Биографии Характеристики Анализ

Решать примеры с разными знаками. Сложение и вычитание дробей

В данном уроке рассматривается сложение и вычитание рациональных чисел. Тема относится к категории сложных. Здесь необходимо использовать весь арсенал полученных ранее знаний.

Правила сложения и вычитания целых чисел справедливы и для рациональных чисел. Напомним, что рациональными называют числа, которые могут быть представлены в виде дроби , где a – это числитель дроби, b – знаменатель дроби. При этом, b не должно быть нулём.

В данном уроке дроби и смешанные числа мы всё чаще будем называть одним общим словосочетанием — рациональные числа .

Навигация по уроку:

Пример 1. Найти значение выражения:

Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что плюс который дан в выражении, является знаком операции и не относится к дроби . У этой дроби свой знак плюса, который невидим по причине того, что его не записывают. Но мы запишем его для наглядности:

Это сложение рациональных чисел с разными знаками. Чтобы сложить рациональные числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить знак того рационального числа, модуль которого больше. А чтобы понять какой модуль больше, а какой меньше, нужно суметь сравнить модули этих дробей до их вычисления:

Модуль рационального числа больше, чем модуль рационального числа . Поэтому мы из вычли . Получили ответ . Затем сократив эту дробь на 2, получили окончательный ответ .

Некоторые примитивные действия, такие как: заключение чисел в скобки и проставление модулей, можно пропустить. Данный пример вполне можно записать покороче:

Пример 2. Найти значение выражения:

Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что минус, стоящий между рациональными числами и является знаком операции и не относится к дроби . У этой дроби свой знак плюса, который невидим по причине того, что его не записывают. Но мы запишем его для наглядности:

Заменим вычитание сложением. Напомним, что для этого нужно к уменьшаемому прибавить число, противоположное вычитаемому:

Получили сложение отрицательных рациональных чисел. Чтобы сложить отрицательные рациональные числа, нужно сложить их модули и перед полученным ответом поставить минус:

Примечание. Заключать в скобки каждое рациональное число вовсе необязательно. Делается это для удобства, чтобы хорошо видеть какие знаки имеют рациональные числа.

Пример 3. Найти значение выражения:

В этом выражении у дробей разные знаменатели. Чтобы облегчить себе задачу, приведём эти дроби к общему знаменателю. Не будем подробно останавливаться на том, как это сделать. Если испытываете трудности, обязательно повторите урок .

После приведения дробей к общему знаменателю выражение примет следующий вид:

Это сложение рациональных чисел с разными знаками. Вычитаем из большего модуля меньший модуль, и перед полученным ответом ставим знак того рационального числа, модуль которого больше:

Запишем решение данного примера покороче:

Пример 4. Найти значение выражения

Вычислим данное выражение в следующем : слóжим рациональные числа и , затем из полученного результата вычтем рациональное число .

Первое действие:

Второе действие:

Пример 5 . Найти значение выражения:

Представим целое число −1 в виде дроби , а смешанное число переведём в неправильную дробь:

Заключим каждое рациональное число в скобки вместе со своими знаками:

Получили сложение рациональных чисел с разными знаками. Вычитаем из большего модуля меньший модуль, и перед полученным ответом ставим знак того рационального числа, модуль которого больше:

Получили ответ .

Есть и второй способ решения. Он заключается в том, чтобы сложить отдельно целые части.

Итак, вернёмся к изначальному выражению:

Заключим каждое число в скобки. Для этого смешанное число временно :

Вычислим целые части:

(−1) + (+2) = 1

В главном выражении вместо (−1) + (+2) запишем полученную единицу:

Полученное выражение . Для этого запишем единицу и дробь вместе:

Запишем решение этим способом покороче:

Пример 6. Найти значение выражения

Переведём смешанное число в неправильную дробь. Остальную часть перепишем без изменения:

Заключим каждое рациональное число в скобки вместе со своими знаками:

Заменим вычитание сложением:

Запишем решение данного примера покороче:

Пример 7. Найти значение выражение

Представим целое число −5 в виде дроби , а смешанное число переведём в неправильную дробь:

Приведём данные дроби к общему знаменателю. После их приведения к общему знаменателю, они примут следующий вид:

Заключим каждое рациональное число в скобки вместе со своими знаками:

Заменим вычитание сложением:

Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус:

Таким образом, значение выражения равно .

Решим данный пример вторым способом. Вернемся к изначальному выражению:

Запишем смешанное число в развёрнутом виде. Остальное перепишем без изменений:

Заключим каждое рациональное число в скобки вместе своими знаками:

Вычислим целые части:

В главном выражении вместо запишем полученное число −7

Выражение является развёрнутой формой записи смешанного числа . Запишем число −7 и дробь вместе, образуя окончательный ответ:

Запишем это решение покороче:

Пример 8. Найти значение выражения

Заключим каждое рациональное число в скобки вместе своими знаками:

Заменим вычитание сложением:

Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус:

Таким образом, значение выражения равно

Данный пример можно решить и вторым способом. Он заключается в том, чтобы сложить целые и дробные части по отдельности. Вернёмся к изначальному выражению:

Заключим каждое рациональное число в скобки вместе со своими знаками:

Заменим вычитание сложением:

Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус. Но в этот раз слóжим по отдельности целые части (−1 и −2), и дробные и

Запишем это решение покороче:

Пример 9. Найти выражения выражения

Переведём смешанные числа в неправильные дроби:

Заключим рациональное число в скобки вместе своим знаком. Рациональное число в скобки заключать не нужно, поскольку оно уже в скобках:

Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус:

Таким образом, значение выражения равно

Теперь попробуем решить этот же пример вторым способом, а именно сложением целых и дробных частей по отдельности.

В этот раз, в целях получения короткого решения, попробуем пропустить некоторые действия, такие как: запись смешанного числа в развёрнутом виде и замена вычитания сложением:

Обратите внимание, что дробные части были приведены к общему знаменателю.

Пример 10. Найти значение выражения

Заменим вычитание сложением:

В получившемся выражении нет отрицательных чисел, которые являются основной причиной допущения ошибок. А поскольку нет отрицательных чисел, мы можем убрать плюс перед вычитаемым, а также убрать скобки:

Получилось простейшее выражение, которое вычисляется легко. Вычислим его любым удобным для нас способом:

Пример 11. Найти значение выражения

Это сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший модуль, и перед полученными ответом поставим знак того рационального числа, модуль которого больше:

Пример 12. Найти значение выражения

Выражение состоит из нескольких рациональных чисел. Согласно , в первую очередь необходимо выполнить действия в скобках.

Сначала вычислим выражение , затем выражение Полученные результаты слóжим.

Первое действие:

Второе действие:

Третье действие:

Ответ: значение выражения равно

Пример 13. Найти значение выражения

Переведём смешанные числа в неправильные дроби:

Заключим рациональное число в скобки вместе со своим знаком. Рациональное число заключать в скобки не нужно, поскольку оно уже в скобках:

Приведём данные дроби в общему знаменателю. После их приведения к общему знаменателю, они примут следующий вид:

Заменим вычитание сложением:

Получили сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший модуль, и перед полученными ответом поставим знак того рационального числа, модуль которого больше:

Таким образом, значение выражения равно

Рассмотрим сложение и вычитание десятичных дробей, которые тоже относятся к рациональным числам и которые могут быть как положительными, так и отрицательными.

Пример 14. Найти значение выражения −3,2 + 4,3

Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что плюс который дан в выражении, является знаком операции и не относится к десятичной дроби 4,3. У этой десятичной дроби свой знак плюса, который невидим по причине того, что его не записывают. Но мы его запишем для наглядности:

(−3,2) + (+4,3)

Это сложение рациональных чисел с разными знаками. Чтобы сложить рациональные числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить того рационального числа, модуль которого больше. А чтобы понять какой модуль больше, а какой меньше, нужно суметь сравнить модули этих десятичных дробей до их вычисления:

(−3,2) + (+4,3) = |+4,3| − |−3,2| = 1,1

Модуль числа 4,3 больше, чем модуль числа −3,2 поэтому мы из 4,3 вычли 3,2. Получили ответ 1,1. Ответ положителен, поскольку перед ответом должен стоять знак того рационального числа, модуль которого больше. А модуль числа 4,3 больше, чем модуль числа −3,2

Таким образом, значение выражения −3,2 + (+4,3) равно 1,1

−3,2 + (+4,3) = 1,1

Пример 15. Найти значение выражения 3,5 + (−8,3)

Это сложение рациональных чисел с разными знаками. Как и в прошлом примере из большего модуля вычитаем меньший и перед ответом ставим знак того рационального числа, модуль которого больше:

3,5 + (−8,3) = −(|−8,3| − |3,5|) = −(8,3 − 3,5) = −(4,8) = −4,8

Таким образом, значение выражения 3,5 + (−8,3) равно −4,8

Этот пример можно записать покороче:

3,5 + (−8,3) = −4,8

Пример 16. Найти значение выражения −7,2 + (−3,11)

Это сложение отрицательных рациональных чисел. Чтобы сложить отрицательные рациональные числа, нужно сложить их модули и перед полученным ответом поставить минус.

Запись с модулями можно пропустить, чтобы не загромождать выражение:

−7,2 + (−3,11) = −7,20 + (−3,11) = −(7,20 + 3,11) = −(10,31) = −10,31

Таким образом, значение выражения −7,2 + (−3,11) равно −10,31

Этот пример можно записать покороче:

−7,2 + (−3,11) = −10,31

Пример 17. Найти значение выражения −0,48 + (−2,7)

Это сложение отрицательных рациональных чисел. Слóжим их модули и перед полученным ответом поставим минус. Запись с модулями можно пропустить, чтобы не загромождать выражение:

−0,48 + (−2,7) = (−0,48) + (−2,70) = −(0,48 + 2,70) = −(3,18) = −3,18

Пример 18. Найти значение выражения −4,9 − 5,9

Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что минус который располагается между рациональными числами −4,9 и 5,9 является знаком операции и не относится к числу 5,9. У этого рационального числа свой знак плюса, который невидим по причине того, что он не записывается. Но мы запишем его для наглядности:

(−4,9) − (+5,9)

Заменим вычитание сложением:

(−4,9) + (−5,9)

Получили сложение отрицательных рациональных чисел. Слóжим их модули и перед полученным ответом поставим минус:

(−4,9) + (−5,9) = −(4,9 + 5,9) = −(10,8) = −10,8

Таким образом, значение выражения −4,9 − 5,9 равно −10,8

−4,9 − 5,9 = −10,8

Пример 19. Найти значение выражения 7 − 9,3

Заключим в скобки каждое число вместе со своими знаками

(+7) − (+9,3)

Заменим вычитание сложением

(+7) + (−9,3)

(+7) + (−9,3) = −(9,3 − 7) = −(2,3) = −2,3

Таким образом, значение выражения 7 − 9,3 равно −2,3

Запишем решение этого примера покороче:

7 − 9,3 = −2,3

Пример 20. Найти значение выражения −0,25 − (−1,2)

Заменим вычитание сложением:

−0,25 + (+1,2)

Получили сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший модуль, и перед ответом поставим знак того числа, модуль которого больше:

−0,25 + (+1,2) = 1,2 − 0,25 = 0,95

Запишем решение этого примера покороче:

−0,25 − (−1,2) = 0,95

Пример 21. Найти значение выражения −3,5 + (4,1 − 7,1)

Выполним действия в скобках, затем слóжим полученный ответ с числом −3,5

Первое действие:

4,1 − 7,1 = (+4,1) − (+7,1) = (+4,1) + (−7,1) = −(7,1 − 4,1) = −(3,0) = −3,0

Второе действие:

−3,5 + (−3,0) = −(3,5 + 3,0) = −(6,5) = −6,5

Ответ: значение выражения −3,5 + (4,1 − 7,1) равно −6,5.

Пример 22. Найти значение выражения (3,5 − 2,9) − (3,7 − 9,1)

Выполним действия в скобках. Затем из числа, которое получилось в результате выполнения первых скобок, вычтем число, которое получилось в результате выполнения вторых скобок:

Первое действие:

3,5 − 2,9 = (+3,5) − (+2,9) = (+3,5) + (−2,9) = 3,5 − 2,9 = 0,6

Второе действие:

3,7 − 9,1 = (+3,7) − (+9,1) = (+3,7) + (−9,1) = −(9,1 − 3,7) = −(5,4) = −5,4

Третье действие

0,6 − (−5,4) = (+0,6) + (+5,4) = 0,6 + 5,4 = 6,0 = 6

Ответ: значение выражения (3,5 − 2,9) − (3,7 − 9,1) равно 6.

Пример 23. Найти значение выражения −3,8 + 17,15 − 6,2 − 6,15

Заключим в скобки каждое рациональное число вместе со своими знаками

(−3,8) + (+17,15) − (+6,2) − (+6,15)

Заменим вычитание сложением там, где это можно:

(−3,8) + (+17,15) + (−6,2) + (−6,15)

Выражение состоит из нескольких слагаемых. Согласно сочетательному закону сложения, если выражение состоит из нескольких слагаемых, то сумма не будет зависеть от порядка действий. Это значит, что слагаемые можно складывать в любом порядке.

Не будем изобретать велосипед, а слóжим все слагаемые слева направо в порядке их следования:

Первое действие:

(−3,8) + (+17,15) = 17,15 − 3,80 = 13,35

Второе действие:

13,35 + (−6,2) = 13,35 − −6,20 = 7,15

Третье действие:

7,15 + (−6,15) = 7,15 − 6,15 = 1,00 = 1

Ответ: значение выражения −3,8 + 17,15 − 6,2 − 6,15 равно 1.

Пример 24. Найти значение выражения

Переведём десятичную дробь −1,8 в смешанное число. Остальное перепишем без изменения:

На действиях с положительными и отрицательными числами основан практически весь курс математики. Ведь как только мы приступаем к изучению координатной прямой, числа со знаками «плюс» и «минус» начинают встречаться нам повсеместно, в каждой новой теме. Нет ничего проще, чем сложить между собой обычные положительные числа, нетрудно и вычесть одно из другого. Даже арифметические действия с двумя отрицательными числами редко становятся проблемой.

Однако многие путаются в сложении и вычитании чисел с разными знаками. Напомним правила, по которым происходят эти действия.

Сложение чисел с разными знаками

Если для решения задачи нам требуется прибавить к некоторому числу «а» отрицательное число «-b», то действовать нужно следующим образом.

  • Возьмем модули обоих чисел - |a| и |b| - и сравним эти абсолютные значения между собой.
  • Отметим, какой из модулей больше, а какой меньше, и вычтем из большего значения меньшее.
  • Поставим перед получившимся числом знак того числа, модуль которого больше.

Это и будет ответом. Можно выразиться проще: если в выражении a + (-b) модуль числа «b» больше, чем модуль «а», то мы отнимаем «а» из «b» и ставим «минус» перед результатом. Если больше модуль «а», то «b» вычитается из «а» - а решение получается со знаком «плюс».

Бывает и так, что модули оказываются равны. Если так, то на этом месте можно остановиться - речь идет о противоположных числах, и их сумма всегда будет равна нулю.

Вычитание чисел с разными знаками

Со сложением мы разобрались, теперь рассмотрим правило для вычитания. Оно тоже довольно простое - и кроме того, полностью повторяет аналогичное правило для вычитания двух отрицательных чисел.

Для того, чтобы вычесть из некоего числа «а» - произвольного, то есть с любым знаком - отрицательное число «с», нужно прибавить к нашему произвольному числу «а» число, противоположное «с». Например:

  • Если «а» - положительное число, а «с» - отрицательное, и из «а» нужно вычесть «с», то записываем так: а – (-с) = а + с.
  • Если «а» - отрицательное число, а «с» - положительное, и из «а» нужно вычесть «с», то записываем следующим образом: (- а)– с = - а+ (-с).

Таким образом, при вычитании чисел с разными знаками в итоге мы возвращаемся к правилам сложения, а при сложении чисел с разными знаками - к правилам вычитания. Запоминание данных правил позволяет решать задачи быстро и без труда.

Сложение отрицательных чисел.

Сумма отрицательных чисел есть число отрицательное. Модуль суммы равен сумме модулей слагаемых .

Давайте разберемся, почему же сумма отрицательных чисел будет тоже отрицательным числом. Поможет нам в этом координатная прямая, на которой мы выполним сложение чисел -3 и -5. Отметим на координатной прямой точку, соответствующее числу -3.

К числу -3 нам нужно прибавить число -5. Куда мы пойдем от точки, соответствующей числу -3? Правильно, влево! На 5 единичных отрезков. Отмечаем точку и пишем число ей соответствующее. Это число -8.

Итак, при выполнении сложения отрицательных чисел с помощью координатной прямой мы все время находимся слева от начала отсчета, поэтому, понятно, что результат сложения отрицательных чисел есть число тоже отрицательное.

Примечание. Мы складывали числа -3 и -5, т.е. находили значение выражения -3+(-5). Обычно при сложении рациональных чисел просто записывают эти числа с их знаками, как бы перечисляют все числа, которые нужно сложить. Такую запись называют алгебраической суммой. Применяют (в нашем примере) запись: -3-5=-8.

Пример. Найти сумму отрицательных чисел: -23-42-54. (Согласитесь, что эта запись короче и удобнее вот такой: -23+(-42)+(-54))?

Решаем по правилу сложения отрицательных чисел: складываем модули слагаемых: 23+42+54=119. Результат будет со знаком «минус».

Записывают обычно так: -23-42-54=-119.

Сложение чисел с разными знаками.

Сумма двух чисел с разными знаками имеет знак слагаемого с большим модулем. Чтобы найти модуль суммы, нужно из большего модуля вычесть меньший .

Выполним сложение чисел с разными знаками с помощью координатной прямой.

1) -4+6. Требуется к числу -4 прибавить число 6. Отметим число -4 точкой на координатной прямой. Число 6 — положительное, значит от точки с координатой -4 нам нужно идти вправо на 6 единичных отрезков. Мы оказались справа от начала отсчета (от нуля) на 2 единичных отрезка.

Результат суммы чисел -4 и 6 — это положительное число 2:

— 4+6=2. Как можно было получить число 2? Из 6 вычесть 4, т.е. из большего модуля вычесть меньший. У результата тот же знак, что и у слагаемого с большим модулем.

2) Вычислим: -7+3 с помощью координатной прямой. Отмечаем точку, соответствующую числу -7. Идем вправо на 3 единичных отрезка и получаем точку с координатой -4. Мы были и остались слева от начала отсчета: ответ — отрицательное число.

— 7+3=-4. Этот результат мы могли получить так: из большего модуля вычли меньший, т.е. 7-3=4. В результате поставили знак слагаемого, имеющего больший модуль: |-7|>|3|.

Примеры. Вычислить: а) -4+5-9+2-6-3; б) -10-20+15-25.

Дроби — это обычные числа, их тоже можно складывать и вычитать. Но из-за того, что в них присутствует знаменатель, здесь требуются более сложные правила, нежели для целых чисел.

Рассмотрим самый простой случай, когда есть две дроби с одинаковыми знаменателями. Тогда:

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить без изменений.

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй, а знаменатель опять же оставить без изменений.

Внутри каждого выражения знаменатели дробей равны. По определению сложения и вычитания дробей получаем:

Как видите, ничего сложного: просто складываем или вычитаем числители — и все.

Но даже в таких простых действиях люди умудряются допускать ошибки. Чаще всего забывают, что знаменатель не меняется. Например, при сложении их тоже начинают складывать, а это в корне неправильно.

Избавиться от вредной привычки складывать знаменатели достаточно просто. Попробуйте сделать то же самое при вычитании. В результате в знаменателе получится ноль, и дробь (внезапно!) потеряет смысл.

Поэтому запомните раз и навсегда: при сложении и вычитании знаменатель не меняется!

Также многие допускают ошибки при сложении нескольких отрицательных дробей. Возникает путаница со знаками: где ставить минус, а где — плюс.

Эта проблема тоже решается очень просто. Достаточно вспомнить, что минус перед знаком дроби всегда можно перенести в числитель — и наоборот. Ну и конечно, не забывайте два простых правила:

  1. Плюс на минус дает минус;
  2. Минус на минус дает плюс.

Разберем все это на конкретных примерах:

Задача. Найдите значение выражения:

В первом случае все просто, а во втором внесем минусы в числители дробей:

Что делать, если знаменатели разные

Напрямую складывать дроби с разными знаменателями нельзя. По крайней мере, мне такой способ неизвестен. Однако исходные дроби всегда можно переписать так, чтобы знаменатели стали одинаковыми.

Существует много способов преобразования дробей. Три из них рассмотрены в уроке «Приведение дробей к общему знаменателю », поэтому здесь мы не будем на них останавливаться. Лучше посмотрим на примеры:

Задача. Найдите значение выражения:

В первом случае приведем дроби к общему знаменателю методом «крест-накрест». Во втором будем искать НОК. Заметим, что 6 = 2 · 3; 9 = 3 · 3. Последние множители в этих разложениях равны, а первые взаимно просты. Следовательно, НОК(6; 9) = 2 · 3 · 3 = 18.

Что делать, если у дроби есть целая часть

Могу вас обрадовать: разные знаменатели у дробей — это еще не самое большое зло. Гораздо больше ошибок возникает тогда, когда в дробях-слагаемых выделена целая часть.

Безусловно, для таких дробей существуют собственные алгоритмы сложения и вычитания, но они довольно сложны и требуют долгого изучения. Лучше используйте простую схему, приведенную ниже:

  1. Перевести все дроби, содержащие целую часть, в неправильные. Получим нормальные слагаемые (пусть даже с разными знаменателями), которые считаются по правилам, рассмотренным выше;
  2. Собственно, вычислить сумму или разность полученных дробей. В результате мы практически найдем ответ;
  3. Если это все, что требовалось в задаче, выполняем обратное преобразование, т.е. избавляемся от неправильной дроби, выделяя в ней целую часть.

Правила перехода к неправильным дробям и выделения целой части подробно описаны в уроке «Что такое числовая дробь ». Если не помните — обязательно повторите. Примеры:

Задача. Найдите значение выражения:

Здесь все просто. Знаменатели внутри каждого выражения равны, поэтому остается перевести все дроби в неправильные и сосчитать. Имеем:

Чтобы упростить выкладки, я пропустил некоторые очевидные шаги в последних примерах.

Небольшое замечание к двум последним примерам, где вычитаются дроби с выделенной целой частью. Минус перед второй дробью означает, что вычитается именно вся дробь, а не только ее целая часть.

Перечитайте это предложение еще раз, взгляните на примеры — и задумайтесь. Именно здесь начинающие допускают огромное количество ошибок. Такие задачи обожают давать на контрольных работах. Вы также неоднократно встретитесь с ними в тестах к этому уроку, которые будут опубликованы в ближайшее время.

Резюме: общая схема вычислений

В заключение приведу общий алгоритм, который поможет найти сумму или разность двух и более дробей:

  1. Если в одной или нескольких дробях выделена целая часть, переведите эти дроби в неправильные;
  2. Приведите все дроби к общему знаменателю любым удобным для вас способом (если, конечно, этого не сделали составители задач);
  3. Сложите или вычтите полученные числа по правилам сложения и вычитания дробей с одинаковыми знаменателями;
  4. Если возможно, сократите полученный результат. Если дробь оказалась неправильной, выделите целую часть.

Помните, что выделять целую часть лучше в самом конце задачи, непосредственно перед записью ответа.

>>Математика: Сложение чисел с разными знаками

33. Сложение чисел с разными знаками

Если температура воздуха была равна 9 °С, а потом она изменилась на - 6 °С (т. е. понизилась на 6 °С), то она стала равной 9 + (- 6) градусам (рис. 83).

Чтобы сложить числа 9 и - 6 с помощью , надо точку А (9) переместить влево на 6 единичных отрезков (рис. 84). Получим точку В (3).

Значит, 9+(- 6) = 3. Число 3 имеет тот же знак, что и слагаемое 9, а его модуль равен разности модулей слагаемых 9 и -6.

Действительно, |3| =3 и |9| - |- 6| = = 9 - 6 = 3.

Если та же температура воздуха 9 °С изменилась на -12 °С (т. е. понизилась на 12 °С), то она стала равной 9 +(-12) градусам (рис. 85). Сложив числа 9 и -12 с помощью координатной прямой (рис. 86), получим 9 + (-12)= -3. Число -3 имеет тот же знак, что и слагаемое -12, а его модуль равен разности модулей слагаемых -12 и 9.

Действительно, | - 3| = 3 и | -12| - | -9| =12 - 9 = 3.

Чтобы сложить два числа с разными знаками, надо:

1) из большего модуля слагаемых вычесть меньший;

2) поставить перед полученным числом знак того слагаемого, модуль которого больше.

Обычно сначала определяют и записывают знак суммы, а потом находят разность модулей.

Например:

1) 6,1+(- 4,2)= +(6,1 - 4,2)= 1,9,
или короче 6,1+(- 4,2) = 6,1 - 4,2 = 1,9;

При сложении положительных и отрицательных чисел можно использовать микрокалькулятор . Чтобы ввести отрицательное число в микрокалькулятор, надо ввести модуль этого числа, потом нажать клавишу «изменение знака» |/-/|. Например, чтобы ввести число -56,81, надо последовательно нажимать клавиши: | 5 |, | 6 |, | ¦ |, | 8 |, | 1 |, |/-/|. Операции над числами любого знака выполняются на микрокалькуляторе так же, как над положительными числами.

Например, сумму -6,1 + 3,8 вычисляют по Программе

? Числа а и b имеют разные знаки. Какой знак будет иметь сумма этих чисел, если больший модуль имеет отрицательное число?

если меньший модуль имеет отрицательное число?

если больший модуль имеет положительное число?

если меньший модуль имеет положительное число?

Сформулируйте правило сложения чисел с разными знаками. Как ввести в микрокалькулятор отрицательное число?

К 1045. Число 6 изменили на -10. С какой стороны от начала отсчета расположено получившееся число? На каком расстоянии от начала отсчета оно находится? Чему равна сумма 6 и -10?

1046. Число 10 изменили на -6. С какой стороны от начала отсчета расположено получившееся число? На каком расстоянии от начала отсчета оно находится? Чему равна сумма 10 и -6?

1047. Число -10 изменили на 3. С какой стороны от начала отсчета расположено получившееся число? На каком расстоянии от начала отсчета оно находится? Чему равна сумма -10 и 3?

1048. Число -10 изменили на 15. С какой стороны от начала отсчета расположено получившееся число? На каком расстоянии от начала отсчета оно находится? Чему равна сумма -10 и 15?

1049. В первую половину дня температура изменилась на - 4 °С, а во вторую - на + 12 °С. На сколько градусов изменилась температура в течение дня?

1050. Выполните сложение:

1051. Прибавьте:

а) к сумме -6 и -12 число 20;
б) к числу 2,6 сумму -1,8 и 5,2;
в) к сумме -10 и -1,3 сумму 5 и 8,7;
г) к сумме 11 и -6,5 сумму -3,2 и -6.

1052. Какое из чисел 8; 7,1; -7,1; -7; -0,5 является корнем уравнения - 6 + х =-13,1?

1053. Угадайте корень уравнения и выполните проверку:

а) х + (-3)= -11; в) m + (-12) = 2;
б) - 5 + y=15; г) 3 + n = -10.

1054. Найдите значение выражения:

1055. Выполните действия с помощью микрокалькулятора:

а) - 3,2579 + (-12,308); г) -3,8564+ (-0,8397) +7,84;
б) 7,8547+ (- 9,239); д) -0,083 + (-6,378) + 3,9834;
в) -0,00154 + 0,0837; е) -0,0085+ 0,00354+ (- 0,00921).

П 1056. Найдите значение суммы:

1057. Найдите значение выражения:

1058. Сколько целых чисел расположено между числами:

а) 0 и 24; б) -12 и -3; в) -20 и 7?

1059. Представьте число -10 в виде суммы двух отрицательных слагаемых так, чтобы:

а) оба слагаемых были целыми числами;
б) оба слагаемых были десятичными дробями;
в) одно из слагаемых было правильной обыкновенной дробью .

1060. Каково расстояние (в единичных отрезках) между точками координатной прямой с координатами:

а) 0 и а; б) -а и а; в) -а и 0; г) а и -За?

М 1061. Радиусы географических параллелей земной поверхности, на которых расположены города Афины и Москва, соответственно равны 5040 км и 3580 км (рис. 87). На сколько параллель Москвы короче параллели Афин?

1062. Составьте уравнение для решения задачи: «Поле площадью 2,4 га разделили на два участка. Найдите площадь каждого участка, если известно, что один из участков:

а) на 0,8 га больше другого;
б) на 0,2 га меньше другого;
в) в 3 раза больше другого;
г) в 1,5 раза меньше другого;
д) составляет другого;
е) составляет 0,2 другого;
ж) составляет 60% другого;
з) составляет 140% другого».

1063. Решите задачу:

1) В первый день путешественники проехали 240 км, во второй день 140 км, в третий день они проехали в 3 раза больше, чем во второй, а в четвертый день они отдыхали. Сколько километров они проехали в пятый день, если за 5 дней они проезжали в среднем по 230 км в день?

2) Заработок отца в месяц равен 280 р. Стипендия дочери в 4 раза меньше. Сколько зарабатывает в месяц мать, если в семье 4 человека, младший сын - школьник и на каждого приходится в среднем 135 р.?

1064. Выполните действия:

1) (2,35 + 4,65) 5,3:(40-2,9);

2) (7,63-5,13) 0,4:(3,17 + 6,83).

1066. Представьте в виде суммы двух равных слагаемых кдое из чисел:

1067. Найдите значение а + b, если:

а) а= -1,6, b = 3,2; б) а=- 2,6, b = 1,9; в)

1068. На одном этаже жилого дома было 8 квартир. 2 квартиры имели жилую площадь по 22,8 м 2 , 3 квартиры - по 16,2 м 2 , 2 квартиры - по 34 м 2 . Какую жилую площадь имела восьмая квартира, если на этом этаже в среднем на каждую квартиру приходилось по 24,7 м 2 жилой площади?

1069.В составе товарного поезда было 42 вагона. Крытых вагонов было в 1,2 раза больше, чем платформ, а число цистерн составляло числа платформ. Сколько вагонов каждого вида было в составе поезда?

1070. Найдите значение выражения

Н.Я.Виленкин, А.С. Чесноков, С.И. Шварцбурд, В.И.Жохов, Математика для 6 класса, Учебник для средней школы

Планирование по математике, учебники и книги онлайн , курсы и задачи по математике для 6 класса скачать

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки