Биографии Характеристики Анализ

Качественный и количественный анализ органических соединений. Качественный анализ органических соединений

Практическая работа №1

Реактивы : парафин (C 14 H 30

Оборудование :

Примечание:

2.галоген в органическом веществе можно обнаружить при помощи реакции окрашивания пламени.

Алгоритм проведения работы:

    В пробирку приемник налейте известковой воды.

    Соедините пробирку со смесью с пробиркой приемником газоотводной трубкой с пробкой.

    Нагрейте пробирку со смесью в пламени спиртовки.

    Медную проволоку прокалите в пламени спиртовки до появления на ней черного налета.

    Остывшую проволоку внести в исследуемое вещество и снова внести в пламя спиртовку.

Заключение:

    обратите внимание на: изменения, происходящие с известковой водой, сульфатом меди (2).

    В какой цвет окрашивается пламя спиртовки при внесении исследуемого раствора.

Практическая работа №1

«Качественный анализ органических соединений».

Реактивы: парафин (C 14 H 30 ), известковая вода, оксид меди (2), дихлорэтан, сульфат меди (2).

Оборудование : металлический штатив с лапкой, спиртовка, 2 пробирки, пробка с газоотводной трубкой, медная проволока.

Примечание:

    обнаружить углерод и водород в органическом веществе можно окислением его оксидом меди (2).

    галоген в органическом веществе можно обнаружить при помощи реакции окрашивания пламени.

Алгоритм проведения работы:

1. этап работы: Расплавление парафина с оксидом меди

1. Соберите прибор согласно рис. 44 на стр.284, для этого в пробирку на дно поместите 1-2 г. оксида меди и парафин, нагрейте.

2. этап работы: Качественное определение углерода.

1.В пробирку приемник налейте известковой воды.

2.Соедините пробирку со смесью с пробиркой приемником газоотводной трубкой с пробкой.

3.Нагрейте пробирку со смесью в пламени спиртовки.

3. этап работы: Качественное определение водорода.

1. В верхнюю часть пробирки со смесью поместите кусочек ваты, положив на нее сульфат меди (2).

4. этап работы: Качественное определение хлора.

1.Медную проволоку прокалите в пламени спиртовки до появления на ней черного налета.

2.Остывшую проволоку внести в исследуемое вещество и снова внести в пламя спиртовку.

Заключение:

1. обратите внимание на: изменения, происходящие с известковой водой, сульфатом меди (2).

2. В какой цвет окрашивается пламя спиртовки при внесении исследуемого раствора.

Большинство лекарственных средств, используемых в медицинской практике, представляют собой органические вещества.

Чтобы подтвердить принадлежность препарата к той или иной химической группе, необходимо использовать реакции идентификации, которые должны обнаруживать присутствие в его молекуле определённой функциональной группы (например, спиртовый или фенольный гидроксил, первичную ароматическую или алифатическую группу и т.д.). Такой анализ называется анализом по функциональным группам.

Анализ по функциональным группам основывается на знаниях, приобретённых студентами при изучении органической и аналитической химии.

Информация

Функциональные группы – это группы атомов, которые отличаются высокой реакционной способностью и легко взаимодействуют с различными реактивами с заметным специфическим аналитическим эффектом (изменение цвета, появление запаха, выделение газа или осадка и т.д.).

Возможна идентификация препаратов и по структурным фрагментам.

Структурный фрагмент – это часть молекулы лекарственного вещества, которая взаимодействует с реактивом с заметным аналитическим эффектом (например, анионы органических кислот, кратные связи и т.д.).

Функциональные группы

Функциональные группы можно разделить на несколько типов:

2.2.1. Содержащие кислород:

а) гидроксильная группа (спиртовый и фенольный гидроксил):

б) альдегидная группа:

в) кето-группа:

г) карбоксильная группа:

д) сложноэфирная группа:

е) простая эфирная группировка:

2.2.2. Содержащие азот:

а) первичная ароматическая и алифатическая аминогруппы:

б) вторичная аминогруппа:

в) третичная аминогруппа:

г) амидная группа:

д) нитрогруппа:

2.2.3. Содержащие серу:

а) тиольная группа:

б) сульфамидная группа:

2.2.4. Содержащие галоген:

2.3. Структурные фрагменты:

а) двойная связь:

б) фенильный радикал:

2.4. Анионы органических кислот:

а) Ацетат-ион:

б) тартрат ион:

в) цитрат-ион:

г) бензоат-ион:

В данном методическом пособии приводятся теоретические основы качественного анализа структурных элементов и функциональных групп наиболее часто встречающихся в практике методик анализа лекарственных веществ.

2.5. ИДЕНТИФИКАЦИЯ СПИРТОВОГО ГИДРОКСИЛА

Лекарственные препараты, содержащие спиртовый гидроксил:

а) Спирт этиловый

б) Метилтестостерон

в) Ментол

2.5.1. Реакция образования сложных эфиров

Спирты в присутствии концентрированной серной кислоты образуют с органическими кислотами сложные эфиры. Низкомолекулярные эфиры имеют характерный запах, высокомолекулярные – определённую температуру плавления:

Спирт этилацетат

Этиловый (характерный запах)

Методика: к 2 мл спирта этилового 95% прибавляют 0,5 мл кислоты уксусной, 1 мл кислоты серной концентрированной и нагревают до кипения – ощущается характерный запах этилацетата.

2.5.2. Реакции окисления

Спирты окисляются до альдегидов при добавлении окислителей (дихромата калия, йода).

Суммарное уравнение реакции:

Иодоформ

(жёлтый осадок)

Методика: 0,5 мл спирта этилового 95% смешивают с 5 мл раствора натрия гидроксида, прибавляют 2 мл 0,1 М раствора иода – постепенно выпадает жёлтый осадок иодоформа, который имеет также характерный запах.

