Биографии Характеристики Анализ

Какую функцию состояния называют энтальпией. Энтальпия

Разделы См. также «Физический портал »

Проще говоря, энтальпия - это та энергия, которая доступна для преобразования в теплоту при определённом постоянном давлении.

Если термомеханическую систему рассматривать как состоящую из макротела (газа) и поршня площадью S {\displaystyle S} с грузом весом P = p S {\displaystyle P=pS} , уравновешивающего давление газа p {\displaystyle p} внутри сосуда, то такая система называется расширенной .

Энтальпия или энергия расширенной системы E {\displaystyle E} равна сумме внутренней энергии газа U {\displaystyle U} и потенциальной энергии поршня с грузом E p o t = p S x = p V {\displaystyle E_{pot}=pSx=pV}

H = E = U + p V . {\displaystyle H=E=U+pV.}

Таким образом, энтальпия в данном состоянии представляет собой сумму внутренней энергии тела и работы, которую необходимо затратить, чтобы тело объёмом V {\displaystyle V} ввести в окружающую среду, имеющую давление p {\displaystyle p} и находящуюся с телом в равновесном состоянии. Энтальпия системы H {\displaystyle H} - аналогично внутренней энергии и другим термодинамическим потенциалам - имеет вполне определённое значение для каждого состояния, то есть является функцией состояния . Следовательно, в процессе изменения состояния

Δ H = H 2 − H 1 . {\displaystyle \Delta H=H_{2}-H_{1}.}

Примеры

Неорганические соединения (при 25 °C)
стандартная энтальпия образования
Хим соединение Фаза (вещества) Химическая формула Δ H f 0 кДж/моль
Аммиак сольватированный NH 3 (NH 4 OH) −80.8
Аммиак газообразный NH 3 −46.1
Карбонат натрия твёрдый Na 2 CO 3 −1131
Хлорид натрия (соль) сольватированный NaCl −407
Хлорид натрия (соль) твёрдый NaCl −411.12
Хлорид натрия (соль) жидкий NaCl −385.92
Хлорид натрия (соль) газообразный NaCl −181.42
Гидроксид натрия сольватированный NaOH −469.6
Гидроксид натрия твёрдый NaOH −426.7
Нитрат натрия сольватированный NaNO 3 −446.2
Нитрат натрия твёрдый NaNO 3 −424.8
Диоксид серы газообразный SO 2 −297
Серная кислота жидкий H 2 SO 4 −814
Диоксид кремния твёрдый SiO 2 −911
Диоксид азота газообразный NO 2 +33
Монооксид азота газообразный NO +90
Вода жидкий H 2 O −286
Вода газообразный H 2 O −241.8
Диоксид углерода газообразный CO 2 −393.5
Водород газообразный H 2 0
Фтор газообразный F 2 0
Хлор газообразный Cl 2 0
Бром жидкий Br 2 0
Бром газообразный Br 2 30.73

Видео по теме

Во время химических реакций происходит поглощение или выделение тепла в окружающую среду. Такой теплообмен между химической реакцией и окружающей средой называется энтальпией, или H. Однако измерить энтальпию напрямую невозможно, поэтому принято рассчитывать изменение температуры окружающей среды (обозначаемое ∆H). ∆H показывает, что в ходе химической реакции происходит выделение тепла в окружающую среду (экзотермическая реакция) или поглощение тепла (эндотермическая реакция). Рассчитывается энтальпия так: ∆H = m x s x ∆T , где m - масса реагентов, s - теплоемкость продукта реакции, ∆T - изменение температуры в результате реакции.

Шаги

Решение задач на энтальпию

    Определите реагенты и продукты реакции. Любая химическая реакция имеет реагенты и продукты реакции. Продукт реакции создается в результате взаимодействия реагентов. Другими словами реагенты - это ингредиенты в рецепте, а продукт реакции - это готовое блюдо. Чтобы найти ∆H реакции, необходимо знать реагенты и продукты реакции.

    • Например, необходимо найти энтальпию реакции образования воды из водорода и кислорода: 2H 2 (водород) + O 2 (кислород) → 2H 2 O (вода). В этой реакции H 2 и O 2 – реагенты, а H 2 O - продукт реакции.
  1. Определите общую массу реагентов. Далее необходимо подсчитать массу реагентов. Если вы не можете взвесить их, то подсчитайте молекулярную массу, чтобы найти фактическую. Молекулярная масса - это постоянная, которую можно найти в периодической таблице Менделеева или в других таблицах молекул и соединений. Умножьте массу каждого реагента на число молей.

    • В нашем примере реагенты водород и кислород имеют молекулярные массы 2 г и 32 г соответственно. Поскольку мы используем 2 моль водорода (коэффициент в химической реакции перед водородом H 2) и 1 моль кислорода (отсутствие коэффициента перед O 2 обозначает 1 моль), то общая масса реагентов рассчитывается следующим образом:
      2 × (2 г) + 1 × (32 г) = 4 г + 32 г = 36 г
  2. Определите теплоемкость продукта. Далее определите теплоемкость продукта реакции. Каждая молекула имеет определенную величину теплоемкости, которая является постоянной. Найдите эту постоянную в таблицах учебника по химии. Существует несколько единиц измерения теплоемкости; в наших расчетах мы будем использовать Дж/г°C.

    • Обратите внимание на то, что при наличии нескольких продуктов реакции вам потребуется рассчитать теплоемкость каждого, а затем сложить их, чтоб получить энтальпию всей реакции.
    • В нашем примере, продукт реакции - вода, которая имеет теплоемкость 4,2 Дж/г°C .
  3. Найдите изменение температуры. Теперь мы найдем ∆T - разницу температур до и после реакции. Из начальной температуры (T1) вычтите конечную температуру (T2). Чаще всего в задачах по химии используется шкала Кельвина (К) (хотя по шкале Цельсия (°С) получится тот же результат).

    • В нашем примере давайте предположим, что начальная температура реакции была 185 K, а после реакции стала 95 K, значит, ∆T вычисляется так:
      ∆T = T2 – T1 = 95 K - 185 K = -90 K
  4. Найдите энтальпию по формуле ∆H = m x s x ∆T. Если известна m - масса реагентов, s - теплоемкость продукта реакции и ∆T - изменение температуры, то можно подсчитать энтальпию реакции. Подставьте значения в формулу ∆H = m x s x ∆T и получите энтальпию. Результат вычисляется в Джоулях (Дж).

    • В нашем примере энтальпия вычисляется так:
      ∆H = (36 г) × (4,2 ДжK - 1 г - 1) × (-90 K) = -13608 Дж
  5. Определите, выделяется или поглощается энергия в ходе рассматриваемой реакции. Одна из самых распространенных причин, по которой требуется вычислить ∆H на практике, - узнать, будет ли реакция экзотермической (выделение тепла и снижение собственной энергии) или эндотермической (поглощение тепла из окружающей среды и повышение собственной энергии). Если значение ∆H положительное, значит, реакция эндотермическая. Если отрицательное, значит, реакция экзотермическая. Чем больше абсолютное значение ∆H, тем больше энергии выделяется или поглощается. Будьте осторожны, если собираетесь проводить практический опыт: во время реакций с высоким значением энтальпии может произойти большое высвобождение энергии, и если оно протекает быстро, то может привести ко взрыву.

    • В нашем примере конечный результат получился равным -13608 Дж. Перед значением энтальпии отрицательный знак, а это означает, что реакция экзотермическая . Горячие газы (в виде пара) H 2 и O 2 должны выделить некоторое количество тепла, чтобы образовать молекулу воды, то есть реакция образования H 2 O является экзотермической.

    Оценка энтальпии

    1. Подсчитайте энергию связей для оценки энтальпии. Почти все химические реакции приводят к разрыву одних связей и образованию других. Энергия в результате реакции не возникает ниоткуда и не разрушается: это та энергия, которая требуется для разрыва или образования этих связей. Поэтому изменение энтальпии всей реакции можно довольно точно оценить путем суммирования энергии этих связей.

      Используйте энтальпию образования для оценки энтальпии. Энтальпия образования позволяет рассчитать ∆H через вычисление реакций образования реагентов и продуктов. Если известна энтальпия образования продуктов реакции и реагентов, то вы можете оценить энтальпию в целом путем сложения, как и в случае энергии, рассмотренном выше.

    2. Не забывайте о знаках перед значениями энтальпии. При вычислении энтальпии образования формулу для определения энтальпии реакции продукта вы переворачиваете, и знак энтальпии должен поменяться. Другими словами, если вы переворачиваете формулу, то знак энтальпии должен смениться на противоположный.

      • В примере обратите внимание на то, что реакция образования для продукта C 2 H 5 OH записана наоборот. C 2 H 5 OH → 2C + 3H 2 + 0,5O 2 то есть C 2 H 5 OH распадается, а не синтезируется. Поэтому знак перед энтальпией в такой реакции положительный, 228 кДж/моль, хотя энтальпия образования C 2 H 5 OH составляет -228 кДж/моль.

    Наблюдение энтальпии в ходе эксперимента

    1. Возьмите чистую емкость и налейте туда воды. Увидеть принципы энтальпии в действии нетрудно - достаточно провести простой опыт. Необходимо, чтобы на результат эксперимента не повлияли посторонние загрязнители, так что емкость нужно вымыть и простерилизовать. Ученые для измерения энтальпии используют специальный закрытые контейнеры - калориметры, но вам вполне подойдет стеклянный стакан или колба. Заполните емкость чистой водопроводной водой комнатной температуры. Желательно проводить эксперимент в прохладном помещении.

      • Для эксперимента желательно использовать небольшую емкость. Мы будем рассматривать энтальпию реакции воды с «Алка-Зельтцер», поэтому, чем меньше воды используется, тем более очевидным будет изменение температуры.

Энтальпи́я, также тепловая функция и теплосодержание - термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц.

Проще говоря, энтальпия - это та энергия, которая доступна для преобразования в теплоту при определенных температуре и давлении.

Определением этой величины служит тождество: H=U+PV

Размерность энтальпии-Дж/моль.

В химии чаще всего рассматривают изобарические процессы (P = const), и тепловой эффект в этом случае называют изменением энтальпии системы или энтальпией процесса :

В термодинамической системе выделяющуюся теплоту химического процесса условились считать отрицательной (экзотермический процесс, ΔH < 0), а поглощение системой теплоты соответствует эндотермическому процессу, ΔH > 0.

Энтропия

а для самопроизвольных

Зависимость изменения энтропии от температуры выражается законом Кирхгофа:

Для изолированной системы изменение энтропии – критерий возможности самопроизвольного протекания процесса. Если , то процесс возможен; если, то в прямом направлении процесс невозможен; если, то в системе равновесие.

Термодинамические потенциалы. Свободная энергия Гиббса и Гельмгольца.

Дл я характеристики процессов, протекающих в закрытых системах, введем новые термодинамические функции состояния: изобарно-изотермический потенциал (свободная энергия Гиббса G) и изохорно-изотермический потенциал (свободная энергия Гельмгольца F).

Для закрытой системы, в которой осуществляется равновесный процесс при постоянных температуре и объеме, выразим работу данного процесса. Которую обозначим А max (посколько работа процесса, проводимого равновесно, максимальна):

A max =T∆S-∆U

Введем функцию F=U-TS-изохорно-изотермический потенциал, определяющий направление и предел самопроизвольного протекания процесса в закрытой системе, находящейся в изохорно-изотермических условиях и получим:

Изменение энергии Гельмгольца определяется только начальным и конечным состоянием системы и не зависит от характера процесса, поскольку оно определяется двумя функциями состояния: U и S. Напомним, что от способа проведения процесса при переходе системы из начального в конечное состояние может зависеть величина полученной или затраченной работы, но не изменение функции.

Закрытую систему, находящуюся в изобарно- изотермических условиях, характеризует изобарно-изотермический потенциал G:

Дифференциалэнергии Гиббса для системы с постоянным числом частиц, выраженный в собственных переменных - черездавлениеp итемпературуT:

Для системы с переменным числом частиц этот дифференциал записывается так:

Здесь -химический потенциал, который можно определить как энергию, которую необходимо затратить, чтобы добавить в систему ещё одну частицу.

Анализ уравнения ∆G=∆H-T∆S позволяет установить, какой из факторов, составляющих энергию Гиббса, ответственен за направление протекания химической реакции, энтальпийный (ΔH) или энтропийный (ΔS · T).

Если ΔH < 0 и ΔS > 0, то всегда ΔG < 0 и реакция возможна при любой температуре.

Если ΔH > 0 и ΔS < 0, то всегда ΔG > 0, и реакция с поглощением теплоты и уменьшением энтропии невозможна ни при каких условиях.

В остальных случаях (ΔH < 0, ΔS < 0 и ΔH > 0, ΔS > 0) знак ΔG зависит от соотношения ΔH и TΔS. Реакция возможна, если она сопровождается уменьшением изобарного потенциала; при комнатной температуре, когда значение T невелико, значение TΔS также невелико, и обычно изменение энтальпии больше TΔS. Поэтому большинство реакций, протекающих при комнатной температуре, экзотермичны. Чем выше температура, тем больше TΔS, и даже эндотермические реакции становятся осуществляемыми.

Под стандартной энергией Гиббса образования ΔG°, понимают изменение энергии Гиббса при реакции образования 1 моль вещества, находящегося в стандартном состоянии. Это определение подразумевает, что стандартная энергия Гиббса образования простого вещества, устойчивого в стандартных условиях, равна нулю.

Изменение энергии Гиббса не зависит от пути процесса, следовательно можно получать разные неизвестные значения энергий Гиббса образования из уравнений, в которых с одной стороны записанны суммы энергий продуктов реакции, а с другой - суммы энергий исходных веществ.

При пользовании значениями стандартной энергии Гиббса критерием принципиальной возможности процесса в нестандартных условиях принимается условие ΔG° < 0, а критерием принципиальной невозможности - условие ΔG° > 0. В то же время, если стандартная энергия Гиббса равна нулю, это не означает, что в реальных условиях (отличных от стандартных) система будет в равновесии.

Условия самопроизвольного протекания процессов в закрытый системах:

Энтальпия (от греч. enthalpo - нагреваю) - это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту .

Энтальпия - это термодинамическое свойство вещества, которое указывает уровень энергии , сохраненной в его молекулярной структуре. Это значит, что, хотя вещество может обладать энергией на основании температуры и давления , не всю ее можно преобразовать в теплоту . Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру. Часть кинетической энергии вещества недоступна, когда его температура приближается к температуре окружающей среды. Следовательно, энтальпия - это количество энергии, которая доступна для преобразования в теплоту при определенной температуре и давлении .

Единицы энтальпии - британская тепловая единица или Джоуль для энергии и Btu/lbm или Дж/кг для удельной энергии.

Количество энтальпии

Количество энтальпии вещества основано на его данной температуре.

Данная температура - это значение, которая выбрано учеными и инженерами, как основание для вычислений. Это температура, при которой энтальпия вещества равна нулю Дж. Другими словами, у вещества нет доступной энергии , которую можно преобразовать в теплоту . Данная температура у различных веществ разная. Например, данная температура воды - это тройная точка (0°С), азота −150°С, а хладагентов на основе метана и этана −40°С.

Если температура вещества выше его данной температуры или изменяет состояние на газообразное при данной температуре, энтальпия выражается положительным числом. И наоборот при температуре ниже данной энтальпия вещества выражается отрицательным числом. Энтальпия используется в вычислениях для определения разницы уровней энергии между двумя состояниями. Это необходимо для настройки оборудования и определения коэффициента полезного действия процесса.

Энтальпию часто определяют как полную энергию вещества, так как она равна сумме его внутренней энергии (и) в данном состоянии наряду с его способностью проделать работу (pv ). Но в действительности энтальпия не указывает полную энергию вещества при данной температуре выше абсолютного нуля (-273°С). Следовательно, вместо того, чтобы определять энтальпию как полную теплоту вещества, более точно определять ее как общее количество доступной энергии вещества, которое можно преобразовать в теплоту .

H = U + pV ,

где V - объём системы. Полный дифференциал энтальпии имеет вид:

dH = TdS + Vdp

О котором я писал в этой статье, теплоэнергетику приходится сталкиваться редко, то термин энтальпия, о котором пойдет речь в статье, гораздо более часто употребим на практике.

Итак, что же такое энтальпия? Если говорить совсем упрощенно, энтальпия - это энергия, которая доступна для преобразования в теплоту при определенном постоянном давлении. Когда я учился в университете, преподаватель помню, говорил нам, что энтальпию условно можно называть теплосодержанием, так как при постоянном давлении изменение энтальпии равно количеству теплоты, подведенной к системе.

И вообще, сам термин энтальпия составлен из древнегреческих слов - тепло и приставки - в. Это сочетание слов можно понимать как «нагревать». А впервые в термодинамику этот термин был введен ученым Д.Гиббсом. Ну это чтобы понятнее было, так как энтальпия, также кстати, как и энтропия, не может быть измерена непосредственно, как например давление или температура. Энтальпия определяется только расчетным путем. То есть, образно говоря, ее нельзя «потрогать», «пощупать».

Рассмотрим более подробно. Значение энтальпии вещества определяется из выражения:

i = u + pu,

где u – внутренняя энергия; p, u – давление и удельный объем рабочего тела в том же состоянии, для которого взято значение внутренней энергии.

То есть, можно сказать, что энтальпия любой термодинамической системы представляет собой сумму внутренней энергии системы и потенциальной энергии источника внешнего давления.

Энтальпия находится как сумма величин, которые определяются состоянием вещества, представляет собой функцию состояния и измеряется в Дж/кг. Чаще энтальпия во внесистемной системе измерений измеряется в ккал/кг. Энтальпия является одной из вспомогательных функций, использование которой позволяет значительно упрощать термодинамические расчеты. Так например, огромное количество процессов подвода теплоты в теплоэнергетике (в паровых котлах, камерах сгорания газовых турбин и реактивных двигателей, теплообменных аппаратах) осуществляется при постоянном давлении. По этой причине в таблицах термодинамических свойств обычно приводятся значения энтальпии.

В технической термодинамике пользуются значениями энтальпии, которые отсчитываются от условно принятого нуля. Абсолютные значения этих величин весьма трудно определить, так как для этого необходимо учесть все составляющие внутренней энергии вещества при изменении его состояния от 0 К. В таблицах и на диаграммах часто приводятся значения i и s, которые отсчитываются от 0 °С.

В заключение можно сказать, что энтальпия аналогично внутренней энергии и другим термодинамическим параметрам имеет вполне определенное значение для каждого состояния, то есть является функцией состояния рабочего тела.