Биографии Характеристики Анализ

Как найти центр масс треугольника формула. Способы определения координат центра тяжести

Исходя из полученных выше общих формул, можно указать конкретные способы определения координат центров тяжести тел.

1. Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии (рис.7), то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

Рис.7

2. Разбиение. Тело разбивается на конечное число частей (рис.8), для каждой из которых положение центра тяжести и площадь известны.

Рис.8

3.Метод отрицательных площадей. Частный случай способа разбиения (рис.9). Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Тело в виде пластинки с вырезом представляют комбинацией сплошной пластинки (без выреза) с площадью S 1 и площади вырезанной части S 2 .

Рис.9

4.Метод группировки. Является хорошим дополнением двух последних методов. После разбиения фигуры на составные элементы часть их бывает удобно объединить вновь, чтобы затем упростить решение путем учета симметрии этой группы.

Центры тяжести некоторых одно­родных тел.

1) Центр тяжести дуги окруж­ности. Рассмотрим дугу АВ радиуса R с центральным углом . В силу сим­метрии центр тяжести этой дуги лежит на оси Ox (рис. 10).

Рис.10

Найдем координату по формуле . Для этого выделим на дуге АВ элемент ММ’ длиною , положение которого определяется углом . Координата х элемента ММ’ будет . Подставляя эти значения х и dl и имея в виду, что интеграл должен быть распространен на всю длину дуги, получим:

где L - длина дуги АВ , равная .

Отсюда окончательно нахо­дим, что центр тяжести дуги окружности лежит на ее оси симметрии на расстоянии от центра О , равном

где угол измеряется в радианах.

2) Центр тяжести площади тре­угольника. Рассмотрим треугольник, лежащий в плоскости Oxy , координаты вершин которого известны: A i (x i ,y i ), (i = 1,2,3). Разбивая треугольник на узкие полоски, параллельные стороне А 1 А 2 , придем к выводу, что центр тяжести треугольника должен принадлежать медиане А 3 М 3 (рис.11) .

Рис.11

Разбивая треугольник на полоски, параллельные стороне А 2 А 3 , можно убедиться, что он должен лежать на медиане А 1 М 1 . Таким образом, центр тяжести треугольника лежит в точке пересечения его медиан , которая, как известно, отделяет от каждой медианы третью часть, считая от соответствующей стороны.

В частности, для медианы А 1 М 1 получим, учитывая, что координаты точки М 1 - это среднее арифметическое координат вершин А 2 и А 3:

x c = x 1 + (2/3)∙(x М 1 - x 1) = x 1 + (2/3)∙[(x 2 + x 3)/2-x 1 ] = (x 1 + x 2 +x 3)/3.


Таким образом, координаты центра тяжести треугольника представляют собой среднее арифметическое из координат его вершин:

x c =(1/3)Σx i ; y c =(1/3)Σy i .

3) Центр тяжести площади кругового сектора. Рассмотрим сектор круга радиуса R с центральным углом 2α, расположенный симметрично относительно оси Ox (рис.12) .

Очевидно, что y c = 0, а расстояние от центра круга, из которого вырезан этот сектор, до его центра тяжести можно определить по формуле:

Рис.12

Проще всего этот интеграл вычислить, разбивая область интегрирования на элементарные секторы с углом d φ. С точностью до бесконечно малых первого порядка такой сектор можно заменить треугольником с основанием, равным R ×d φ и высотой R . Площадь такого треугольника dF =(1/2)R 2 ∙d φ, а его центр тяжести находится на расстоянии 2/3R от вершины, поэтому в (5) положим x = (2/3)R ∙cosφ. Подставляя в (5) F = αR 2 , получим:

С помощью последней формулы вычислим, в частности, расстояние до центра тяжести полукруга .

Подставляя в (2) α = π/2, получим: x c = (4R )/(3π) ≅ 0,4R .

Пример 1. Определим центр тяжести однородного тела, изображён­ного на рис. 13.

Рис.13

Тело однородное, состоящее из двух частей, имеющих симметричную форму. Координаты центров тяжести их:

Объёмы их:

Поэтому координаты центра тяжести тела

Пример 2. Найдем центр тяжести пластины, согнутой под прямым углом. Размеры – на чертеже (рис.14).

Рис.14

Координаты центров тяжести:

Площади:

Рис. 6.5.
Пример 3. У квадратного листа см вырезано квадратное отверстие см (рис.15). Найдем центр тяжести листа.

Рис.15

В этой задаче удобнее разделить тело на две части: большой квадрат и квадратное отверстие. Только площадь отверстия надо считать отрицательной. Тогда координаты центра тяжести листа с отверстием:

координата так как тело имеет ось симметрии (диагональ).

Пример 4. Проволочная скобка (рис.16) состоит из трёх участков оди­наковой длины l .

Рис.16

Координаты центров тяжести участ­ков:

Поэтому координаты центра тяжести всей скобки:

Пример 5. Определить положение центра тяжести фермы, все стержни которой имеют одинаковую погонную плотность (рис.17).

Напомним, что в физике плотность тела ρ и его удельный вес g связаны соотношением: γ= ρg , где g - ускорение свободного падения. Чтобы найти массу такого однородного тела, нужно плотность умножить на его объем.

Рис.17

Термин «линейная» или «погонная» плотность означает, что для определения массы стержня фермы нужно погонную плотность умножить на длину этого стержня.

Для решения задачи можно воспользоваться методом разбиения. Представив заданную ферму в виде суммы 6 отдельных стержней, получим:

где L i длина i -го стержня фермы, а x i , y i - координаты его центра тяжести.

Решение этой задачи можно упростить, если сгруппировать 5 последних стержней фермы. Нетрудно видеть, что они образуют фигуру, имеющую центр симметрии, расположенный посредине четвертого стержня, где и находится центр тяжести этой группы стержней.

Таким образом, заданную ферму можно представить комбинацией всего двух групп стержней.

Первая группа состоит из первого стержня, для нее L 1 = 4 м, x 1 = 0 м, y 1 = 2 м. Вторая группа стержней состоит из пяти стержней, для нее L 2 = 20 м, x 2 = 3 м, y 2 = 2 м.

Координаты центра тяжести фермы находим по формуле:

x c = (L 1 ∙x 1 + L 2 ∙x 2)/(L 1 + L 2) = (4∙0 + 20∙3)/24 = 5/2 м;

y c = (L 1 ∙y 1 + L 2 ∙y 2)/(L 1 + L 2) = (4∙2 + 20∙2)/24 = 2 м.

Отметим, что центр С лежит на прямой, соединяющей С 1 и С 2 и делит отрезок С 1 С 2 в отношении: С 1 С /СС 2 = (x c - x 1)/(x 2 - x c ) = L 2 / L 1 = 2,5/0,5.

Вопросы для самопроверки

Что называется центром параллельных сил?

Как определяются координаты центра параллельных сил?

Как определить центр параллельных сил, равнодействующая которых равна нулю?

Каким свойством обладает центр параллельных сил?

По каким формулам вычисляются координаты центра параллельных сил?

Что называется центром тяжести тела?

Почему силы притяжения Земле, действующие на точку тела, можно принять за систему параллельных сил?

Запишите формулу для определения положения центра тяжести неоднородных и однородных тел, формулу для определения положения центра тяжести плоских сечений?

Запишите формулу для определения положения центра тяжести простых геометрических фигур: прямоугольника, треугольника, трапеции и половины круга?

Что называют статическим моментом площади?

Приведите пример тела, центр тяжести которого расположен вне тела.

Как используются свойства симметрии при определении центров тяжести тел?

В чем состоит сущность способа отрицательных весов?

Где расположен центр тяжести дуги окружности?

Каким графическим построением можно найти центр тяжести треугольника?

Запишите формулу, определяющую центр тяжести кругового сектора.

Используя формулы, определяющие центры тяжести треугольника и кругового сектора, выведите аналогичную формулу для кругового сегмента.

По каким формулам вычисляются координаты центров тяжести однородных тел, плоских фигур и линий?

Что называется статическим моментом площади плоской фигуры относительно оси, как он вычисляется и какую размерность имеет?

Как определить положение центра тяжести площади, если известно положение центров тяжести отдельных ее частей?

Какими вспомогательными теоремами пользуются при определении положения центра тяжести?

Инструкция

Начертите сам треугольник. Для этого возьмите линейку и проведите карандашом отрезок. Потом начертите ещё один отрезок, начиная от одного из концов предыдущего. Замкните фигуру, соединив две оставшиеся свободные точки отрезков. Получился треугольник. Именно его центр тяжести предстоит искать.

Возьмите линейку и измерьте длину одной из сторон. Найдите середину этой стороны и отметьте её карандашом. Проведите отрезок из противоположной к намеченной точке. Получившийся отрезок медианой.

Приступите ко второй стороне. Измерьте её длину, поделите на две равные части и проведите медиану из лежащей напротив вершины.

То же самое проделайте с третьей стороной. Обратите внимание на то, что, если вы все сделали , то медианы пересекутся в одной точке. Это и будет центр тяжести или, как его ещё называют, центр масс .

Если перед вами стоит задача, найти центр тяжести треугольника , то проведите высоту из каждой вершины фигуры. Для этого возьмите линейку с прямым углом и одной из сторон, прислоните к основанию треугольника , а вторую направьте к противолежащей вершине. То же самое проделайте с остальными сторонами. Точка пересечения будет являться центр ом тяжести . Особенность равносторонних заключается в том, что одни и те же отрезки и медианами, и высотами, и биссектрисами.

Если отрезок соединяет центр окружности, описанной около произвольного треугольника, с любой из вершин этой фигуры, то его длину можно рассчитать, найдя радиус описанной окружности (R). Если известны, например, длина одной из сторон (A) в таком треугольнике и угол (α), лежащий напротив нее, то для вычисления длины нужного вам отрезка разделите длину стороны на удвоенный синус угла: R=A/(2*sin(α)).

Видео по теме

Медиана треугольника - это отрезок, который соединяет вершину треугольника с серединой противоположной стороны. В равностороннем треугольнике медиана является биссектрисой и высотой одновременно. Таким образом, нужный отрезок можно построить несколькими способами.

Вам понадобится

  • - карандаш;
  • - линейка;
  • - транспортир;
  • - циркуль.

Инструкция

Постройте биссектрисы равностороннего треугольника. Любой угол равностороннего треугольника равен 60º. Приложите транспортир к одной из сторон треугольника так, чтобы точка отсчета совпадала с треугольника. Одна из его сторон должна идти точно по линии измерительного прибора, другая сторона пересекать полуокружность в точке с отметкой 60º.

Если вписан , проведите прямую, соединяющую его вершину с центром окружности. Отметьте точку пересечения этой прямой со стороной треугольника. Отрезок, соединяющий вершину треугольника и его сторону, будет медианой равностороннего треугольника.

Видео по теме

Треугольник – одна из основных геометрических фигур. И только он имеет «восхитительные» точки. К ним относится, скажем, центр тяжести – точка, на которую доводится вес каждой фигуры. Где же находится эта «восхитительная» точка и как ее обнаружить?

Вам понадобится

  • карандаш, линейка

Инструкция

1. Начертите сам треугольник. Для этого возьмите линейку и проведите карандашом отрезок. Потом начертите ещё один отрезок, начиная от одного из концов предыдущего. Замкните фигуру, объединив две оставшиеся свободные точки отрезков. Получился треугольник. Именно его центр тяжести предстоит искать.

2. Возьмите линейку и измерьте длину одной из сторон. Обнаружьте середину этой стороны и подметьте её карандашом. Проведите отрезок из противоположной вершины к обозначенной точке. Получившийся отрезок именуется медианой.

3. Приступите ко 2-й стороне. Измерьте её длину, поделите на две равные части и проведите медиану из лежащей наоборот вершины.

4. То же самое проделайте с третьей стороной. Обратите внимание на то, что, если вы все сделали верно, то медианы пересекутся в одной точке. Это и будет центр тяжести либо, как его ещё называют, центр масс треугольника.

5. Если перед вами стоит задача, обнаружить центр тяжести равностороннего треугольника, то проведите высоту из всей вершины фигуры. Для этого возьмите линейку с прямым углом и одной из сторон, прислоните к основанию треугольника, а вторую направьте к противолежащей вершине. То же самое проделайте с остальными сторонами. Точка пересечения будет являться центр ом тяжести . Специфика равносторонних треугольников заключается в том, что одни и те же отрезки являются и медианами, и высотами, и биссектрисами.

6. Центр тяжести всякого треугольника делит медианы на два отрезка. Их соотношение составляет 2:1, если глядеть от вершины. Если треугольник разместить на булавку таким образом, что центр оид окажется на её острие, то он не упадет, а будет находиться в равновесии. Также центр тяжести является той точкой, на которую доводится каждая масса, помещенная на вершинах треугольника. Проделайте данный навык и удостоверитесь в том, что эта точка недаром именуется «восхитительной».

Совет 2: Как обнаружить высоту равностороннего треугольника

Равносторонний треугольник – это треугольник, все стороны которого равны, как следует из его наименования. Эта специфика значительно упрощает нахождение остальных параметров треугольника , в том числе его высоты.

Вам понадобится

  • Длина стороны равностороннего треугольника

Инструкция

1. В равностороннем треугольнике все углы также равны. Угол равностороннего треугольника , отсель, равен 180/3 = 60 градусов. Видимо, что потому что все стороны и все углы такого треугольника равны, то все его высоты также будут равны.

2. В равностороннем треугольнике ABC дозволено провести, скажем, высоту AE. Потому что равносторонний треугольник – это частный случай равнобедренного треугольника , а AB = AC. Следственно, по свойству равнобедренного треугольника высота AE будет единовременно медианой (то есть BE = EC) треугольника ABC и биссектрисой угла BAC (то есть BAE = CAE).

3. Высота AE будет являться катетом прямоугольного треугольника BAE с гипотенузой AB. AB = a – длина стороны равностороннего треугольника . Тогда AE = AB*sin(ABE) = a*sin(60o) = sqrt(3)*a/2. Следственно, для нахождения высоты равностороннего треугольника , довольно знать только длину его стороны.

4. Видимо, что если задана медиана либо биссектриса равностороннего треугольника , то она и будет являться его высотой.

Видео по теме

В произвольном треугольнике дозволено выделить несколько отрезков, длины которых доводится вычислять особенно зачастую. Эти отрезки соединяют точки, лежащие в вершинах треугольника, в серединах его сторон, в центрах вписанной и описанной окружностей, а также другие важные для геометрии треугольника точки. Некоторые варианты расчета длин таких отрезков в евклидовой геометрии приведены ниже.

Инструкция

1. Если отрезок, тот, что требуется обнаружить, соединяет всякие две вершины произвольного треугольника, то он является одной из сторон этой геометрической фигуры. Если вестимы, скажем, длины 2-х других сторон (А и B) и величина угла, тот, что они образуют (?), то длину этого отрезка (С) вы можете рассчитать, исходя из теоремы косинусов. Сложите квадраты длин сторон, отнимите от итога две длины этих же сторон, умноженных на косинус вестимого угла, а после этого обнаружьте квадратный корень из полученного значения: C=?(А?+B?-2*А*B*cos(?)).

2. Если отрезок начинается в одной из вершин треугольника, заканчивается на противолежащей стороне и перпендикулярен ей, то такой отрезок именуется высотой (h). Обнаружить его дозволено, скажем, зная площадь (S) и длину (A) той стороны, на которую опущена высота – поделите удвоенную площадь на длину стороны: h=2*S/A.

3. Если отрезок соединяет середину всякий стороны произвольного треугольника и вершину, лежащую наоборот этой стороны, то именуется данный отрезок медианой (m). Обнаружить его длину дозволено, скажем, зная длины всех сторон (A, B, C) – сложите удвоенные квадраты длин 2-х сторон, отнимите от полученного значения квадрат той стороны, на середине которой заканчивается отрезок, а после этого обнаружьте квадратный корень из четверти полученного итога: m=?((2*А?+2*B?-C?)/4).

4. Если отрезок соединяет центр вписанной в произвольный треугольник окружности и всякую из точек касания этой окружности со сторонами треугольника, то обнаружить его длину дозволено, вычислив радиус (r) вписанной окружности. Для этого, скажем, поделите площадь (S) треугольника на его периметр (P): r=S/P.

5. Если отрезок соединяет центр окружности, описанной около произвольного треугольника, с всякий из вершин этой фигуры, то его длину дозволено рассчитать, обнаружив радиус описанной окружности (R). Если вестимы, скажем, длина одной из сторон (A) в таком треугольнике и угол (?), лежащий наоборот нее, то для вычисления длины надобного вам отрезка поделите длину стороны на удвоенный синус угла: R=A/(2*sin(?)).

Видео по теме

Совет 4: Как обнаружить медиану равностороннего треугольника

Медиана треугольника – это отрезок, тот, что соединяет вершину треугольника с серединой противоположной стороны. В равностороннем треугольнике медиана является биссектрисой и высотой единовременно. Таким образом, необходимый отрезок дозволено возвести несколькими методами.

Вам понадобится

  • – карандаш;
  • – линейка;
  • – транспортир;
  • – циркуль.

Инструкция

1. При помощи линейки и карандаша поделите сторону равностороннего треугольника напополам. Проведите отрезок, соединяющий обнаруженную точку и противоположный угол треугольника. Таким же образом отложите два следующих отрезка. Вы начертили медианы равностороннего треугольника.

2. Начертите высоту равностороннего треугольника. При помощи угольника опустите перпендикуляр из вершины треугольника к противоположной стороне. Вы возвели высоту равностороннего треугольника. Она является единовременно его медианой.

3. Постройте биссектрисы равностороннего треугольника. Всякий угол равностороннего треугольника равен 60?. Приложите транспортир к одной из сторон треугольника так, дабы точка отсчета совпадала с вершиной треугольника. Одна из его сторон должна идти верно по линии измерительного прибора, иная сторона пересекать полуокружность в точке с отметкой 60?.

4. Подметьте точкой деление в 30?. Проведите луч, соединяющий обнаруженную точку и вершину треугольника. Обнаружьте точку пересечения луча со стороной треугольника. Полученный отрезок является биссектрисой равностороннего треугольника, которая и есть его медиана.

5. Если равносторонний треугольник вписан в окружность, проведите прямую, соединяющую его вершину с центром окружности. Подметьте точку пересечения этой прямой со стороной треугольника. Отрезок, соединяющий вершину треугольника и его сторону, будет медианой равностороннего треугольника.

Видео по теме

Полезный совет
Возвести биссектрису угла? равностороннего треугольника дозволено при помощи циркуля. Для этого постройте две окружности с центром в 2-х других вершинах треугольника и радиусом, равным стороне треугольника. Окружности пересекутся в 2-х точках: в вершине угла? и в точке N. Объедините эти точки между собой. Вы возвели биссектрису угла?.

Центр фигуры дозволено обнаружить несколькими методами, смотря какие данные о ней теснее знамениты. Стоит разобрать нахождение центра окружности, которая является общностью точек, располагающихся на равном расстоянии от центра, потому что эта фигура – одна из особенно распространенных.

Вам понадобится

  • – угольник;
  • – линейка.

Инструкция

1. Примитивный метод обнаружить центр окружности – согнуть лист бумаги, на котором она начерчена, удостоверясь, глядя на просвет, что она сложилась верно напополам. После этого согните лист перпендикулярно первому сгибу. Так вы получите диаметры, точка пересечения которых и есть центр фигуры.

2. Безусловно, данный метод безупречен, только если окружность начерчена на бумаге, довольно тонкой, дабы дозволено было посмотреть на просвет, верно ли труден лист.

3. Возможен, рассматриваемую фигуру начертили на твердой, несгибаемой поверхности либо это отдельная деталь, которая также не поддается сгибу. Дабы обнаружить центр окружности в этом случае, вам необходима линейка.

4. Диаметр является самым длинным отрезком, соединяющим 2 точки окружности. Как вестимо, проходит он через центр, следственно задача нахождения центра окружности сводится к нахождению диаметра и его середины.

5. Наложите линейку на окружность, позже чего зафиксируйте в всякий точке фигуры нулевую отметку. Приложите линейку к окружности, получив секущую, а после этого двигайте по направлению к центру фигуры. Длина секущей будет повышаться, пока не дойдет до пиковой точки. Вы получите диаметр, а обнаружив его середину, обнаружите и центр окружности.

6. Центр описанной окружности для всякого треугольника располагается на пересечении срединных перпендикуляров. В случае, если треугольник прямоугольный, ее центр неизменно будет совпадать с серединой гипотенузы. То есть решение кроется в построении внутри окружности прямоугольного треугольника с вершинами, лежащими на окружности.

7. Трафаретом для прямого угла могут послужить школьный либо строительный угольник, линейка либо даже лист бумаги/картона. Разместите в всякую точку окружности вершину прямого угла, сделайте отметки в тех местах, где стороны угла пересекают рубеж окружности, объедините их. У вас получился диаметр – гипотенуза.

8. Таким же методом обнаружьте еще один диаметр, место пересечения 2-х таких отрезков и будет центром окружности.

Видео по теме

Обратите внимание!
В заданиях может быть указано, что нужно обнаружить центр тяжести, центр масс либо центроид. Все три наименования обозначают одно и то же.

Перед тем, как найти центр тяжести простых фигур, таких которые обладают прямоугольной, круглой, шарообразной или цилиндрической, а также квадратной формой, необходимо знать, в какой точке находится центр симметрии конкретной фигуру. Поскольку в данных случаях, центр тяжести будет совпадать с центром симметрии.

Центр тяжести однородного стержня располагается в его геометрическом центре. Если необходимо определить центр тяжести круглого диска однородной структуры, то для начала найдите точку пересечения диаметров круга. Она и будет центром тяжести данного тела. Рассматривая такие фигуры, как шар, обруч и однородный прямоугольный параллелепипед, можно с уверенностью сказать, что центр тяжести обруча будет находиться в центре фигуры, но вне ее точек, центр тяжести шара - геометрический центр сферы, и в последнем случае, центром тяжестью считается пересечение диагоналей прямоугольного параллелепипеда.

Центр тяжести неоднородных тел

Чтобы найти координаты центра тяжести, как и сам центр тяжести неоднородного тела, необходимо разобраться, на каком отрезке данного тела располагается точка, в которой пересекаются все силы тяжести, действующие на фигуру, если ее переворачивать. На практике для нахождения такой точки подвешивают тело на нить, постепенно меняя точки прикрепления нити к телу. В том случае, когда тело находится в равновесии, то центр тяжести тела будет лежать на линии, которая совпадает с линией нити. В противном случае сила тяжести приводит тело в движение.

Возьмите карандаш и линейку, начертите вертикальные прямые, которые визуально будут совпадать с нитевыми направлениями (нити, закрепляемые в различных точках тела). Если форма тела достаточно сложная, то проведите несколько линий, которые будут пересекаться в одной точке. Она и станет центром тяжести для тела, над которым вы производили опыт.

Центр тяжести треугольника

Для нахождения центра тяжести треугольника, необходимо нарисовать треугольник – фигуру, состоящую из трех отрезков, соединенных между собой в трех точках. Перед тем, как найти центр тяжести фигуры, необходимо, используя линейку, измерить длину одной стороны треугольника. В середине стороны поставьте отметку, после чего противоположную вершину и середину отрезка соедините линией, которая называется медианой. Тот же самый алгоритм повторите со второй стороной треугольника, а затем и с третьей. Результатом вашей работы станут три медианы, которые пересекаются в одной точке, которая будет являться центром тяжести треугольника.

Если перед вами стоит задача, касающаяся того, как найти центр тяжести тела в форме равностороннего треугольника, то необходимо из каждой вершины провести высоту с помощью прямоугольной линейки. Центр тяжести в равностороннем треугольнике будет находиться на пересечении высот, медиан и биссектрис, поскольку одни и те же отрезки одновременно являются высотами, медианами и биссектрисами.

Координаты центра тяжести треугольника

Перед тем, как найти центр тяжести треугольника и его координаты, рассмотрим подробнее саму фигуру. Это однородная треугольная пластина, с вершинами А, В, С и соответственно, координатами: для вершины А - x1 и y1; для вершины В - x2 и y2; для вершины С - x3 и y3. При нахождении координат центра тяжести мы не будем учитывать толщину треугольной пластины. На рисунке ясно видно, что центр тяжести треугольника обозначен буквой Е – для его нахождения мы провели три медианы, на пересечении которых и поставили точку Е. Она имеет свои координаты: xE и yE.

Один конец медианы, проведенной из вершины А к отрезку В, обладает координатами x 1 , y 1 , (это точка А), а вторые координаты медианы получаем, исходя из того, что точка D (второй конец медианы) стоит посередине отрезка BC. Концы данного отрезка обладают известными нам координатами: B(x 2 , y 2) и C(x 3 , y 3). Координаты точки D обозначаем xD и yD . Исходя из следующих формул:

х=(Х1+Х2)/2; у=(У1+У2)/2

Определяем координаты середины отрезка. Получим следующий результат:

хd=(Х2+Х3)/2; уd=(У2+У3)/2;

D *((Х2+Х3)/2 , (У2+У3)/2).

Мы знаем, какие координаты характерны для концов отрезка АД. Также нам известны координаты точки Е, то есть, центра тяжести треугольной пластины. Также мы знаем, что центр тяжести расположен посередине отрезка АД. Теперь, применяя формулы и известные нам данные, мы можем найти координаты центра тяжести.

Таким образом, можно найти координаты центра тяжести треугольника, вернее, координаты центра тяжести треугольной пластины, учитывая то, что ее толщина нам неизвестна. Они равны среднему арифметическому однородных координат вершин треугольной пластины.

10) А что такое вообще центр тяжести плоской фигуры? Мысленно вырежьте из тонкого однородного картона любую фигуру. …Почему-то фигура зайца в голову пришла. Так вот: если слегка насадить данную фигуру центром тяжести (какой же я изверг =)) на вертикально расположенную иголку, то теоретически фигура не должна свалиться.

Центром тяжести треугольника является точка пересечения его медиан. В треугольнике три медианы и пересекаются они в одной точке. Из пункта №7 нам уже известна одна из медиан: . Как решить задачу? Можно найти уравнение второй медианы (любой из двух оставшихся) и точку пересечения этих медиан. Но есть путь короче! Нужно только знать полезное свойство:

Точка пересечения медиан делит каждую из медиан в отношении , считая от вершины треугольника . Поэтому справедливо отношение

Нам известны точки .
По формулам деления отрезка в данном отношении :

Таким образом, центр тяжести треугольника:

Заключительный пункт урока:

11) Составим систему линейных неравенств, определяющих треугольник.

Для понимания решения необходимо хорошо изучить статью Линейные неравенства. Системы линейных неравенств .

Для удобства перепишем найденные уравнения сторон:

Рассмотрим прямую . Треугольник лежит в полуплоскости, где находится вершина . Составим вспомогательный многочлен и вычислим его значение в точке : . Поскольку сторона принадлежит треугольнику, то неравенство будет нестрогим:

Если не понятно, что к чему, пожалуйста, вернитесь к материалам про линейные неравенства .

Рассмотрим прямую . Треугольник расположен ниже данной прямой, поэтому очевидно неравенство .

И, наконец, для прямой составим многочлен , в который подставим координаты точки : . Таким образом, получаем третье неравенство: .

Итак, треугольник определяется следующей системой линейных неравенств:

Приехали.

Как уже отмечалось, на практике рассмотренная задача с треугольником на плоскости очень популярна. Пунктов решения будет, конечно, не одиннадцать, а меньше, причём встретиться они могут в самых различных комбинациях. В этой связи вам придётся самостоятельно протягивать логическую цепочку решения. А вообще, всё довольно однообразно.

Может ещё задачку? Да ладно, не надо стесняться, я же по глазам вижу, что хотите =) Ненасытные читатели могут ознакомиться с решениями других задач по аналитической геометрии. Подходящий архив можно закачать на странице Готовые задачи по высшей математике .

Следует отметить, что по настоящему трудные задачи в аналитической геометрии встречаются редко, и вы справитесь практически с любой из них! Главное, придерживаться методики решения, которая освещена в самом начале урока. А теперь можно немного расслабиться, заданий для самостоятельного решения я не придумал. Кандидатур было много, но по основным приёмам решения все они до неприличия похожи на разобранные примеры.

Приятных треугольных сновидений!

Высшая математика для заочников и не только >>>

(Переход на главную страницу)