2.5.3. Реакции образования хелатных соединений (многоатомные спирты)

Многоатомные спирты (глицерин и др.) образуют с раствором сульфата меди а в щелочной среде хелатные соединения синего цвета:

глицерин голубой интенсивно-синяя

осадок окраска раствора

Методика: к 5мл раствора сульфата меди прибавляют 1-2 мл раствора гидроксида натрия до образования осадка гидроксида меди (II). Затем прибавляют раствор глицерина до растворения осадка. Раствор окрашивается в интенсивно-синий цвет.

2.6.ИДЕНТИФИКАЦИЯ ФЕНОЛЬНОГО ГИДРОКСИЛА

Лекарственные препараты, содержащие фенольный гидроксил:

а) Фенол б) Резорцин

в) Синестрол

г) Кислота салициловая д) Парацетамол

2.6.1. Реакция с железа (III) хлоридом

Фенолы в нейтральной среде в водных или спиртовых растворах образуют соли с железа (III) хлоридом, окрашенные в сине-фиолетовый (одноатомные), синий (резорцин), зелёный (пирокатехин) и красный (флороглюцин). Это объясняется образованием катионов С 6 Н 5 OFe 2+ , С 6 Н 4 O 2 Fe + и др.

Методика: к 1 мл водного или спиртового раствора исследуемого вещества (фенол 0,1:10, резорцин 0,1:10, натрия салицилат 0,01:10) прибавляют от 1 до 5 капель раствора железа (III) хлорида. Наблюдается характерное окрашивание.

2.6.2. Реакции окисления (индофеноловая проба)

а) Реакция с хлорамином

При взаимодействии фенолов с хлорамином и аммиаком образуется индофенол, окрашенный в различные цвета: сине-зелёный (фенол), буровато-жёлтый (резорцин) и др.

Методика: 0,05 г исследуемого вещества (фенол, резорцин) растворяют в 0,5 мл раствора хлорамина, прибавляют 0,5 мл раствора аммиака. Смесь нагревают на кипящей водяной бане. Наблюдается окрашивание.

б) Нитрозореакция Либермана

Окрашенный продукт (красный, зелёный, красно-коричневый) образуют фенолы, у которых в орто - и пара -положениях нет заместителей.

Методика: крупинку вещества (фенол, резорцин, тимол, кислота салициловая) помещают в фарфоровую чашку и смачивают 2-3 каплями 1 % раствора натрия нитрита в кислоте серной концентрированной. Наблюдается окрашивание, изменяющееся при добавлении натрия гидроксида.

в) Реакции замещения (с бромной водой и азотной кислотой)

Реакции основаны на способности фенолов бромироваться и нитроваться за счёт замещения подвижного атома водорода в орто - и пара -положениях. Бромпроизводные выпадают в виде осадка белого цвета, а нитропроизводные окрашены в жёлтый цвет.

резорцин белый осадок

жёлтое окрашивание

Методика: к 1мл раствора вещества (фенол, резорцин, тимол) прибавляют по каплям бромную воду. Образуется белый осадок. При добавлении 1-2 мл кислоты азотной разведённой постепенно появляется жёлтое окрашивание.

2.7. ИДЕНТИФИКАЦИЯ АЛЬДЕГИДНОЙ ГРУППЫ

Лекарственные вещества, содержащие альдегидную группу

а) формальдегид б) глюкоза

2.7.1. Окислительно-восстановительные реакции

Альдегиды легко окисляются до кислот и их солей (если реакции протекают в щелочной среде). Если в качестве окислителей используются комплексные соли тяжёлых металлов (Ag, Cu, Hg), то в результате реакции выпадает осадок металла (серебра, ртути) или оксида металла (оксид меди (I)).

а) реакция с аммиачным раствором нитрата серебра

Методика: к 2 мл раствора серебра нитрата прибавляют 10-12 капель раствора аммиака и 2-3 капли раствора вещества (формальдегида, глюкозы), нагревают на водяной бане с температурой 50-60 °С. Выделяется металлическое серебро в виде зеркала или серого осадка.

б) реакция с реактивом Фелинга

красный осадок

Методика: к 1 мл раствора альдегида (формальдегида, глюкозы), содержащего 0,01-0,02 г вещества, прибавляют 2 мл реактива Фелинга, нагревают до кипения, Выпадает кирпично-красный осадок оксида меди.

2.8. ИДЕНТИФИКАЦИЯ СЛОЖНОЭФИРНОЙ ГРУППЫ

Лекарственные вещества, содержащие сложноэфирную группу:

а) Кислота ацетилсалициловая б) Новокаин

в) Анестезин г) Кортизона ацетат

2.8.1. Реакции кислотного или щелочного гидролиза

Лекарственные вещества, содержащие в своей структуре сложноэфирную группу, подвергают кислотному или щелочному гидролизу с последующей идентификацией кислот (или солей) и спиртов:

кислота ацетилсалициловая

кислота уксусная

кислота салициловая

(белый осадок)

фиолетовое окрашивание

Методика: к 0,01 г кислоты салициловой приливают 5 мл раствора натрия гидроксида и нагревают до кипения. После охлаждения к раствору добавляют кислоту серную до выпадения осадка. Затем вносят 2-3 капли раствора хлорида железа, появляется фиолетовое окращивание.

2.8.2. Гидроксамовая проба.

Реакция основана на щелочном гидролизе сложного эфира. При гидролизе в щелочной среде в присутствии гидроксиламина гидрохлорида образуются гидроксамовые кислоты, которые с солями железа (III) дают гидроксаматы железа красного или красно-фиолетового цвета. Гидроксаматы меди (II) – осадки зелёного цвета.

гидроксиламин гидрохлорид

гидроксамовая кислота

гидроксамат железа (III)

анестезин гидроксиламин гидроксамовая кислота

гидроксамат железа (III)

Методика: 0,02 г вещества (кислота ацетилсалициловая, новокаин, анестезин и др.) растворяют в 3 мл спирта этилового 95 %, прибавляют 1 мл щелочного раствора гидроксиламина, встряхивают, нагревают на кипящей водяной бане в течение 5 мин. Затем добавляют 2 мл кислоты хлористоводородной разведённой, 0,5 мл 10 % раствора железа (III) хлорида. Появляется красное или красно-фиолетовое окрашивание.

2.9. ОБНАРУЖЕНИЕ ЛАКТОНОВ

Лекарственные вещества, содержащие лактонную группу:

а) Пилокарпина гидрохлорид

Лактонная группа – это внутренний сложный эфир. Лактонную группу можно определить с помощью гидроксамовой пробы.

2.10. ИДЕНТИФИКАЦИЯ КЕТО-ГРУППЫ

Лекарственные вещества, содержащие кето-группу:

а) Камфора б) Кортизона ацетат

Кетоны менее реакционоспособны по сравнению с альдегидами ввиду отсутствия подвижного атома водорода, поэтому окисление проходит в жёстких условиях. Кетоны легко вступают в реакции конденсации с гидрохлоридом гидроксиламина и гидразинами. Образуются оксимы или гидразоны (осадки или окрашенные соединения).

камфора оксим (белый осадок)

фенилгидразин сернокислый фенилгидразон

(жёлтое окрашивание)

Методика: 0,1 г лекарственного вещества (камфора, бромкамфора, тестостерон) растворяют в 3 мл спирта этилового 95 %, прибавляют 1 мл раствора фенилгидразина сернокислого или щелочного раствора гидроксиламина. Наблюдается появление осадка или окрашенного раствора.

2.11. ИДЕНТИФИКАЦИЯ КАРБОКСИЛЬНОЙ ГРУППЫ

Лекарственные вещества, содержащие карбоксильную группу:

а) Кислота бензойная б) Кислота салициловая

в) Кислота никотиновая

Карбоксильная группа легко вступает в реакции благодаря подвижному атому водорода. В основном это два типа реакций:

а) образование сложных эфиров со спиртами (см. раздел 5.1.5);

б) образование комплексных солей ионами тяжёлых металлов

(Fe, Ag, Cu, Co, Hg и др.). При этом образуются:

Серебряные соли белого цвета,

Соли ртути серого цвета,

Соли железа (III) розовато-жёлтого цвета,

Соли меди (II) голубого или синего цвета,

Соли кобальта сиреневого или розового цвета.

Ниже приводится реакция с ацетатом меди (II):

кислота никотиновая осадок синего цвета

Методика: к 5 мл тёплого раствора кислоты никотиновой (1:100) приливают 1 мл раствора ацетата или сульфата меди, выпадает осадок синего цвета.

2.12. ИДЕНТИФИКАЦИЯ ПРОСТОЙ ЭФИРНОЙ ГРУППЫ

Лекарственные вещества, содержащие простую эфирную группу:

а) Димедрол б) Диэтиловый эфир

Простые эфиры обладают способностью образовывать оксониевые соли с кислотой серной концентрированной, которые окрашены в оранжевый цвет.

Методика: На часовое стекло или фарфоровую чашку наносят 3-4 капли кислоты серной концентрированной и прибавляют 0,05 г лекарсвенного вещества (димедрол и др.). Появляется жёлто-оранжевое окрашивание, постепенно переходящее в кирпично-красное. При добавлении воды окраска исчезает.

На диэтиловый эфир реакцию с серной кислотой не выполнят ввиду образования взрывоопасных веществ.

2.13. ИДЕНТИФИКАЦИЯ ПЕРВИЧНОЙ АРОМАТИЧЕСКОЙ

АМИНОГРУППЫ

Лекарственные вещества, содержащие первичную ароматическую аминогруппу:

а)Анестезин

б) Новокаин

Ароматические амины являются слабыми основаниями, так как неподелённая электронная пара азота смещена в сторону бензольного ядра. В результате способность атома азота присоединять протон уменьшается.

2.13.1. Реакция образования азокрасителя

Реакция основана на способности первичной ароматической аминогруппы образовывать в кислой среде соли диазония. При добавлении соли диазония к щелочному раствору β-нафтола появляется красно-оранжевое, красное или малиновое окрашивание (азокраситель). Эту реакцию дают местные анестетики, сульфамиды и др.

соль диазония

азокраситель

Методика: 0,05 г вещества (анестезин, новокаин, стрептоцид и др.) растворяют в 1 мл кислоты хлористоводородной разведённой, охлаждают во льду, прибавляют 2 мл 1 % раствора нитрита натрия. Полученный раствор прибавляют к 1 мл щелочного раствора β-нафтола, содержащего 0,5 г ацетата натрия.

Появляется красно-оранжевое, красное или малиновое окрашивание или оранжевый осадок.

2.13.2. Реакции окисления

Первичные ароматические амины легко окисляются даже кислородом воздуха, образуя окрашенные продукты окисления. В качестве окислителей используются также хлорная известь, хлорамин, перекись водорода, железа (III) хлорид, калия дихромат и т.д.

Методика: 0,05- 0,1 г вещества (анестезин, новокаин, стрептоцид и др.) растворяют в 1 мл натрия гидроксида. К полученному раствору добавляют 6-8 капель хлорамина и 6 капель 1 % раствора фенола. По мере нагревания на кипящей водяной бане повляется окрашивание (синее, сине-зелёное, жёлто-зелёное, жёлтое, жёлто-оранжевое).

2.13.3. Лигниновая проба

Это разновидность реакции конденсации первичной ароматической аминогруппы с альдегидами в кислой среде. Она выполняется на древесине или газетной бумаге.

Ароматические альдегиды, содержащиеая в лигнине (п -окси-безальдегид, сиреневый альдегид, ванилин – в зависимости от вида лигнина) взаимодействуют с первичными ароматическими аминами. Образуя основания Шиффа.

Методика: на лигнин (газетную бумагу) помещают несколько кристаллов вещества, 1-2 капли кислоты хлористоводородной, разведённой. Появляется оранжево-жёлтое окрашивание.

2.14. ИДЕНТИФИКАЦИЯ ПЕРВИЧНОЙ АЛИФАТИЧЕСКОЙ

АМИНОГРУППЫ

Лекарственные вещества, содержащие первичную алифатическую аминогруппу:

а) Кислота глутаминовая б) Кислота γ-аминомасляная

2.14.1. Нингидриновая проба

Первичные алифатические амины окисляются нингидрином при нагревании. Нингидрин –стабильный гидрат 1,2,3-триоксигидриндана:

Обе равновесные формы вступают в реакцию:

основание Шиффа 2-амино-1,3-диоксоиндан

сине-фиолетовое окрашивание

Методика: 0,02 г вещества (кислота глутаминовая, кислота аминокапроновая и другие аминокислоты и первичные алифатические амины) растворяют при нагревании в 1 мл воды, прибавляют 5-6 капель раствора нингидрина и нагревают, появляется фиолетовое окрашивание.

2.15. ИДЕНТИФИКАЦИЯ ВТОРИЧНОЙ АМИНОГРУППЫ

Лекарственные вещества, содержащие вторичную аминогруппу:

а) Дикаин б) Пиперазин

Лекарственные вещества, содержащие вторичную аминогруппу, образуют осадки белого, зеленовато-бурого цветов в результате реакции с нитритом натрия в кислой среде:

нитрозоамин

Методика: 0,02 г лекарственного вещества (дикаин, пиперазин) растворяют в 1 мл воды, прибавляют 1 мл раствора нитрита натрия, смешанного с 3-каплями хлористоводородной кислоты. Выпадает осадок.

2.16. ИДЕНТИФИКАЦИЯ ТРЕТИЧНОЙ АМИНОГРУППЫ

Лекарственные вещества, содержащие третичную аминогруппу:

а) Новокаин

б) Димедрол

Лекарственные вещества, имеющие в своей структуре третичную аминогруппу, обладают основными свойствами, а также проявляют сильные восстановительные свойства. Поэтому они легко окисляются с образованием окрашенных продуктов. Для этого используют следующие реактивы:

а) кислота азотная концентрированная;

б) кислота серная концентрированная;

в) реактив Эрдмана (смесь концентрированных кислот – серной и азотной);

г) реактив Манделина (раствор (NH 4) 2 VO 3 в кислоте серной конц.);

д) реактив Фреде (раствор (NH 4) 2 МоO 3 в кислоте серной конц.);

е) реактив Марки (раствор формальдегида в кислоте серной конц.).

Методика: На чашку Петри помещают 0,005 г вещества (папаверина гидрохлорид, резерпин и др.) в виде порошка и прибавляют 1-2-капли реактива. Наблюдают появление соответствующего окрашивания.

2.17. ИДЕНТИФИКАЦИЯ АМИДНОЙ ГРУППЫ.

Лекарственные вещества, содержащие амидную и замещённую амидную группу:

а) Никотинамид б) Диэтиламид никотиновой

2.17.1. Щелочной гидролиз

Лекарственные вещества, содержащие амидную (никотинамид) и замещённую амидную группу (фтивизид, фталазол, пуриновые алкалоиды, диэтиламид никотиновой кислоты), при нагревании в щелочной среде гидролизуются с образованием аммиака или аминов и солей кислот:

Методика: 0,1 г вещества взбалтывают в воде, прибавляют 0,5 мл 1 М раствора натрия гидроксида и нагревают. Ощущается запах выделившегося аммиака или амина.

2.18. ИДЕНТИФИКАЦИЯ АРОМАТИЧЕСКОЙ НИТРОГРУППЫ

Лекарственные вещества, содержащие ароматическую нитрогруппу:

а) Левомицетин б) Метронилазол

2.18.1. Реакции восстановления

Препараты, содержащие ароматическую нитрогруппу (левомицетин и др.) идентифицируются с помощью реакции восстановления нитрогруппы до аминогруппы, затем проводят реакцию образования азокрасителя:

Методика: к 0,01 г левомицетина прибавляют 2 мл раствора кислоты хлористоводородной разведённой и 0,1 г цинковой пыли, нагревают на кипящей водяной бане в течение 2-3 минут, после охлаждения фильтруют. К фильтрату добавляют 1 мл 0,1 М раствора натрия нитрата, хорошо перемешивают и вливают содержимое пробирки в 1 мл свежеприготовленного раствора β-нафтола. Появляется красное окрашивание.

2.19. ИДЕНТИФИКАЦИЯ СУЛЬФГИДРИЛЬНОЙ ГРУППЫ

Лекарственные вещества, содержащие сульфгидрильную группу:

а) Цистеин б) Мерказолил

Органические лекарственные вещества, содержащие сульфгидрильную (-SH) группу, (цистеин, мерказолил, меркаптопурил и др.) образуют осадки с солями тяжёлых металлов(Ag, Hg, Co, Cu) – меркаптиды (серого, белого, зелёного и др. цветов). Это происходит ввиду наличия подвижного атома водорода:

Методика: 0,01 г лекарственного вещества растворяют в 1 мл воды, прибавляют 2 капли раствора нитрата серебра, образуется белый осадок, нерастворимый в воде и азотной кислоте.

2.20. ИДЕНТИФИКАЦИЯ СУЛЬФАМИДНОЙ ГРУППЫ

Лекарственные вещества, содержащие сульфамидную группу:

а) Сульфацил-натрий б) Сульфадиметоксин

в) Фталазол

2.20.1. Реакция образования солей с тяжёлыми металлами

Большая группа лекарственных веществ, имеющих в молекуле сульфамидную группу, проявляет кислотные свойства. В слабощелочной среде эти вещества образуют различного цвета осадки с солями железа (III), меди (II) и кобальта:

норсульфазол

Методика: 0,1 г сульфацил-натрия растворяют в 3 мл воды, добавляют 1 мл раствора сульфата меди, образуется осадок голубовато-зелёного цвета, который не меняется при стоянии (отличие от других сульфаниламидов).

Методика: 0,1 г сульфадимезина взбалтывают с 3 мл 0,1 М раствора гидроксида натрия в течение 1-2 минут и фильтруют, к фильтрату прибавляют 1 мл раствора сульфата меди. Образуется осадок желтовато-зелёного цвета, быстро переходящий в коричневый (отличие от других сульфаниламидов).

Аналогично проводят реакции идентификации других сульфаниламидов. Цвет образующего осадка у норсульфазола грязно-фиолетовый, у этазола – травянисто-зелёный, переходящий в чёрный.

2.20.2. Реакция минерализации

Вещества, имеющие сульфамидную группу, минерализуются кипячением в кислоте азотной концентрированной до кислоты серной, которую обнаруживают по выпадению белого осадка после добавления раствора хлорида бария:

Методика: 0,1 г вещества (сульфаниламида) осторожно (под тягой) кипятят 5-10 минут в 5 мл кислоты азотной концентрированной. Затем раствор охлаждают, осторожно вливают в 5 мл воды, перемешивают и добавляют раствор хлорида бария. Выпадает белый осадок.

2.21. ИДЕНТИФИКАЦИЯ АНИОНОВ ОРГАНИЧЕСКИХ КИСЛОТ

Лекарственные вещества, содержащие ацетат-ион:

а)Калия-ацетат б) Ретинола ацетат

в) Токоферола ацетат

г) Кортизона ацетат

Лекарственные вещества, представляющие собой сложные эфиры спиртов и уксусной кислоты (ретинола ацетат, токоферола ацетат, кортизона ацетат и др.) при нагревании в щелочной или кислой среде гидролизуются с образованием спирта и уксусной кислоты или ацетата натрия:

2.21.1. Реакция образования уксусноэтилового эфира

Ацетаты и уксусная кислота взаимодействуют с 95 % спиртом этиловым в присутствии кислоты серной концентрированной с образованием этилацетата:

Методика: 2 мл раствора ацетата нагревают с равным количеством кислоты серной концентрированной и 0,5 мл 95 5 спирта этилового, ощущается запах этилацетата.

2.21.2.

Ацетаты в нейтральной среде взаимодействуют с раствором железа (III) хлорида с образованием комплексной соли красного цвета.

Методика: к 2 мл нейтрального раствора ацетата прибавляют 0,2 мл раствора железа (III) хлорида, появляется красно-бурое окрашивание, исчезающее при добавлении разведённых минеральных кислот.

Лекарственные вещества, содержащие бензоат-ион:

а)Кислота бензойная б) Натрия бензоат

2.21.3. Реакция образования комплексной соли железа (III)

Лекарственные вещества, содержащие бензоат-ион, бензойную кислоту образуют комплексную соль с раствором хлорида железа (III):

Методика: к 2 мл нейтрального раствора бензоата прибавляют 0,2 мл раствора железа (III) хлорида, образуется розовато-жёлтый осадок, растворимый в эфире.


Качественный анализ. Цель, возможные методы. Качественный химический анализ неорганических и органических веществ

Качественный анализ имеет своей целью обнаружение определенных веществ или их компонентов в анализируемом объекте. Обнаружение проводится путем идентификации веществ, то есть установления тождественности (одинаковости) АС анализируемого объекта и известных АС определяемых веществ в условиях применяемого метода анализа. Для этого данным методом предварительно исследуют эталонные вещества (гл. 2.1), в которых наличие определяемых веществ заведомо известно. Например, установлено, что присутствие спектральной линии с длиной волны 350,11 нм в эмиссионном спектре сплава, при возбуждении спектра электрической дугой, свидетельствует о наличии в сплаве бария; посинение водного раствора при добавлении к нему крахмала является АС на присутствие в нем I 2 и наоборот.

Качественный анализ всегда предшествует количественному.

В настоящее время качественный анализ выполняют инструментальными методами: спектральными, хроматографическими, электрохимическими и др. Химические методы используют на отдельных стадиях инструментальных (вскрытие пробы, разделение и концентрирование и др.), но иногда с помощью химического анализа можно получить результаты более просто и быстро, например, установить наличие двойных и тройных связей в непредельных углеводородах при пропускании их через бромную воду или водный раствор KMnO 4 . При этом растворы теряют окраску.

Детально разработанный качественный химический анализ позволяет определять элементный (атомный), ионный, молекулярный (вещественный), функциональный, структурный и фазовый составы неорганических и органических веществ.

При анализе неорганических веществ основное значение имеют элементный и ионный анализы, так как знание элементного и ионного состава достаточно для установления вещественного состава неорганических веществ. Свойства органических веществ определяются их элементным составом, но также и структурой, наличием разнообразных функциональных групп. Поэтому анализ органических веществ имеет свою специфику.

Качественный химический анализ базируется на системе химических реакций, характерных для данного вещества - разделения, отделения и обнаружения.

К химическим реакциям в качественном анализе предъявляют следующие требования.

1. Реакция должна протекать практически мгновенно.

2. Реакция должна быть необратимой.

3. Реакция должна сопровождаться внешним эффектом (АС):

а) изменением окраски раствора;

б) образованием или растворением осадка;

в) выделением газообразных веществ;

г) окрашиванием пламени и др.

4. Реакция должна быть чувствительной и по возможности специфичной.

Реакции, позволяющие получить внешний эффект с определяемым веществом, называют аналитическими , а добавляемое для этого вещество - реагентом . Аналитические реакции, проводимые между твердыми веществами, относят к реакциям «сухим путем », а в растворах - «мокрым путем ».

К реакциям «сухим путем» относятся реакции, выполняемые путем растирания твердого исследуемого вещества с твердым реагентом, а также путем получения окрашенных стекол (перлов) при сплавлении некоторых элементов с бурой.

Значительно чаще анализ проводят «мокрым путем», для чего анализируемое вещество переводят в раствор. Реакции с растворами могут выполняться пробирочным, капельным и микрокристалли-ческим методами. При пробирочном полумикроанализе его выполняют в пробирках вместимостью 2-5см 3 . Для отделения осадков используют центрифугирование, а выпаривание ведут в фарфоровых чашечках или тиглях. Капельный анализ (Н.А. Тананаев, 1920 г.) осуществляют на фарфоровых пластинках или полосках фильтрованной бумаги, получая цветные реакции при добавлении к одной капле раствора вещества одной капли раствора реактива. Микрокристаллический анализ основан на обнаружении компонентов с помощью реакций, в результате которых образуются соединения с характерным цветом и формой кристаллов, наблюдаемых в микроскоп.

Для качественного химического анализа используют все известные типы реакций: кислотно-основные, окислительно-восстановительные, осаждения, комплексообразования и другие.

Качественный анализ растворов неорганических веществ сводится к обнаружению катионов и анионов. Для этого используют общие и частные реакции. Общие реакции дают сходный внешний эффект (АС) со многими ионами (например, образование катионами осадков сульфатов, карбонатов, фосфатов и т.д.), а частные - с 2-5 ионами. Чем меньше число ионов дают сходный АС, тем селективнее (избирательнее) считается реакция. Реакция называется специфической , когда позволяет обнаружить один ион в присутствии всех остальных. Специфической, например, на ион аммония является реакция:

NH 4 Cl + KOH  NH 3  + KCl + H 2 O

Аммиак обнаруживают по запаху или по посинению красной лакмусовой бумажки, смоченной в воде и помещенной над пробиркой.

Селективность реакций можно повысить, изменяя их условия (рН) или применяя маскирование. Маскирование заключается в уменьшении концентрации мешающих ионов в растворе меньше предела их обнаружения, например путем их связывания в бесцветные комплексы.

Если состав анализируемого раствора несложен, то его после маскировки анализируют дробным способом. Он заключается в обнаружении в любой последовательности одного иона в присутствии всех остальных с помощью специфических реакций, которые проводят в отдельных порциях анализируемого раствора. Поскольку специфических реакций немного, то при анализе сложной ионной смеси используют систематический способ. Этот способ основан на разделении смеси на группы ионов со сходными химическими свойствами путем перевода их в осадки с помощью групповых реактивов, причем групповыми реактивами воздействуют на одну и ту же порцию анализируемого раствора по определенной системе, в строго определенной последовательности. Осадки отделяют друг от друга (например, центрифугированием), затем растворяют определенным образом и получают серию растворов, позволяющих в каждом обнаружить отдельный ион специфической реакцией на него.

Существует несколько систематических способов анализа, называемых по применяемым групповым реактивам: сероводородный, кислотно-основный, аммиачно-фосфатный и другие. Классический сероводородный способ основан на разделении катионов на 5 групп путем получения их сульфидов или сернистых соединений при воздействии H 2 S, (NH 4) 2 S, NaS в различных условиях.

Более широко применяемым, доступным и безопасным является кислотно-основный метод, при котором катионы разделяют на 6 групп (табл. 1.3.1.). Номер группы указывает на последовательность воздействия реактивом.

Таблица 1.3.1

Классификация катионов по кислотно-основному способу

Номер группы

Групповой реактив

Растворимость соединений

Ag + , Pb 2+ , Hg 2 2+

Хлориды нерастворимы в воде

Ca 2+ , Sr 2+ , Ba 2+

Сульфаты нерастворимы в воде

Zn 2+ , Al 3+ , Cr 3+ , Sn 2+ , Si 4+ , As

Гидроксиды амфотерны, растворимы в избытке щелочи

Mg 2+ , Mn 2+ , Fe 2+ , Fe 3+ , Bi 3+ , Sb 3+ , Sb 5+

Гидроксиды нерастворимы в избытке NaOH или NH 3

Номер группы

Групповой реактив

Растворимость соединений

Co 2+ , Ni 2+ , Cu 2+ , Cd 2+ , Hg 2+

Гидроксиды растворяются в избытке NH 3 с образованием комплексных соединений

Na + , K + , NH 4 +

Хлориды, сульфаты, гидроксиды растворимы в воде

Анионы при анализе в основном не мешают друг другу, поэтому групповые реактивы применяют не для разделения, а для проверки наличия или отсутствия той или иной группы анионов. Стройной классификации анионов на группы не существует.

Наиболее простым образом их можно разделить на две группы по отношению к иону Ba 2+ :

а) дающие хорошо растворимые соединения в воде: Cl - , Br - , I - , CN - , SCN - , S 2- , NO 2 2- , NO 3 3- , MnO 4- , CH 3 COO - , ClO 4 - , ClO 3 - , ClO - ;

б) дающие плохорастворимые соединения в воде: F - , CO 3 2- , CsO 4 2- , SO 3 2- , S 2 O 3 2- , SO 4 2- , S 2 O 8 2- , SiO 3 2- , CrO 4 2- , PO 4 3- , AsO 4 3- , AsO 3 3- .

Качественный химический анализ органических веществ подразделяют на элементный , функциональный , структурный и молекулярный .

Анализ начинают с предварительных испытаний органического вещества. Для твердых измеряют t плав. , для жидких - t кип или , показатель преломления. Молярную массу определяют по понижению t замерз или повышению t кип, то есть криоскопическим или эбулиоскопическим методами. Важной характеристикой является растворимость, на основе которой существуют классификационные схемы органических веществ. Например, если вещество не растворяется в Н 2 О, но растворяется в 5%-ном растворе NaOH или NaHCO 3 , то оно относится к группе веществ, в которую входят сильные органические кислоты, карбоновые кислоты с более чем шестью атомами углерода, фенолы с заместителями в орто- и параположениях, -дикетоны.

Таблица 1.3.2

Реакции для идентификации органических соединений

Тип соединения

Функциональная груп-па, участвующая в реакции

Альдегид

а) 2,4 - динитрофенилгидрозид б) гидрохлорид гидроксиламина в) гидросульфат натрия

а) азотистая кислота б) бензолесульфохлорид

Ароматический углеводород

Азоксибензол и хлорид алюминия

См. альдегид

Ненасыщенный углеводород

С = С - - С ≡ С -

а) раствор KMnO 4 б) раствор Вr 2 в СCL 4

Нитросоединение

а) Fe(OH) 2 (соль Мора + КОН) б) цинковая пыль + NH 4 Cl в) 20% раствор NaOH

а) (NH 4) 2 б) раствор ZnCl 2 в HCl в) йодная кислота

a) FeCl 3 в пиридине б) бромная вода

Эфир простой

а) йодоводородная кислота б) бромная вода

Эфир сложный

а) раствор NaOH (или КОН) б) гдрохлорид гидроксиламина

Элементным анализом обнаруживают элементы, входящие в молекулы органических веществ (C, H, O, N, S, P, Cl, и др.). В большинстве случаев органическое вещество разлагают, продукты разложения растворяют и в полученном растворе определяют элементы как в неорганических веществах. Например, при обнаружении азота пробу сплавляют с металлическим калием, получая KCN, который обрабатывают FeSO 4 , переводят в K 4 . Добавляя к последнему раствор ионов Fe 3+ , получают берлинскую лазурь Fe 4 3 - (AC на присутствие N).

Функциональным анализом определяют тип функциональной группы. Например, реакцией с (NH 4) 2 можно обнаружить спирт, а с помощью раствора KMnO 4 отличить первичные, вторичные и третичные спирты. Первичные KMnO 4 окисляет до альдегидов обесцвечиваясь, вторичные окисляет до кетонов, образуя MnO 2 , а с третичными не реагирует (табл. 1.3.2).

Структурным анализом устанавливают структурную формулу органического вещества или ее отдельные структурные элементы (двойные и тройные связи, циклы и так далее).

Молекулярным анализом устанавливают целиком вещество. Например, фенол можно обнаружить реакцией с FeCl 3 в пиридине. Чаще молекулярный анализ сводится к установлению полного состава соединения на основании данных об элементном, функциональном и структурном составе вещества. В настоящее время молекулярный анализ проводят в основном инструментальными методами.

При проведении расчета результатов анализа необходимо очень внимательно выполнять вычисления. Математическая погрешность, допущенная в числовых значениях, равносильна ошибке в анализе.

Числовые значения подразделяют на точные и приближенные. К точным, например, можно отнести число выполненных анализов, порядковый номер элемента в таблице Менделеева, к приближенным - измеренные значения массы или объема.

Значащими цифрами приближенного числа называют все его цифры, кроме нулей, стоящих слева от запятой, и нулей, стоящих справа после запятой. Нули, стоящие в середине числа, являются значащими. Например, в числе 427,205 - 6 значащих цифр; 0,00365 - 3 значащие цифры; 244,00 - 3 значащие цифры.

Точность вычислений определяется ГОСТ, ОСТ или ТУ на анализ. Если погрешность вычислений не оговорена заранее, то следует иметь в виду, что концентрация вычисляется до 4-ой значащей цифры после запятой, масса - до 4-го десятичного знака после запятой, массовая доля (процентное содержание) - до сотых долей.

Каждый результат анализа не может быть точнее, чем это позволяют измерительные приборы (поэтому в массе, выраженной в граммах, не может быть больше 4-5 знаков после запятой, т.е. больше точности аналитических весов 10 -4 -10 -5 г).

Лишние цифры округляют по следующим правилам.

1. Последнюю цифру, если она  4, отбрасывают, если  5, добавляют единицу к предыдущей, если равна 5, а перед ней четная цифра, то добавляют единицу к предыдущей, а если нечетная, то отнимают (например, 12,465  12,46; 12,475  12,48).

2. В суммах и разностях приближенных чисел сохраняют столько десятичных знаков, сколько их было в числе с наименьшим их числом, а при делении и умножении - столько, сколько требуется для данной измеряемой величины (например при вычислении массы по формуле

Несмотря на то, что V измеряют до сотых, результат должен быть вычислен до 10 -4 -10 -5 г).

3. При возведении в степень в результате брать столько значащих цифр, сколько их было у возводимого в степень числа.

4. В промежуточных результатах брать на одну десятичную цифру больше, чем по правилам округления, а для оценки порядка вычислений округлять все числа до первой значащей.

Математическая обработка результатов анализа

На любом из перечисленных этапов количественного анализа могут быть допущены и, как правило, допускаются погрешности, поэтому, чем меньшее число этапов имеет анализ, тем точнее его результаты.

Погрешностью измерения называют отклонение результата измерений x i от истинного значения измеряемой величины .

Разность х i -  =∆х i называется абсолютной погрешностью , а отношение (∆х i /)100% называется относительной погрешностью .

Погрешности результатов количественного анализа подразделяют на грубые (промахи), систематические и случайные . На их основе проводят оценку качества полученных результатов анализа. Параметрами качества являются их правильность, точность, воспроизводимость и надежность.

Результат анализа считается правильным , если у него нет грубой и систематической погрешности, а если, кроме того, случайная погрешность сведена к минимуму, то точным, соответствующим истинному. Для получения точных результатов измерения количественные определения повторяют несколько раз (обычно нечетное).

Грубыми погрешностями (промахами) называются те, которые приводят к резкому отличию результата повторного измерения от остальных. Причинами промахов являются грубые оперативные ошибки аналитика (например потеря части осадка при его фильтровании или взвешивании, неправильное вычисление или запись результата). Промахи выявляют среди серии результатов повторных измерений, как правило, с помощью Q-критерия. Для его расчета результаты выстраивают в ряд по возрастанию: х 1 , х 2 , х 3 ,…х n-1 , х n . Сомнительным обычно является первый или последний результат в этом ряду.

Q-критерий вычисляют как отношение взятой по абсолютной величине разности сомнительного результата и ближайшего к нему в ряду к разности последнего и первого в ряду. Разность х n - х 1 называют размахом варьирования.

Например, если сомнителен последний результат в ряду, то

Для выявления промаха рассчитанное для него Q сравнивают с табличным критическим значением Q табл , приведенным в аналитических справочниках. Если Q  Q табл , то сомнительный результат исключают из рассмотрения, считая промахом. Промахи должны быть выявлены и устранены.

Систематическими погрешностями считают те, которые приводят к отклонению результатов повторных измерений на одну и ту же только положительную или отрицательную величину от истинного значения. Их причиной может быть неправильная калибровка измерительных приборов и инструментов, примеси в применяемых реактивах, неправильные действия (например, выбор индикатора) или индивидуальные особенности аналитика (например, зрение). Систематические погрешности могут и должны быть устранены. Для этого используют:

1) получение результатов количественного анализа несколькими различными по природе методами;

2) отработку методики анализа на стандартных образцах, т.е. материалах, содержание определяемых веществ, в которых известно с высокой точностью;

3) метод добавок (метод «введено-найдено»).

Случайные погрешности - это те, которые ведут к незначительным отклонениям результатов повторных измерений от истинного значения по причинам, возникновение которых выяснить и учесть невозможно (например колебания напряжения в электросети, настроение аналитика и т.п.). Случайные погрешности вызывают разброс результатов повторных определений, проведенных в идентичных условиях. Разброс определяет воспроизводимость результатов, т.е. получение одинаковых или близких результатов при повторных определениях. Количественной характеристикой воспроизводимости является стандартное отклонение S, которое находят методами математической статистики. Для небольшого числа измерений (малой выборки) при n =1-10

Выборной называют совокупность результатов повторных измерений. Сами результаты называют вариантами выборки . Совокупность результатов бесконечно большого числа измерений (в титровании n30) называют генеральной выборкой , а вычисленное по ней стандартное отклонение обозначают . Стандартное отклонение S() показывает, на какую в среднем величину отклоняются результаты n измерений от среднего результата x или истинного.

"Химия. 10 класс". О.С. Габриелян (гдз)

Качественный анализ органических соединений | Обнаружение углерода, водорода и галогенов

Опыт 1. Обнаружение углерода и водорода в органическом соединении.
Условия выполнения работы:
Собрали прибор как показано на рис. 44 учебника. Насыпали в пробирку щепотку сахара и немного оксида меди (II) СuO. Положили в пробирку, где-то на уровне две трети её небольшой ватный тампон, потом насыпали немного безводного медного купороса CuSO 4 . Закрыли пробирку пробкой с газоотводной трубкой, так, чтобы нижний её конец был опущен в другую пробирку с предварительно налитым туда гидроксидом кальция Са(ОН) 2 . Нагрели пробирку в пламени горелки. Наблюдаем выделение пузырьков газа из трубки, помутнение известковой воды и посинение белого порошка CuSO 4 .
С 12 Н 22 О 11 + 24CuO → 12CO 2 + 11H 2 O + 24Cu
Ca(OH) 2 + CO 2 → CaCO 3 ↓ + H 2 O
CuSO 4 + 5H 2 O → CuSO 4 . 5H 2 O
Вывод: В исходном веществе присутствует углерод и водород, так как получили углекислый газ и воду в результате окисления, а в окислителе CuO они не содержались.

Опыт 2. Обнаружение галогенов
Условия выполнения работы:
Взяли медную проволоку, загнутую на конце петлёй щипцами, прокалили её в пламени до образования чёрного налёта оксида меди (II) СuO. Затем остывшую проволоку окунули в раствор хлороформа и вновь внесли её в пламя горелки. Наблюдаем окрашивание пламени в голубовато-зелёный цвет, так как соли меди окрашивают пламя.
5CuO + 2CHCl 3 = 3CuCl 2 + 2CO 2 + H 2 O + 2Cu

>> Химия: Практическая работа № 1. Качественный анализ органических соединений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки