Биографии Характеристики Анализ

Полная энергия математического маятника формула. Гармонические колебания

Определение

Математический маятник - это частный случай физического маятника, масса которого находится в одной точке.

Обычно математическим маятником считают маленький шарик (материальную точку), имеющий большую массу, подвешенный на длинной нерастяжимой нити (подвесе). Это идеализированная система, которая совершает колебания под воздействием силы тяжести. Только для углов порядка 50-100 математический маятник является гармоническим осциллятором, то есть совершает гармонические колебания.

Изучая качание паникадила на длинной цепи Галилей изучал свойства математического маятника. Он понял, что период колебаний данной системы не зависит от амплитуды при малых углах отклонения.

Формула для периода колебаний математического маятника

Пусть точка подвеса маятника неподвижна. Груз, подвешенный к нити маятника, движется по дуге окружности (рис.1(a)) с ускорением, на него действует некоторая возвращающая сила ($\overline{F}$). Данная сила изменяется при движении груза. В результате чего расчет движения становится сложным. Введем некоторые упрощения. Пусть маятник совершает колебания не в плоскости, а описывает конус (рис.1 (b)). Груз в этом случае перемещается по окружности. Период интересующих нас колебаний будет совпадать с периодом конического движения груза. Период обращения конического маятника по окружности равен времени, которое тратит груз на один виток по окружности:

где $L$ - длина окружности; $v$ - скорость движения груза. Если углы отклонения нити от вертикали малые (небольшие амплитуды колебаний) то полагают, что возвращающая сила ($F_1$) направлена по радиусу окружности, которую описывает груз. Тогда эта сила равна центростремительной силе:

Рассмотрим подобные треугольники: AOB и DBC (рис.1 (b)).

Приравниваем правые части выражений (2) и (3), выражаем скорость движения груза:

\[\frac{mv^2}{R}=mg\frac{R}{l}\ \to v=R\sqrt{\frac{g}{l}}\left(4\right).\]

Полученную скорость подставим в формулу (1), имеем:

\ \

Из формулы (5) мы видим, что период математического маятника зависит только от длины его подвеса (расстояния от точки подвеса до центра тяжести груза) и ускорения свободного падения. Формулу (5) для периода математического маятника называют формулой Гюйгенса, она выполняется, когда точка подвеса маятника не движется.

Используя зависимость периода колебаний математического маятника от ускорения свободного падения, определяют величину данного ускорения. Для этого измеряют длину маятника, рассматривая большое количество колебаний, находят период $T$, затем вычисляют ускорение свободного падения.

Примеры задач с решением

Пример 1

Задание. Как известно, величина ускорения свободного падения зависит от широты. Каково ускорение свободного падения на широте Москвы, если период колебаний математического маятник длиной $l=2,485\cdot {10}^{-1}$м равен T=1 c?\textit{}

Решение. За основу решения задачи примем формулу периода математического маятника:

Выразим из (1.1) ускорение свободного падения:

Вычислим искомое ускорение:

Ответ. $g=9,81\frac{м}{с^2}$

Пример 2

Задание. Каким будет период колебаний математического маятника, если точка его подвеса движется вертикально вниз 1) с постоянной скоростью? 2) с ускорением $a$? Длина нити этого маятника равна $l.$

Решение. Сделаем рисунок.

1) Период математического маятника, точка подвеса которого движется равномерно, равен периоду маятника с неподвижной точкой подвеса:

2) Ускорение точки подвеса маятника можно рассматривать как появление дополнительной силы, равной $F=ma$, которая направлена против ускорения. То есть, если ускорение направлено вверх, то дополнительная сила направлена вниз, значит, она складывается с силой тяжести ($mg$). Если точка подвеса движется с ускорением, направленным вниз, то дополнительная сила вычитается из силы тяжести.

Период математического маятника, который совершает колебания и у которого точка подвеса движется с ускорением, найдем как:

Ответ. 1) $T_1=2\pi \sqrt{\frac{l}{g}}$; 2) $T_1=2\pi \sqrt{\frac{l}{g-a}}$

(лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша-рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Амплитуда колебаний измеряется в единицах длины — метрах , санти-метрах и т. д. На графике колебаний амплитуда определяется как макси-мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша-ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т ) — это время, за которое совершается одно полное ко-лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

За полный период колебаний, таким образом, тело проходит путь, равный четы-рем амплитудам. Период колебаний измеряется в единицах времени — секундах , минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей-ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес-ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю-щихся величин, например, для затухающих колебаний .

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с .

Единица частоты в СИ названа герцем (Гц ) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v ) равна 1 Гц , то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

В теории колебаний пользуются также понятием циклической , или круговой частоты ω . Она связана с обычной частотой v и периодом колебаний Т соотношениями:

.

Циклическая частота — это число колебаний, совершаемых за секунд.

В качестве конкретного примера тела, вращающегося вокруг оси, рассмотрим движение маятников.

Физическим маятником называется твердое тело, обладающее горизонтальной осью вращения, вокруг которой оно совершает колебательные движения под действием своего веса (рис. 119).

Положение маятника полностью определяется углом его отклонения от положения равновесия, и поэтому для определения закона движения маятника достаточно найти зависимость этого угла от времени.

Уравнение вида:

называется уравнением (законом) движения маятника. Он зависит от начальных условий, т. е. от угла и угловой скорости Таким образом,

Предельным случаем физического Маятника является математический маятник, представляющий (как указывалось ранее - глава 2, § 3) материальную точку, соединенную с горизонтальной осью, вокруг которой она вращается, жестким невесомым стержнем (рис. 120). Расстояние материальной точки от оси вращения называется длиной математического маятника.

Уравнения движения физического и математического маятников

Выберем систему осей координат так, чтобы плоскость ху проходила через центр тяжести тела С и совпадала с плоскостью качания маятника, как это показано на чертеже (рис. 119). Ось направим перпендикулярно к плоскости чертежа на нас. Тогда на основании результатов предыдущего параграфа уравнение движения физического маятника запишем в виде:

где через обозначен момент инерции маятника относительно его оси вращения и

Поэтому можно написать:

Активной силой, действующей на маятник, является его вес момент которого относительно оси привеса будет:

где - расстояние от оси вращения маятника до его центра масс С.

Следовательно, приходим к следующему уравнению движения физического маятника:

Так как математический маятник является частным случаем физического, то записанное выше дифференциальное уравнение справедливо и для математического маятника. Если длина математического маятника равна а вес его то момент инерции его относительно оси вращения равен

Так как расстояние центра тяжести математического маятника от оси равно то окончательно дифференциальное уравнение движения математического маятника можно написать в виде:

Приведенная длина физического маятника

Сравнивая уравнения (16.8) и (16.9), можно заключить, что если параметры физического и математического маятников связаны соотношением

то законы движения физического и математического маятников одинаковы (при одинаковых начальных условиях).

Последнее соотношение указывает на ту длину, которую должен иметь математический маятник, чтобы двигаться так же, как соответствующий физический маятник. Эта длина называется приведенной длиной физического маятника. Смысл этого понятия заключается в том, что изучение движения физического маятника можно заменить изучением движения математического маятника, представляющего собой простейшую механическую схему.

Первый интеграл уравнения движения маятника

Уравнения движения физического и математического маятников имеют один и тот же вид, следовательно, уравнение их движения будет

Так как единственной силой, которая учитывается в этом уравнении, будет сила тяжести, принадлежащая потенциальному силовому полю, то имеет место закон сохранения механической энергии.

Последний можно получить простым приемом, именно умножим уравнение (16.10) на тогда

Интегрируя это уравнение, получим

Определяя постоянную интегрирования Си из начальных условий найдем

Решив последнее уравнение относительно получим

Это соотношение представляет собой первый интеграл дифференциального уравнения (16.10).

Определение опорных реакций физического и математического маятников

Первый интеграл уравнений движения позволяет определить опорные реакции маятников. Как указывалось в предыдущем параграфе, реакции опор определяются из уравнений (16.5). В случае физического маятника составляющие активной силы по осям координат и моменты ее относительно осей будут:

Координаты центра масс определяются формулами:

Тогда уравнения для определения реакций опор принимают вид:

Центробежные моменты инерции тела и расстояния между опорами должны быть известны по условиям задачи. Угловое ускорение в и угловая скорость со определяются из уравнений (16.9) и (16.4) в виде:

Таким образом, уравнения (16.12) полностью определяют составляющие опорных реакций физического маятника.

Уравнения (16.12) еще упрощаются, если рассматривать математический маятник. Действительно, так как материальная точка математического маятника расположена в плоскости то Кроме того, так как закреплена одна точка, то Следовательно, уравнения (16.12) обращаются в уравнения вида:

Из уравнений (16.13) с использованием уравнения (16.9) следует, что реакция опоры направлена вдоль нити I (рис. 120). Последнее представляет собой очевидный результат. Следовательно, проектируя составляющие равенств (16.13) на направление нити, найдем уравнение для определения реакции опоры вида (рис. 120):

Подставляя сюда значение и учитывая, что запишем:

Последнее соотношение определяет динамическую реакцию математического маятника. Заметим, что статическая реакция его будет

Качественное исследование характера движения маятника

Первый интеграл уравнения движеиия маятника позволяет провести качественное исследование характера движения его. Именно, запишем этот интеграл (16.11) в виде:

В процессе движения подкоренное выражение должно быть либо положительным, либо обращаться в некоторых точках в нуль. Допустим, что начальные условия таковы, что

В этом случае подкоренное выражение нигде не обращается в нуль. Следовательно, при движении маятник будет пробегать все значения угла и угловая скорость со маятника имеет один и тот же знак, который определяется направлением начальной угловой скорости, или угол будет либо все время возрастать, либо все время убывать, т. е. маятник будет вращаться в одну сторону.

Направления движения будут соответствовать тому или иному знаку в выражении (16.11). Необходимым условием реализации такого движения является наличие начальной угловой скорости, так как из неравенства (16.14) видно, что если то ни при каком начальном угле отклонения получить такое движение маятника невозможно.

Пусть теперь начальные условия таковы, что

В этом случае найдутся два таких значения угла при которых подкоренное выражение обращается в нуль. Пусть они соответствуют углам, определяемым равенством

Причем будет где-то в диапазоне изменения от 0 до . Далее, очевидно, что при

подкоренное выражение (16.11) будет положительным и при сколь угодно мало превышающем оно будет отрицательным.

Следовательно, при движении маятника его угол изменяется в диапазоне:

При угловая скорость маятника обращается в нуль и угол начинает уменьшаться до значения . При этом изменится знак угловой скорости или знак перед радикалом в выражении (16.11). Когда достигает значения угловая скорость маятника вновь обращается в нуль и угол опять начинает увеличиваться до значения

Таким образом, маятник будет совершать колебательные движения

Амплитуда колебаний маятника

При колебательных движениях маятника максимальная величина его отклонения от вертикали называется амплитудой колебания. Она равна которое определяется из равенства

Как следует из последней формулы, амплитуда колебания зависит от начальных данных основных характеристик маятника или его приведенной длины.

В частном случае, когда маятник отклонен от равновесного положения и отпущен без начальной скорости то будет равно , следовательно, амплитуда не зависит от приведенной длины.

Уравнение движения маятника в конечной форме

Пусть начальная скорость маятника равна нулю, тогда первый интеграл уравнения движения его будет:

Интегрируя это уравнение, находим

Будем вести отсчет времени от положения маятника, соответствующего тогда

Преобразуем подынтегральное выражение с помощью формулы:

Тогда получим:

Полученный интеграл называется эллиптическим интегралом первого рода. Он не может быть выражен с помощью конечного числа элементарных функций.

Обращение эллиптического интеграла (16.15) относительно его верхнего предела представляет уравнение движения маятника:

Это будет хорошо изученная эллиптическая функция Якоби.

Период колебания маятника

Время одного полного колебания маятника называется периодом его колебания. Обозначим его Т. Так как время движения маятника от положения до положения такое же, как время движения от то Т определится формулой:

Сделаем замену переменных, положив

При изменяющихся в пределах от 0 до будет меняться от 0 до . Далее,

и, следовательно,

Последний интеграл называется полным эллиптическим интегралом первого рода (значения его даются специальными таблицами).

При подынтегральная функция стремится к единице и .

Приближенные формулы малых колебаний маятника

В случае когда колебания маятника имеют небольшую амплитуду (практически не должно превышать 20°), можно положить

Тогда дифференциальное уравнение движения маятника преобретает вид:

Что такое период колебаний? Что это за величина, какой физический смысл она имеет и как ее рассчитать? В этой статье мы разберемся с этими вопросами, рассмотрим различные формулы, по которым можно рассчитать период колебаний, а также выясним, какая связь имеется между такими физическими величинами, как период и частота колебаний тела/системы.

Определение и физический смысл

Периодом колебаний называется такой промежуток времени, при котором тело или система совершают одно колебание (обязательно полное). Параллельно можно отметить параметр, при выполнении которого колебание может считаться полным. В роли такого условия выступает возвращение тела в его первоначальное состояние (к первоначальной координате). Очень хорошо проводится аналогия с периодом функции. Ошибочно, кстати, думать, что она имеет место исключительно в обыкновенной и высшей математике. Как известно, эти две науки неразрывно связаны. И с периодом функций можно столкнуться не только при решении тригонометрических уравнений, но и в различных разделах физики, а именно речь идет о механике, оптике и прочих. При переносе периода колебаний из математики в физику под ним нужно понимать просто физическую величину (а не функцию), которая имеет прямую зависимость от проходящего времени.

Какие бывают колебания?

Колебания подразделяются на гармонические и ангармонические, а также на периодические и непериодические. Логично было бы предположить, что в случае гармонических колебаний они совершаются согласно некоторой гармонической функции. Это может быть как синус, так и косинус. При этом в деле могут оказаться и коэффициенты сжатия-растяжения и увеличения-уменьшения. Также колебания бывают затухающими. То есть, когда на систему действует определенная сила, которая постепенно “тормозит” сами колебания. При этом период становится меньше, в то время как частота колебаний неизменно увеличивается. Очень хорошо демонстрирует такую вот физическую аксиому простейший опыт с использованием маятника. Он может быть пружинного вида, а также математического. Это неважно. Кстати, период колебаний в таких системах будет определяться разными формулами. Но об этом чуточку позже. Сейчас же приведем примеры.

Опыт с маятниками

Взять первым можно любой маятник, разницы никакой не будет. Законы физики на то и законы физики, что они соблюдаются в любом случае. Но почему-то больше по душе математический маятник. Если кто-то не знает, что он собой представляет: это шарик на нерастяжимой нити, который крепится к горизонтальной планке, прикрепленной к ножкам (или элементам, которые играют их роль - держать систему в равновесном состоянии). Шарик лучше всего брать из металла, чтобы опыт был нагляднее.

Итак, если вывести такую систему из равновесия, приложить к шару какую-то силу (проще говоря, толкнуть его), то шарик начнет раскачиваться на нити, следуя определенной траектории. Со временем можно заметить, что траектория, по которой проходит шар, сокращается. В то же время шарик начинает все быстрее сновать туда-сюда. Это говорит о том, что частота колебаний увеличивается. А вот время, за которое шарик возвращается в начальное положение, уменьшается. А ведь время одного полного колебания, как мы выяснили ранее, и называется периодом. Если одна величина уменьшается, а другая увеличивается, то говорят об обратной пропорциональности. Вот мы и добрались до первого момента, на основании которого строятся формулы для определения периода колебаний. Если же мы возьмем для проведения пружинный маятник, то там закон будет наблюдаться немного в другом виде. Для того чтобы он был наиболее наглядно представлен, приведем систему в движение в вертикальной плоскости. Чтобы было понятнее, сначала стоило сказать, что собой представляет пружинный маятник. Из названия понятно, что в его конструкции должна присутствовать пружина. И это действительно так. Опять же таки, у нас есть горизонтальная плоскость на опорах, к которой подвешивается пружина определенной длины и жесткости. К ней, в свою очередь, подвешивается грузик. Это может быть цилиндр, куб или другая фигурка. Это может быть даже какой-то сторонний предмет. В любом случае, при выведении системы из положения равновесия, она начнет совершать затухающие колебания. Наиболее четко просматривается увеличение частоты именно в вертикальной плоскости, без всякого отклонения. На этом с опытами можно закончить.

Итак, в их ходе мы выяснили, что период и частота колебаний это две физические величины, которые имеют обратную зависимость.

Обозначение величин и размерности

Обычно период колебаний обозначается латинской буквой T. Гораздо реже он может обозначаться по-другому. Частота же обозначается буквой µ (“Мю”). Как мы говорили в самом начале, период это не что иное, как время, за которое в системе происходит полное колебание. Тогда размерностью периода будет секунда. А так как период и частота обратно пропорциональны, то размерностью частоты будет единица, деленная на секунду. В записи задач все будет выглядеть таким образом: T (с), µ (1/с).

Формула для математического маятника. Задача №1

Как и в случае с опытами, я решил первым делом разобраться с маятником математическим. Подробно вдаваться в вывод формулы мы не будем, поскольку такая задача поставлена изначально не была. Да и вывод сам по себе громоздкий. Но вот с самими формулами ознакомимся, выясним, что за величины в них входят. Итак, формула периода колебаний для математического маятника имеет следующий вид:

Где l - длина нити, п = 3,14, а g - ускорение свободного падения (9,8 м/с^2). Никаких затруднений формула вызывать не должна. Поэтому без дополнительных вопросов перейдем сразу к решению задачи на определение периода колебания математического маятника. Металлический шар массой 10 грамм подвешен на нерастяжимой нити длиной 20 сантиметров. Рассчитайте период колебания системы, приняв ее за математический маятник. Решение очень простое. Как и во всех задачах по физике, необходимо максимально упростить ее за счет отброса ненужных слов. Они включаются в контекст для того чтобы запутать решающего, но на самом деле никакого веса абсолютно не имеют. В большинстве случаев, разумеется. Здесь можно исключить момент с “нерастяжимой нитью”. Это словосочетание не должно вводить в ступор. А так как маятник у нас математический, масса груза нас интересовать не должна. То есть слова о 10 граммах тоже просто призваны запутать ученика. Но мы ведь знаем, что в формуле масса отсутствует, поэтому со спокойной совестью можем приступать к решению. Итак, берем формулу и просто подставляем в нее величины, поскольку определить необходимо период системы. Поскольку дополнительных условий не было задано, округлять значения будем до 3-его знака после запятой, как и принято. Перемножив и поделив величины, получим, что период колебаний равен 0,886 секунд. Задача решена.

Формула для пружинного маятника. Задача №2

Формулы маятников имеют общую часть, а именно 2п. Эта величина присутствует сразу в двух формулах, но разнятся они подкоренным выражением. Если в задаче, касающейся периода пружинного маятника, указана масса груза, то избежать вычислений с ее применение невозможно, как это было в случае с математическим маятником. Но пугаться не стоит. Вот так выглядит формула периода для пружинного маятника:

В ней m - масса подвешенного к пружине груза, k - коэффициент жесткости пружины. В задаче значение коэффициента может быть приведено. Но если в формуле математического маятника особо не разгуляешься - все-таки 2 величины из 4 являются константами - то тут добавляется 3 параметр, который может изменяться. И на выходе мы имеем 3 переменных: период (частота) колебаний, коэффициент жесткости пружины, масса подвешенного груза. Задача может быть сориентирована на нахождение любого из этих параметров. Вновь искать период было бы слишком легко, поэтому мы немного изменим условие. Найдите коэффициент жесткости пружины, если время полного колебания составляет 4 секунды, а масса груза пружинного маятника равна 200 граммам.

Для решения любой физической задачи хорошо бы сначала сделать рисунок и написать формулы. Они здесь - половина дела. Записав формулу, необходимо выразить коэффициент жесткости. Он у нас находится под корнем, поэтому обе части уравнения возведем в квадрат. Чтобы избавиться от дроби, умножим части на k. Теперь оставим в левой части уравнения только коэффициент, то есть разделим части на T^2. В принципе, задачку можно было бы еще немного усложнить, задав не период в числах, а частоту. В любом случае, при подсчетах и округлениях (мы условились округлять до 3-его знака после запятой), получится, что k = 0, 157 Н/м.

Период свободных колебаний. Формула периода свободных колебаний

Под формулой периода свободных колебаний понимают те формулы, которые мы разобрали в двух ранее приведенных задачах. Составляют также уравнение свободных колебаний, но там речь идет уже о смещениях и координатах, а этот вопрос относится уже к другой статье.

1) Прежде чем браться за задачу, запишите формулу, которая с ней связана.

2) Простейшие задачи не требуют рисунков, но в исключительных случаях их нужно будет сделать.

3) Старайтесь избавляться от корней и знаменателей, если это возможно. Записанное в строчку уравнение, не имеющее знаменателя, решать гораздо удобнее и проще.

Период колебаний физического маятника зависит от многих обстоятельств: от размеров и формы тела, от расстояния между центром тяжести и точкой подвеса и от распределения массы тела относительно этой точки; поэтому вычисление периода подвешенного тела -довольно сложная задача. Проще обстоит дело для математического маятника. Из наблюдений над подобными маятниками можно установить следующие простые законы.

1. Если, сохраняя одну и ту же длину маятника (расстояние от точки подвеса до центра тяжести груза), подвешивать разные грузы, то период колебаний получится один и тот же, хотя массы грузов сильно различаются. Период математического маятника не зависит от массы груза.

2. Если при пуске маятника отклонять его на разные (но не слишком большие) углы, то он будет колебаться с одним и тем же периодом, хотя и с разными амплитудами. Пока не слишком велики амплитуды, колебания достаточно близки по своей форме к гармоническому (§ 5) и период математического маятника не зависит от амплитуды колебаний. Это свойство называется изохронизмом (от греческих слов «изос» - равный, «хронос» - время).

Впервые этот факт был установлен в 1655 г. Галилеем якобы при следующих обстоятельствах. Галилей наблюдал в Пизанском соборе качания паникадила на длинной цепи, которое толкнули при зажигании. В течение богослужения размахи качаний постепенно затухали (§ 11), т. е. амплитуда колебаний уменьшалась, но период оставался одним и тем же. В качестве указателя времени Галилей пользовался собственным пульсом.

Выведем теперь формулу для периода колебаний математического маятника.

Рис. 16. Колебания маятника в плоскости (а) и движение по конусу (б)

При качаниях маятника груз движется ускоренно по дуге (рис. 16, а) под действием возвращающей силы , которая меняется при движении. Расчет движения тела под действием непостоянной силы довольно сложен. Поэтому мы для упрощения поступим следующим образом.

Заставим маятник совершать не колебание в одной плоскости, а описывать конус так, чтобы груз двигался по окружности (рис. 16, б). Это движение может быть получено в результате сложения двух независимых колебаний: одного - по-прежнему в плоскости рисунка и другого - в перпендикулярной плоскости. Очевидно, периоды обоих этих плоских колебаний одинаковы, так как любая плоскость качаний ничем не отличается от всякой другой. Следовательно, и период сложного движения - обращения маятника по конусу - будет тот же, что и период качания водной плоскости. Этот вывод можно легко иллюстрировать непосредственным опытом, взяв два одинаковых маятника и сообщив одному из них качание в плоскости, а другому - вращение по конусу.

Но период обращения «конического» маятника равен длине описываемой грузом окружности, деленной на скорость:

Если угол отклонения от вертикали невелик (малые амплитуды), то можно считать, что возвращающая сила направлена по радиусу окружности , т. е, равна центростремительной силе:

С другой стороны, из подобия треугольников и следует, что . Так как , то отсюда

Приравняв оба выражения друг другу, мы получаем для скорости обращения

Наконец, подставив это в выражение периода , находим

Итак, период математического маятника зависит только от ускорения свободного падения и от длины маятника , т. е. расстояния от точки подвеса до центра тяжести груза. Из полученной формулы следует, что период маятника не зависит от его массы и от амплитуды (при условии, что она достаточно мала). Другими словами, мы получили путем расчета те основные законы, которые были установлены ранее из наблюдений.

Но наш теоретический вывод дает нам больше: он позволяет установить количественную зависимость между периодом маятника, его длиной и ускорением свободного падения. Период математического маятника пропорционален корню квадратному из отношения длины маятника к ускорению свободного падения. Коэффициент пропорциональности равен .

На зависимости периода маятника от ускорения свободного падения основан очень точный способ определения этого ускорения. Измерив длину маятника и определив из большого числа колебаний период , мы можем вычислить с помощью полученной формулы . Этот способ широко используется на практике.

Известно (см. том I, §53), что ускорение свободного падения зависит от географической широты места (на полюсе , а на экваторе ). Наблюдения над периодом качаний некоторого эталонного маятника позволяют изучить распределение ускорение свободного падения по широте. Метод этот настолько точен, что с его помощью можно обнаружить и более тонкие различия в значении на земной поверхности. Оказывается, что даже на одной параллели значения в разных точках земной поверхности различно. Эти аномалии в распределении ускорения свободного падения связаны с неравномерной плотностью земной коры. Они используются для изучении распределения плотности, в частности для обнаружения залегания в толще земной коры каких-либо полезных ископаемых. Обширные гравиметрические изменения, позволившие судить о залегании плотных масс, были выполнены в СССР в области так называемой Курской магнитной аномалии (см. том II, § 130) под руководством советского физика Петра Петровича Лазарева. В соединении с данными об аномалии земного магнитного поля эти гравиметрические данные позволили установить распределение залегания железных масс, обусловливающих Курскую магнитную и гравитационную аномалии.