анализа наследования признаков организмами. Этот метод предусматривает скрещивание особей с альтернативными признаками; анализ исследованных признаков у гибридов без учета остальных; количественный учет гибридов.

Проводя моногибридное скрещивание (скрещивание по одной паре альтернативных признаков), Мендель установил закон единообразия первого поколения.

Основные положения гибридологического метода

  • Для скрещивания берутся организмы, предки которых в ряду поколений не давали расщепления по избранным признакам, то есть чистые линии.
  • Организмы отличаются по одной или двум парам альтернативных признаков.
  • Проводится индивидуальный анализ потомства каждого скрещивания.
  • Используется статистическая обработка результатов.

Первый закон Г. Менделя

При скрещивании двух гомозиготных особей, отличающихся друг от друга одной парой альтернативных признаков, всё потомство в первом поколении единообразно как по фенотипу, так и по генотипу.

Второй закон Г. Менделя

При скрещивании гибридов первого поколения (двух гетерозиготных особей) во втором происходит расщепление 3: 1. Наряду с доминантным появляется и рецессивный признак.

Анализирующее скрещивание — скрещивание, при котором особь с неизвестным генотипом, который нужно установить (АА или Аа), скрещивается с рецессивной гомозиготой (аа). Если всё потомство от итого скрещивания будет однообразным, исследуемый организм имеет генотип АА. Если в потомстве Судет наблюдаться расщепление по фенотипу 1: 1, исследуемый организм - гетерозиготный Аа.

Третий закон Г. Менделя

При скрещивании гомозиготных особей, отличающихся двумя парами альтернативных признаков или более, каждый признак наследуется независимо от других, комбинируясь во всех возможных сочетаниях.

В опытах Мендель использовал разные способы скрещивания : моногибридное, дигибридное и полигибридное . При последнем скрещивании особи отличаются более чем по двум парам признаков. Во всех случаях соблюдается закон единообразия первого поколения, закон расщепления признаков во втором поколении и закон независимого наследования.

Закон независимого наследования: каждая пара признаков наследуется независимо друг от друга. В потомстве идет расщепление по фенотипу 3:1 по каждой паре признаков. Закон независимого наследования справедлив лишь в том случае, если гены рассматриваемых пар признаков лежат в различных парах гомологичных хромосом. Гомологичные хромосомы сходны по форме, размерам и группам сцепления генов.

Поведение любых пар негомологичных хромосом в мейозе не зависит друг от друга. Расхождение: их к полюсам клетки носит случайный характер. Независимое наследование имеет, большое значение для эволюции; так как является источником комбинативной наследственности.

ТАБЛИЦА: все закономерности наследования

Это конспект по биологии для 10-11 классов по теме «Закономерности наследственности. Законы Моргана» . Выберите дальнейшее действие:

Мы обращали внимание на то, что наследственность и наследование - два разных явления, которые не все строго различают.

Наследственность есть процесс материальной и функциональной дискретной преемственности между поколениями клеток и организмов. В основе ее лежит точная репродукция наследственно значимых структур.

Наследование - процесс передачи наследственно детерминированных признаков и свойств организма и клетки в процессе размножения. Изучение наследования позволяет раскрывать сущность наследственности. Поэтому следует строго разделять указанные два явления.

Рассмотренные нами закономерности расщепления и независимого комбинирования относятся, к изучению наследования, а не наследственности. Неверно, когда «закон расщепления » и «закон независимого комбинирования признаков-генов » трактуются как законы наследственности. Открытые Менделем законы являются законами наследования.

Во времена Менделя считали, что при скрещивании родительские признаки наследуются в потомстве слитно («слитная наследственность») или мозаично - одни признаки наследуются от матери, другие от отца («смешанная наследственность»). В основе таких представлений лежало убеждение, что в потомстве наследственность родителей смешивается, сливается, растворяется. Такое представление было ошибочным. Оно не давало возможности научно аргументировать теорию естественного отбора, и на самом деле, если бы при скрещивании наследственные приспособительные признаки в потомстве не сохранялись, а «растворялись», то естественный отбор работал бы вхолостую. Чтобы освободить свою теорию естественного отбора от подобных затруднений, Дарвин выдвинул теорию наследственного определения признака отдельными единицами - теорию пангенеза. Однако она не дала правильного решения вопроса.

Успех Менделя обусловлен открытием метода генетического анализа отдельных пар наследственных признаков; Мендель разработал метод дискретного анализа наследования признаков и по существу создал научные основы генетики, открыв следующие явления:

  1. каждый наследственный признак определяется отдельным наследственным фактором, задатком; в современном представлении эти задатки соответствуют генам: «один ген - один признак», «один ген - один фермент»;
  2. гены сохраняются в чистом виде в ряду поколений, не утрачивая своей индивидуальности: это явилось доказательством основного положения генетики: ген относительно постоянен;
  3. оба пола в равной мере участвуют в передаче своих наследственных свойств потомству;
  4. редупликация равного числа генов и их редукция в мужских и женских половых клетках; это положение явилось генетическим предвидением существования мейоза;
  5. наследственные задатки являются парными, один - материнский, другой - отцовский; один из них может быть доминантным, другой - рецессивным; это положение соответствует открытию принципа аллелизма: ген представлен минимум двумя аллелями.

Таким образом, Мендель, открыв метод генетического анализа наследования отдельных пар признаков (а не совокупности признаков) и установив законы наследования, впервые постулировал и экспериментально доказал принцип дискретной (генной) детерминации наследственных признаков.

На основании изложенного нам представляется полезным различать законы, непосредственно сформулированные Менделем и относящиеся к процессу наследования, и принципы наследственности, вытекающие из работы Менделя.

К законам наследования относятся закон расщепления наследственных признаков в потомстве гибрида и закон независимого комбинирования наследственных признаков. Эти два закона отражают процесс передачи наследственной информации в клеточных поколениях при половом размножении. Их открытие явилось первым фактическим доказательством существования наследственности как явления.

Законы наследственности имеют другое содержание, и они формулируются в следующем виде:

Первый закон - закон дискретной (генной) наследственной детерминации признаков; он лежит в основе теории гена.

Второй закон - закон относительного постоянства наследственной единицы - гена.

Третий закон - закон аллельного состояния гена (доминантность и рецессивность).

Именно эти законы представляют собой главный итог работ Менделя, так как именно они отражают сущность наследственности.

Менделевские законы наследования и законы наследственности являются основным содержанием генетики. Их открытие дало современному естествознанию единицу измерения жизненных процессов - ген и тем самым создало возможности объединения естественных наук - биологии, физики, химии и математики с целью Анализа биологических процессов.

В дальнейшем при определении наследственной единицы мы будем употреблять только термин «ген». Понятия «наследственный фактор» и «наследственный задаток» громоздки, и, кроме того, вероятно, наступило время, когда наследственный фактор и ген следует различать и вложить в каждое из этих понятий свое содержание. Под понятием «ген» мы пока будем иметь в виду далее неделимую функционально целостную единицу наследственности, определяющую наследственный признак. Термин «наследственный фактор» следует толковать в более широком смысле как комплекс ряда генов и цитоплазматических влияний на наследственный признак.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .