Биографии Характеристики Анализ

Строение плазматической мембраны рисунок. Плазматическая мембрана, строение и функции

Клетка — саморегулируемая структурно-функциональная единица тканей и органов. Клеточная теория строения органов и тканей была разработана Шлейденом и Шванном в 1839 г. В дальнейшем с помощью электронной микроскопии и ультрацентрифугирования удалось выяснить строение всех основных органелл животных и растительных клеток (рис. 1).

Рис. 1. Схема строения клетки животных организмов

Главными частями клетки являются цитоплазма и ядро. Каждая клетка окружена очень тонкой мембраной, ограничивающей ее содержимое.

Клеточная мембрана называется плазматической мембраной и характеризуется избирательной проницаемостью. Это свойство позволяет необходимым питательным веществам и химическим элементам проникать внутрь клетки, а излишним продуктам выходить из нее. Плазматическая мембрана состоит из двух слоев липидных молекул с включением в нее специфических белков. Основными липидами мембраны являются фосфолипиды. Они содержат фосфор, полярную головку и два неполярных хвоста из длинноцепочечных жирных кислот. К мембранным липидам относятся холестерин и эфиры холестерина. В соответствии с жидкостно-мозаичной моделью строения, мембраны содержат включения протеиновых и липидных молекул, которые могут перемешаться относительно бислоя. Для каждого типа мембран любой животной клетки характерен свой относительно постоянный липидный состав.

Мембранные белки по структуре подразделяют на два вида: интегральные и периферические. Периферические белки могут удаляться из мембраны без ее разрушения. Имеется четыре типа мембранных белков: транспортные белки, ферменты, рецепторы и структурные белки. Одни мембранные белки обладают ферментативной активностью, другие связывают определенные вещества и способствуют их переносу внутрь клетки. Белки обеспечивают несколько путей передвижения веществ через мембраны: образуют большие поры, состоящие из нескольких белковых субъединиц, которые позволяют перемещаться молекулам воды и ионам между клетками; формируют ионные каналы, специализированные для передвижения ионов некоторых видов через мембрану при определенных условиях. Структурные белки связаны с внутренним липидным слоем и обеспечивают цитоскелет клетки. Цитоскелет придает механическую прочность клеточной оболочке. В различных мембранах на долю белков приходится от 20 до 80% массы. Мембранные белки могут свободно перемещаться в латеральной плоскости.

В мембране присутствуют и углеводы, которые могут ковалентно связываться с липидами или белками. Известно три вида мембранных углеводов: гликолипиды (ганглиозиды), гликопротеиды и протеогликаны. Большинство липидов мембраны находятся в жидком состоянии и обладают определенной текучестью, т.е. способностью перемещаться из одного участка в другой. На внешней стороне мембраны имеются рецепторные участки, связывающие различные гормоны. Другие специфические участки мембраны мог>т распознавать и связывать некоторые чужеродные для данных клеток белки и разнообразные биологически активные соединения.

Внутреннее пространство клетки заполнено цитоплазмой, в которой протекает большинство катализируемых ферментами реакций клеточного метаболизма. Цитоплазма состоит из двух слоев: внутреннего, называемого эндоплазмой, и периферического — эктоплазмы, которая имеет большую вязкость и лишена гранул. В цитоплазме находятся все компоненты клетки или органеллы. Важнейшими из органелл клетки являются — эндоплазматический ретикулум, рибосомы, митохондрии, аппарат Гольджи, лизосомы, микрофиламенты и микротрубочки, пероксисомы.

Эндоплазматический ретикулум представляет собой систему взаимосвязанных каналов и полостей, пронизывающих всю цитоплазму. Он обеспечивает транспорт вешеств из окружающей среды и внутри клеток. Эндоплазматический ретикулум также служит депо для внутриклеточных ионов Са 2+ и служит основным местом синтеза липидов в клетке.

Рибосомы - микроскопические сферические частицы диаметром 10-25 нм. Рибосомы свободно располагаются в цитоплазме или прикрепляются к наружной поверхности мембран эндоплазматической сети и ядерной мембраны. Они взаимодействуют с информационной и транспортной РНК, и в них осуществляется синтез белков. Они синтезируют белки, которые попадают внутрь цистерн или в аппарат Гольджи, и затем выделяются наружу. Рибосомы, свободно располагающиеся в цитоплазме, синтезируют белок для использования самой клеткой, а рибосомы, связанные с эндоплазматическим ретикулумом, производят белок, который выводится из клетки. В рибосомах синтезируются различные функциональные белки: белки-переносчики, ферменты, рецепторы, белки цитоскелета.

Аппарат Гольджи образован системой канальцев, цистерн и пузырьков. Он связан с эндоплазматическим ретикулумом, и поступившие сюда биологически активные вещества хранятся в уплотненном виде в секреторных пузырьках. Последние постоянно отделяются от аппарата Гольджи, транспортируются к клеточной мембране и сливаются с ней, а содержащиеся в пузырьках вещества выводятся из клетки в процессе экзоцитоза.

Лизосомы - окруженные мембраной частицы размером 0,25-0,8 мкм. Они содержат многочисленные ферменты, участвующие в расщеплении белков, полисахаридов, жиров, нуклеиновых кислот, бактерий и клеток.

Пероксисомы сформированы из гладкого эндоплазматического ретикулума, напоминают лизосомы и содержат ферменты, катализирующие разложение пероксида водорода, который расщепляется под влиянием пероксидаз и каталазы.

Митохондрии содержат наружную и внутреннюю мембраны и являются «энергетической станцией» клетки. Митохондрии представляют собой округлые или удлиненные образования с двойной мембраной. Внутренняя мембрана формирует выступающие внутрь митохондрии складки — кристы. В них происходит синтез АТФ, осуществляется окисление субстратов цикла Кребса и множество биохимических реакций. Образованные в митохондриях молекулы АТФ диффундируют во все части клетки. В митохондриях содержится небольшое количество ДНК, РНК, рибосомы, и с их участием происходит обновление и синтез новых митохондрий.

Микрофиламенты представляют собой тонкие белковые нити, состоящие из миозина и актина, и образуют сократительный аппарат клетки. Микрофиламенты участвуют в образовании складок или выпячиваний клеточной мембраны, а также при перемещении различных структур внутри клеток.

Микротрубочки составляют основу цитоскелета и обеспечивают его прочность. Цитоскелет придает клеткам характерные внешний вид и форму, служит местом прикрепления внутриклеточных органелл и различных телец. В нервных клетках пучки микротрубочек участвуют в транспорте веществ из тела клетки к концам аксонов. При их участии осуществляется функционирование митотического веретена во время деления клеток. Они играют роль двигательных элементов в ворсинках и жгутиках у эукариот.

Ядро является основной структурой клетки, участвует в передаче наследственных признаков и в синтезе белков. Ядро окружено ядерной мембраной, содержащей множество ядерных пор, через которые происходит обмен различными веществами между ядром и цитоплазмой. Внутри него находится ядрышко. Установлена важная роль ядрышка в синтезе рибосомной РНК и белков-гистонов. В остальных частях ядра содержится хроматин, состоящий из ДНК, РНК и ряда специфических белков.

Функции клеточной мембраны

В регуляции внутриклеточного и межклеточного обмена важнейшую роль играют клеточные мембраны. Они обладают избирательной проницаемостью. Их специфическое строение позволяет обеспечивать барьерную, транспортную и регуляторную функции.

Барьерная функция проявляется в ограничении проникновения через мембрану растворенных в воде соединений. Мембрана непроницаема для крупных белковых молекул и органических анионов.

Регуляторная функция мембраны состоит в регуляции внутриклеточного метаболизма в ответ на химические, биологические и механические воздействия. Различные воздействия воспринимаются специальными мембранными рецепторами с последующим изменением активности ферментов.

Транспортная функция через биологические мембраны может осуществляться пассивно (диффузия, фильтрация, осмос) или с помощью активного транспорта.

Диффузия - движение газа или растворимого вещества по концентрационному и электрохимическому градиенту. Скорость диффузии зависит от проницаемости клеточной мембраны, а также градиента концентрации для незаряженных частиц, электрического и концентрационного градиентов для заряженных частиц. Простая диффузия происходит через липидный бислой или через каналы. Заряженные частицы движутся согласно электрохимическому градиенту, а незаряженные — химическому градиенту. Например, простой диффузией через липидный слой мембраны проникают кислород, стероидные гормоны, мочевина, спирт и т.д. Через каналы перемещаются различные ионы и частицы. Ионные каналы образованы белками и подразделяются на управляемые и неуправляемые каналы. В зависимости от селективности различают ионоселективные канаты, пропускающие только один ион, и каналы, не обладающие селективностью. Каналы имеют устье и селективный фильтр, а управляемые каналы — и воротный механизм.

Облегченная диффузия - процесс, при котором вещества переносятся через мембрану с помощью специальных мембранных белков- переносчиков. Таким путем в клетку проникают аминокислоты и моносахара. Этот вид транспорта происходит очень быстро.

Осмос - движения воды через мембрану из раствора с более низким в раствор с более высоким осмотическим давлением.

Активный транспорт - перенос веществ против градиента концентрации с помощью транспортных АТФаз (ионных насосов). Этот перенос происходит с затратой энергии.

В большей мере изучены Na + /K + -, Са 2+ - и Н + -насосы. Насосы располагаются на клеточных мембранах.

Разновидностью активного транспорта являются эндоцитоз и экзоцитоз. С помощью этих механизмов транспортируются более крупные вещества (белки, полисахариды, нуклеиновые кислоты), которые не могут переноситься по каналам. Этот транспорт более распространен в эпителиальных клетках кишечника, почечных канальцев, эндотелии сосудов.

При эндоцитозе клеточные мембраны образуют впячивания внутрь клетки, которые отшнуровываясь, превращаются в пузырьки. При экзоцитозе пузырьки с содержимым переносятся к клеточной мембране и сливаются с ней, а содержимое пузырьков выделяется во внеклеточную среду.

Строение и функции клеточной мембраны

Для понимания процессов, обеспечивающих существование электрических потенциалов в живых клетках, прежде всего нужно представлять строение клеточной мембраны и ее свойства.

В настоящее время наибольшим признанием пользуется жидкостно-мозаичная модель мембраны, предложенная С. Сингером и Г. Николсоном в 1972 г. Основу мембраны составляет двойной слой фосфолипидов (бислой), гидрофобные фрагменты молекулы которого погружены в толщу мембраны, а полярные гидрофильные группы ориентированы наружу, т.е. в окружающую водную среду (рис. 2).

Мембранные белки локализованы на поверхности мембраны или могут быть внедрены на различную глубину в гидрофобную зону. Некоторые белки пронизывают мембрану насквозь, и различные гидрофильные группы одного и того же белка обнаруживаются по обе стороны клеточной мембраны. Белки, обнаруженные в плазматической мембране, играют очень важную роль: они участвуют в образовании ионных каналов, играют роль мембранных насосов и переносчиков различных веществ, а также могут выполнять рецептор- ную функцию.

Основные функции клеточной мембраны: барьерная, транспортная, регуляторная, каталитическая.

Барьерная функция заключается в ограничении диффузии через мембрану растворимых в воде соединений, что необходимо для защиты клеток от чужеродных, токсических веществ и сохранения внутри клеток относительного постоянного содержания различных веществ. Так, клеточная мембрана может замедлить диффузию различных веществ в 100 000-10 000 000 раз.

Рис. 2. Трехмерная схема жидкостно-мозаичной модели мембраны Сингера-Николсона

Изображены глобулярные интегральные белки, погруженные в липидный бислой. Часть белков является ионными каналами, другие (гликопротеины) содержат олигосахаридные боковые цепи, участвующие в узнавании клетками друг друга и в межклеточной ткани. Молекулы холестерола вплотную примыкают к фосфолипидным головкам и фиксируют прилегающие участки «хвостов». Внутренние участки хвостов молекулы фосфолипидов не ограничены в своем движении и ответственны за текучесть мембраны (Bretscher, 1985)

В мембране располагаются каналы, через которые проникают ионы. Каналы бывают потенциал зависимыми и потен циалнезависимыми. Потенциалзависимые каналы открываются при изменении разности потенциалов, а потенциалнезависимые (гормонрегулируемые) открываются при взаимодействии рецепторов с веществами. Каналы могут быть открыты или закрыты благодаря воротам. В мембрану встроены два вида ворот: активационные (в глубине канала) и инактивационные (на поверхности канала). Ворота могут находиться в одном из трех состояний:

  • открытое состояние (открыты оба вида ворот);
  • закрытое состояние (закрыты активационные ворота);
  • инактивационное состояние (закрыты инактивационные ворота).

Другой характерной особенностью мембран является способность осуществлять избирательный перенос неорганических ионов, питательных веществ, а также различных продуктов обмена. Различают системы пассивного и активного переноса (транспорта) веществ. Пассивный транспорт осуществляется через ионные каналы с помощью или без помощи белков-переносчиков, а его движущей силой является разность электрохимических потенциалов ионов между внутри- и внеклеточным пространством. Избирательность ионных каналов определяется его геометрическими параметрами и химической природой групп, выстилающих стенки канала и его устье.

В настоящее время наиболее хорошо изучены каналы, обладающие избирательной проницаемостью для ионов Na + , К+ , Са 2+ а также для воды (так называемые аквапорины). Диаметр ионных каналов, по оценкам разных исследований, составляет 0,5-0,7 нм. Пропускная способность каналов может изменяться, через один ионный канал может проходить 10 7 - 10 8 ионов в секунду.

Активный транспорт происходит с затратой энергии и осуществляется так называемыми ионными насосами. Ионные насосы — это молекулярные белковые структуры, встроенные в мембрану и осуществляющие перенос ионов в сторону более высокого электрохимического потенциала.

Работа насосов осуществляется за счет энергии гидролиза АТФ. В настоящее время хорошо изучены Na+/K+ — АТФаза, Са 2+ — АТФаза, Н + — АТФаза, Н + /К + — АТФаза, Mg 2+ — АТФаза, которые обеспечивают перемещение соответственно ионов Na + , К + , Са 2+ , Н+, Mg 2+ изолированно или сопряжено (Na+ и К+; Н+ и К+). Молекулярный механизм активного транспорта до конца не выяснен.

Плазматическая мембрана, или плазмалемма, представляет собой поверхностный структурированный слой клетки, образованный жизнедеятельной цитоплазмой. Эта периферическая структура обусловливает связь клетки с окружающей средой, ее регуляцию и защиту. Поверхность ее обычно имеет выросты и складки, что способствует соединению клеток между собой.

Живая часть клетки - это ограниченная мембраной, упорядоченная, структурированная система биополимеров и внутренних мембранных структур, участвующих в совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

Важной особенностью является то, что в клетке нет открытых мембран со свободными концами. Клеточные мембраны всегда ограничивают полости или участки, закрывая их со всех сторон, несмотря на размеры и сложную форму мембранных структур. В состав мембран входят белки (до 60 %), липиды (около 40 %) и некоторое количество углеводов.

По биологической роли мембранные белки можно разделить на три группы: ферменты, рецепторные белки и структурные белки. Разные типы мембран обычно имеют свой набор ферментных белков. Рецепторные белки, как правило, содержатся в поверхностных мембранах для рецепции гормонов, узнавания поверхности соседних клеток, вирусов и т. п. Структурные белки осуществляют стабилизацию мембран, принимают участие в формировании полиферментных комплексов. Значительная часть белковых молекул взаимодействует с другими компонентами мембран - молекулами липидов - с помощью ионных и гидрофобных связей.

Состав липидов, входящих в мембраны клетки, разнообразен и представлен глицеролипидами, сфинголипидами, холестерином и др. Основным признаком мембранных липидов является их амфипатичность, т. е. наличие двух разнокачественных групп в их составе. Неполярная (гидрофобная) часть представлена остатками высших жирных кислот. Роль полярной гидрофильной группировки играют остатки фосфорной кислоты (фосфолипиды), серной кислоты (сульфолипиды), галактозы (галактолипиды). Наиболее часто в мембранах клетки присутствует фосфатидилхолин (лецитин).

Немаловажная роль принадлежит фосфолипидам как компонентам, определяющим электрические, осмотические или катионообменные свойства мембран. Помимо структурной, фосфолипиды выполняют и специфические функции - участвуют в переносе электронов, определяют полупроницаемость мембран, способствуют стабилизации активной конформации молекул ферментов путем создания гидрофобной

Разделение молекул липидов на две функционально различные части - неполярную, не несущую зарядов (хвосты из жирных кислот), и заряженную полярную головку - предопределяет их специфические свойства и взаимную ориентацию.

Мембраны некоторых типов клеток имеют асимметричную структуру и неравноценные функциональные свойства. Так, некоторые токсические вещества оказывают большое влияние на внешнюю сторону мембраны; на внешней половине билицидного слоя эритроцитов содержится больше холинсодержащих липидов. Асимметрия проявляется также в разной толщине внутреннего и внешнего мембранных слоев.

Важным свойством мембранных структур клетки является их способность к самосборке после разрушающего воздействия определенной интенсивности. Способность к репарации имеет большое значение в адаптивных реакциях клеток живых организмов.

В соответствии с классической моделью строения мембран молекулы белков расположены на внутренней и внешней сторонах липидной прослойки, которая в свою очередь состоит из двух ориентированных слоев. По новым данным в построении гидрофобного слоя кроме молекул липидов участвуют также боковые гидрофобные цепи белковых молекул. Белки не только покрывают липидный слой, но и входят в его состав,


часто образуя глобулярные структуры - мозаичный тип мембран-, характеризующийся определенной динамичностью структуры (рис. 49).

Микроанатомическая картина мембран некоторых типов характеризуется наличием белковых перетяжек между внешними белковыми обкладками липидной прослойки либо липидных мицелл на всю толщину мембраны (рис. 49, д, з). Толщина мембран колеблется от 6 до 10 нм и ее можно наблюдать только в электронном микроскопе.

Химический состав плазматической мембраны, покрывающей растительные и животные клетки, практически одинаков. Ее структурная организация и упорядоченность обусловливают такую жизненно важную функцию мембран, как пол у проницаемость - способность избирательного пропускания в клетку и выход из нее разных молекул и ионов. Благодаря этому в клетке создается и поддерживается соответствующая концентрация ионов и осуществляются осмотические явления. Создаются также условия для нормального функционирования клеток в среде, которая может отличаться по концентрации от клеточного содержимого.

Мембраны как основные структурные элементы клетки обусловливают свойства практически всех известных ее органелл: они окружают ядро, формируют структуру хлоропластов, митохондрий и аппарата Гольджи, пронизывают массу цитоплазмы, образуя эндоплазматическую сеть, по которой осуществляется транспорт веществ. В них содержатся важные ферменты и системы активного переноса веществ в клетку и удаления их из клетки. Клеточная мембрана, как и отдельные органеллы клетки, представляет собой определенные молекулярные комплексы, выполняющие различные функции.

Благодаря своим физико-химическим, биологическим и структурным особенностям мембраны выполняют главную функцию защитного молекулярного барьера - осуществляют регуляцию процессов перемещения веществ в разных направлениях. Очень важна роль мембран в энергетических процессах, передаче нервных импульсов, фотосинтетических реакциях и т. д.

Вследствие макромолекулярной организации клетки процессы катаболизма и анаболизма в ней разобщены. Так, окисление аминокислот, липидов и углеводов протекает в митохондриях, тогда как биосинтетические процессы - в различных структурных образованиях цитоплазмы (хлоропласты, эндоплазматический ретикулум, аппарат Гольджи).

Мембраны, независимо от их химической и морфологической природы, - эффективное средство локализации процессов в клетке. Именно они разделяют протопласт на отдельные объемные зоны, т. е. дают возможность осуществляться в одной клетке разным реакциям и предупреждают смешивание образующихся веществ. Это свойство клетки быть как бы разделенной на отдельные участки с разной метаболической деятельностью называется компартментацией.

В связи с тем что липиды нерастворимы в воде, мембраны с их содержимым формируются там, где необходимо создать границу раздела с водной средой, например на поверхности клетки, на поверхности вакуоли или эндоплазматической сети. Не исключено, что формирование липидных слоев в мембранах биологически целесообразно также в случае неблагоприятных электрических условий в клетке, для создания изолирующих (диэлектрических) прослоек на пути движения электронов.

Проникновение веществ через мембрану осуществляется благодаря эндоцитозу, в основе которого лежит способность клетки активно поглощать или всасывать из окружающей среды питательные вещества в виде мелких пузырьков жидкости (пиноцитоз) или твердых частичек (фагоцитоз).

Субмикроскопическое строение мембраны обусловливает образование или удерживание на определенном уровне разности электрических потенциалов между внешней и внутренней ее сторонами. Имеется много доказательств участия этих потенциалов в процессах проникновения веществ через плазматическую мембрану.

Наиболее легко происходит пассивный транспорт веществ через мембраны; в основе которого лежит явление диффузии по градиенту концентраций или электрохимических потенциалов. Он осуществляется через поры мембран, т. е. те белоксодержащие участки или зоны с преобладанием липидов, которые проницаемы для определенных молекул и являются своеобразными молекулярными ситами (селективными каналами).

Однако большинство веществ проникает через мембраны с помощью специальных транспортных систем, так называемых переносчиков (транслокаторов). Они представляют собой специфические мембранные белки или функциональные комплексы липопротеидов, обладающих способностью временно связываться с необходимыми молекулами на одной стороне мембраны, переносить и освобождать их уже на другой стороне. Такая облегченная опосредованная диффузия с помощью носителей обеспечивает перенос веществ через мембрану в направлении градиента концентраций. Если один и тот же переносчик облегчает перенос в одном направлении, а затем другое вещество переносит в противоположном/такой процесс носит название обменной диффузии.


Трансмембранный перенос ионов эффективно осуществляют и некоторые антибиотики - валиномицин, грамицидин, нигерицин и другие ионофоры.

Широко распространен активный транспорт веществ через мембраны. Характерная его особенность - возможность переноса веществ против градиента концентрации, что неминуемо требует энергетических затрат. Обычно для осуществления этого типа трансмембранного переноса используется энергия АТФ. Практически во всех типах мембран имеются специальные транспортные белки, обладающие АТФазной активностью, как например, К + -Ма+-АТФаза.

Гликокаликс. У многих клеток снаружи от плазматической мембраны обнаруживается слой, который называется гликокаликс. Он включает в себя ветвящиеся молекулы полисахаридов, связанных с мембранными белками (гликопротейды), а также липидами (гликолипиды) (рис. 50). Этот слой выполняет множество функций, дополняющих функции мембран.

Гликокаликс, или надмембранный комплекс, находясь в непосредственном контакте с внешней средой, играет важную роль в рецепторной функции поверхностного аппарата клеток (фагоцитоз пищевых комочков). Он же может выполнять специальные функции (гликопротеин эритроцитов млекопитающих создает отрицательный заряд на их поверхности, что препятствует их агглютинации). Сильно развит гликокаликс солевых клеток и клеток реабсорбционных отделов эпителиальных осморегулирующих их и выделительных канальцев.

Углеводные компоненты гликокаликса благодаря чрезвычайному разнообразию химических связей и поверхностному расположению являются маркерами, придающими специфичность «рисунку» поверхности каждой клетки, индивидуализирующими ее, и тем самым обеспечивают «узнавание» клетками друг друга. Считается, что рецепторы тканевой совместимости сосредоточены также в гликокаликсе.

Установлено, что в гликокаликсе микроворсинок клеток кишечного эпителия адсорбируются гидролитические ферменты. Такое фиксированное положение биокатализаторов создает базу для качественно иного типа пищеварения - так называемого пристеночного пищеварения: Характерной особенностью гликокаликса является высокая скорость обновления поверхностных молекулярных структур, чем обусловливается большая функциональная и филогенетическая пластичность клеток, возможность генетического контроля адаптации к условиям среды.

Модификации плазматической мембраны. Плазматическая мембрана многих клеток часто имеет разнообразные и специализированные поверхностные структуры. При этом образуются сложно организованные участки клетки: а) различные типы межклеточных контактов (взаимодействий); б) микроворсинки; в) реснички; г) жгутики, д) отростки чувствительных клеток и т. п.

Межклеточные соединения (контакты) образуются с помощью ультрамикроскопических образований в виде выростов и выпячиваний, зон слипаниями других структур механической связи между клетками, особенно выраженных в покровных пограничных тканях. Они обеспечили образование и развитие тканей и органов многоклеточных организмов.

Микроворсинки представляют собой многочисленные выросты цитоплазмы, ограниченные плазматической мембраной. Очень много микроворсинок обнаружено на поверхности клеток кишечного и почечного эпителия. Они увеличивают площадь контакта с субстратом и средой.

Реснички - многочисленные поверхностные структуры плазматической мембраны с функцией перемещения клеток в пространстве и их питания (реснички на поверхности клеток инфузорий, коловраток, реснитчатый эпителий дыхательных путей и т. д.).

Жгутики - длинные и малочисленные образования, обеспечивающие возможность клеткам и организмам перемещаться в жидкой среде (свободноживущие одноклеточные жгутиковые, сперматозоиды, зародыши беспозвоночных, многие бактерии и т. п.).

В основе эволюции многих рецепторных органов чувств беспозвоночных животных лежит клетка, снабженная жгутиками, ресничками или их производными. Так, световые, рецепторы сетчатки (колбочки и палочки) дифференцируются из структур, напоминающих реснички и содержащих многочисленные складки мембраны со светочувствительным пигментом. Другие типы рецепторных клеток (химические, слуховые и т. п.) также образуют сложные структуры за счет цитоплазматических выростов, одетых плазматической мембраной.

Специфическим типом межклеточных связей являются плазмодесмы растительных клеток, представляющие собой субмикроскопические канальцы, пронизывающие оболочки и выстланные плазматической мембраной, которая таким образом переходит из одной клетки в другую не прерываясь. Внутри плазмодесм часто содержатся мембранные трубчатые элементы, соединяющие цистерны эндоплазматического ретикулума соседних клеток. Образуются плазмодесмъузо время деления клетки, когда формируется первичная клеточная оболочка. Функционально плазмодесмы интегрируют растительные клетки организма в единую взаимодействующую систему - симпласт. С их помощью обеспечивается межклеточная циркуляция растворов, со держащих органические питательные вещества, ионы, липидные капли, вирусные частицы и т. п. По плазмодесмам идет передача также биопотенциалов и другой информации.

Источник---

Богданова, Т.Л. Справочник по биологии/ Т.Л. Богданова [и д.р.]. – К.: Наукова думка, 1985.- 585 с.

1. Барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой.

Клеточные мембраны обладают избирательной проницаемостью : через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, мембраны сами активно регулируют этот процесс - одни вещества пропускают, а другие нет.

2. Транспортная - через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.

Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу:

а) Пассивный (диффузия, осмос) (не требует затрат энергии)

Диффузия

Распространение молекул или атомов одного вещества между молекулами или атомами другого, приводящее к самопроизвольному выравниванию их концентраций по всему занимаемому объёму. В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией (вдоль вектора градиента концентрации (рис. 2.4).

Рис. 2.4. Схема процесса диффузии

Осмос

Процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону бо́льшей концентрации растворённого вещества из объёма с меньшей концентрацией растворенного вещества (рис. 2.5).

Рис. 2.5. Схема процесса осмоса

б) Активный транспорт (требует затрат энергии)

Калий-натриевый насос (sodium-potassium pump) - механизм активного сопряженного трансмембранного транспорта ионов натрия (из клетки) и ионов калия (внутрь клетки), который обеспечивает концентрационный градиент и трансмембранную разность потенциалов. Последняя служит основой многих функций клеток и органов: секреции клеток желез, сокращения мышц, проведения нервных импульсов и др.(рис. 2.6).

Рис. 2.6. Схема работы калиево-натриевого насоса

На первой стадии фермент Na + /K + -АТФаза присоединяет с внутренней стороны мембраны три иона Na + . Эти ионы изменяют конформацию активного центра АТФ-азы. После этого фермент способен гидролизовать одну молекулу АТФ. Выделившаяся после гидролиза энергия расходуется на изменение конформации переносчика, благодаря чему три иона Na + и ион PO 4 3− (фосфат) оказываются на внешней стороне мембраны. Здесь ионы Na + отщепляются, а PO 4 3− замещается на два иона К + . После этого фермент возвращается в исходную конформацию, и ионы К + оказываются на внутренней стороне мембраны. Здесь ионы К + отщепляются, и переносчик вновь готов к работе.

В итоге во внеклеточной среде создается высокая концентрация ионов Na + , а внутри клетки - высокая концентрация K + . Эта разность концентраций используется в клетках при проведении нервного импульса.

в) Эндоцитоз (фагоцитоз, пиноцитоз)

Фагоцитоз (поедание клеткой) - процесс поглощения клеткой твёрдых объектов, таких как клетки эукариот, бактерии, вирусы, остатки мёртвых клеток и т. п. Вокруг поглощаемого объекта образуется большая внутриклеточная вакуоль (фагосома). Размер фагосом - от 250 нм и больше. Путем слияния фагосомы с первичной лизосомой образуется вторичная лизосома. В кислой среде гидролитические ферменты расщепляют макромолекулы, оказавшиеся во вторичной лизосоме. Продукты расщепления (аминокислоты, моносахариды и прочие полезные вещества) транспортируются затем через лизосомную мембрану в цитоплазму клетки. Фагоцитоз распространен очень широко. У высокоорганизованных животных и человека процесс фагоцитоза играет защитную роль. Фагоцитарная деятельность лейкоцитов и макрофагов имеет огромное значение в защите организма от попадающих в него патогенных микробов и других нежелательных частиц. Фагоцитоз впервые описал русский ученый И. И. Мечников(рис. 2.7)

Пиноцитоз (питьё клеткой) - процесс поглощения клеткой жидкой фазы из окружающей среды, содержащей растворимые вещества, включая крупные молекулы (белки, полисахариды и др.). При пиноцитозе от мембраны отшнуровываются внутрь клетки небольшие пузырьки - эндосомы. Они меньше фагосом (их размер до 150 нм) и обычно не содержат крупных частиц. После образования эндосомы к ней подходит первичная лизосома, и эти два мембранных пузырька сливаются. Образовавшаяся органелла носит название вторичной лизосомы. Процесс пиноцитоза постоянно осуществляют все эукариотические клетки (рис. 7)

Рецептор-опосредованный эндоцитоз - активный специфический процесс, при котором клеточная мембрана выпучивается внутрь клетки, формируя окаймлённые ямки. Внутриклеточная сторона окаймлённой ямки содержит набор адаптивных белков. Макромолекулы, связывающиеся со специфическими рецепторами на поверхности клетки, проходят внутрь со значительно большей скоростью, чем вещества, поступающие в клетки за счет пиноцитоза.

Рис. 2.7. Эндоцитоз

г) Экзоцитоз (отрицательный фагоцитоз и пиноцитоз)

Клеточный процесс, при котором внутриклеточные везикулы (мембранные пузырьки) сливаются с внешней клеточной мембраной. При экзоцитозе содержимое секреторных везикул (экзоцитозных пузырьков) выделяется наружу, а их мембрана сливается с клеточной мембраной. Практически все макромолекулярные соединения (белки, пептидные гормоны и др.) выделяются из клетки этим способом (рис. 2.8)

Рис. 2.8. Схема экзоцитоза

3. Генерация и проведение биопотенциалов - с помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

4. Механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях).

5. Энергетическая - при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;

6. Рецепторная - некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

7. Ферментативная - мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.

8. Матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;

9. Маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Клеточные включения

К клеточным включениям относятся углеводы, жиры и белки. Все эти вещества накапливаются в цитоплазме клетки в виде капель и зерен различной величины и формы. Они периодически синтезируются в клетке и используются в процессе обмена веществ.

Цитоплазма

Это часть живой клетки (протопласта) без плазматической мембраны и ядра. В состав цитоплазмы входят: цитоплазматический матрикс, цитоскелет, органоиды и включения (иногда включения и содержимое вакуолей к живому веществу цитоплазмы не относят). Отграниченная от внешней среды плазматической мембраной, цитоплазма представляет собой внутреннюю полужидкую среду клеток. В цитоплазму эукариотических клеток располагаются ядро и различные органоиды. В ней сосредоточены и разнообразные включения - продукты клеточной деятельности, вакуоли, а также мельчайшие трубочки и нити, образующие скелет клетки. В составе основного вещества цитоплазмы преобладают белки.

Функции цитоплазмы

1) в ней протекают основные процессы обмена веществ.

2) объединяет в одно целое ядро и все органоиды, обеспечивает их взаимодействие.

3) подвижность, раздражимость, метаболизм и размножение.

Подвижность проявляется в различных формах:

Внутриклеточное движение цитоплазмы клетки.

Амебовидное движение. Эта форма движения выражается в образовании цитоплазмой псевдоподий в сторону того или иного раздражителя или от него. Эта форма движения присуща амебе, лейкоцитам крови, а также некоторым тканевым клеткам.

Мерцательное движение. Проявляется в виде биений крошечных протоплазматических выростов - ресничек и жгутиков (инфузории, клетки эпителия многоклеточных животных, спермии и др.).

Сократительное движение. Обеспечивается благодаря присутствию в цитоплазме специального органоида миофибрилл, укорочение или удлинение которого способствуют сокращению и расслаблению клетки. Способность к сокращению наиболее развита у мышечных клеток.

Раздражимость выражается в способности клеток реагировать на раздражение изменением обмена веществ и энергии.

Цитоскелет

Одной из отличительных особенностей эукариотической клетки является наличие в ее цитоплазме скелетных образований в виде микротрубочек и пучков белковых волокон. Элементы цитоскелета, тесно связанные с наружной цитоплазматической мембраной и ядерной оболочкой, образуют сложные переплетения в цитоплазме.

Цитоскелет образован микротрубочками, микрофиламентами и микротрабекулярной системой. Цитоскелет определяет форму клетки, участвует в движениях клетки, в делении и перемещениях самой клетки, во внутриклеточном транспорте органоидов.

Микротрубочки содержатся во всех эукариотических клетках и представляют собой полые неразветвленные цилиндры, диаметр которых не превышает 30 нм, а толщина стенки - 5 нм. В длину они могут достигать нескольких микрометров. Легко распадаются и собираются вновь. Стенка микротрубочек в основном построена из спирально уложенных субъединиц белка тубулина (рис. 2.09)

Функции микротрубочек :

1) выполняют опорную функцию;

2) образуют веретено деления; обеспечивают расхождение хромосом к полюсам клетки; отвечают за перемещение клеточных органелл;

3) принимают участие во внутриклеточном транспорте, секреции, формировании клеточной стенки;

4) являются структурным компонентом ресничек, жгутиков, базальных телец и центриолей.

Микрофиламенты представлены нитями диаметром 6 нм, состоящими из белка актина, близкого к актину мышц. Актин составляет 10-15% общего количества белка клетки. В большинстве животных клеток образуется густая сеть из актиновых филаментов и связанных с ними белков под самой плазматической мембраной.

Помимо актина, в клетке обнаруживаются и нити миозина. Однако количество их значительно меньше. Благодаря взаимодействию актина и миозина происходит сокращение мышц. Микрофиламенты связаны с движением всей клетки либо ее отдельных структур внутри нее. В некоторых случаях движение обеспечивается только актиновыми филаментами, в других - актином вместе с миозином.

Функции микрофиламентов

1) механическая прочность

2) позволяет клетке изменять свою форму и двигаться.

Рис. 2.09. Цитоскелет

Органоиды (или органеллы)

Делятся на немембранные, одномембранные и двумембранные .

К немембранным органоидам эукариотической клетки относятся органоиды, не имеющие собственной замкнутой мембраны, а именно: рибосомы и органоиды, построенные на основе тубулиновых микротрубочек – клеточный центр (центриоли) и органоиды движения (жгутики и реснички). В клетках большинства одноклеточных организмов и подавляющего большинства высших (наземных) растений центриоли отсутствуют.

К одномембранным органоидам относятся: эндоплазматическая сеть, аппарат Гольджи, лизосомы, пероксисомы, сферосомы, вакуоли и некоторые другие. Все одномембранные органоиды связаны между собой в единую систему клетки. В растительных клетках имеются особенные лизосомы, в животных клетках имеются особенные вакуоли: пищеварительные, выделительные, сократительные, фагоцитарные, аутофагоцитарные и др.

К двумембранным органоидам относятся митохондрии и пластиды.

Немембранные органоиды

А) Рибосомы – органоиды, встречающиеся в клетках всех организмов. Это мелкие органеллы, представленные глобулярными частицами диаметром порядка 20 нм. Рибосомы состоят из двух субъединиц неравного размера - большой и малой. В состав рибосом входят белки и рибосомальные РНК (рРНК). Различают два основных типа рибосом: эукариотические (80S) и прокариотические (70S).

В зависимости от локализации в клетке, различают свободные рибосомы, находящиеся в цитоплазме, синтезирующие белки и прикрепленные рибосомы - рибосомы, связанные большими субъединицами с наружной поверхностью мембран ЭПР, синтезирующие белки, которые поступают в комплекс Гольджи, а затем секретируются клеткой. Во время биосинтеза белка рибосомы могут объединяться в комплексы - полирибосомы (полисомы).

Рибосомы эукариот образуются в ядрышке. Сначала на ядрышковой ДНК синтезируются рРНК, которые затем покрываются поступающими из цитоплазмы рибосомальными белками, расщепляются до нужных размеров и формируют субъединицы рибосом. Полностью сформированных рибосом в ядре нет. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Рибосомы обнаружены в клетках всех организмов. Каждая состоит из двух частиц, малой и большой. В состав рибосом входят белки и РНК.

Функции

синтез белка.

Синтезированные белки сначала накапливаются в каналах и полостях эндоплазматической сети, а затем транспортируются к органоидам и участкам клетки. ЭПС и рибосомы, расположенные на ее мембранах, представляют собой единый аппарат биосинтеза и транспортировки белков (рис. 2.10-2.11).

Рис. 2.10. Строение рибосомы

Рис. 2.11. Строение рибосом

В) Клеточный центр (центриоли)

Центриоль представляет собой цилиндр (длиной 0,3 мкм и диаметром 0,1 мкм), стенка которого образована девятью группами из трех слившихся микротрубочек (9 триплетов), соединенных между собой через определенные интервалы поперечными сшивками. Часто центриоли объединены в пары, где они расположены под прямым углом друг к другу. Если центриоль лежит в основании реснички или жгутика, то ее называют базальным тельцем.

Почти во всех животных клетках имеется пара центриолей, являющихся срединным элементом клеточного центра.

Перед делением центриоли расходятся к противоположным полюсам и возле каждой из них возникает дочерняя центриоль. От центриолей, расположенных на разных полюсах клетки, образуются микротрубочки, растущие навстречу друг другу.

Функции

1) формируют митотическое веретено, способствующее равномерному распределению генетического материала между дочерними клетками,

2) являются центром организации цитоскелета. Часть нитей веретена прикрепляется к хромосомам.

Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы. Они возникают в результате дупликации уже имеющихся. Это происходит при расхождении центриолей. Незрелая центриоль содержит 9 одиночных микротрубочек; по-видимому, каждая микротрубочка является матрицей при сборке триплетов, характерных для зрелой центриоли(рис. 2.12).

Цетриоли имеются в клетках низших растений (водоросли).

Рис. 2.12. Центриоли клеточного центра

Одномембранные органоиды

Г) Эндоплазматическая сеть (ЭПС)

Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети. Эндоплазматическая сеть неоднородна по своему строению. Известны два ее типа - гранулярная и гладкая .

На мембранах каналов и полостей гранулярной сети располагается множество мелких округлых телец - рибосом , которые придают мембранам шероховатый вид. Мембраны гладкой эндоплазматической сети не несут рибосом на своей поверхности. ЭПС выполняет много разнообразных функций.

Функции

Основная функция гранулярной эндоплазматической сети - участие в синтезе белка, который осуществляется в рибосомах. На мембранах гладкой эндоплазматической сети происходит синтез липидов и углеводов. Все эти продукты синтеза накапливаются в каналах и полостях, а затем транспортируются к различным органоидам клетки, где потребляются или накапливаются в цитоплазме в качестве клеточных включений. ЭПС связывает между собой основные органоиды клетки(рис. 2.13).

Рис. 2.13. Строение эндоплазматической сети (ЭПС) или ретикулума

Д) Аппарат Гольджи

Строение этого органоида сходно в клетках растительных и животных организмов, несмотря на разнообразие его формы. Выполняет много важных функций.

Одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями, с которыми связана система мелких одномембранных пузырьков (пузырьки Гольджи). Пузырьки Гольджи в основном сконцентрированы на стороне, примыкающей к ЭПС, и по периферии стопок. Полагают, что они переносят в аппарат Гольджи белки и липиды, молекулы которых, передвигаясь из цистерны в цистерну, подвергаются химической модификации.

Все эти вещества сначала накапливаются, химически усложняются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме (рис. 2.14-2.15).

Рис. 2.14. Строение аппарата Гольджи

Функции :

Модификация и накопление белков, липидов, углеводов;

Упаковка в мембранные пузырьки (везикулы) поступивших органических веществ;

Место образования лизосом;

Секреторная функция, поэтому аппарат Гольджи хорошо развит в секреторных клетках.


Рис. 2.15. Комплекс Гольджи

Е) Лизосомы

Представляют собой небольшие округлые тельца. Внутри лизосомы находятся ферменты, расщепляющие белки, жиры, углеводы, нуклеиновые кислоты. К пищевой частице, поступившей в цитоплазму, подходят лизосомы, сливаются с ней, и образуется одна пищеварительная вакуоль, внутри которой находится пищевая частица, окруженная ферментами лизосом.

Ферменты лизосом синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки лизосом. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом .

Различают первичные и вторичные лизосомы. Первичными называются лизосомы, отпочковавшиеся от аппарата Гольджи.

Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.

Функции лизосом:

1) переваривание захваченных клеткой при эндоцитозе веществ или частиц (бактерий, других клеток),

2) аутофагия - уничтожение ненужных клетке структур, например, во время замены старых органоидов новыми, или переваривание белков и других веществ, произведенных внутри самой клетки,

3) автолиз - самопереваривание клетки, приводящее к ее гибели (иногда этот процесс не является патологическим, а сопровождает развитие организма или дифференцировку некоторых специализированных клеток) (рис. 2.16-2.17).

Пример: При превращении головастика в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела.


Рис. 2.16. Образование лизосом

Рис. 2.17. Функционирование лизосом

Ж) Пероксисомы

Органоиды, сходные по строению с лизосомами, пузырьки с диаметром до 1,5 мкм с однородным матриксом, содержащим около 50 ферментов.

Каталаза вызывает распад перекиси водорода 2Н 2 О 2 → 2Н 2 О + О 2 и предотвращает перекисное окисление липидов

Образуются пероксисомы отпочковываваясь от ранее существующих, т.е. относятся к самовоспроизводящимся органоидам, несмотря на то, что не содержат ДНК. Растут благодаря поступлению в них ферментов, ферменты пероксисом образуются на шероховатой ЭПС и в гиалоплазме (рис. 2.18) .

Рис. 2.18. Пероксисома (в центре кристаллический нуклеоид)

З) Вакуоли

Одномембранные органоиды. Вакуоли представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи.

Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль.

Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом .

Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).

Из органических веществ чаще запасаются сахара и белки. Сахара – чаще в виде растворов, белки поступают в виде пузырьков ЭПР и аппарата Гольджи, после чего вакуоли обезвоживаются, превращаясь в алейроновые зерна.

В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.

Функции

У растений

1) накопление жидкости и поддержание тургора,

2) накопление запасных питательных веществ и минеральных солей,

3) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей плодов и семян.

У животных:

4) пищеварительные вакуоли – разрушают органические макромолекулы;

5) сократительные вакуоли регулируют осмотическое давление клетки и выводят ненужные вещества из клетки

6) фагоцитарные вакуоли образуются при фагоцитозе иммунными клетками антигенов

7) аутофагоцитарные вакуоли образуются при фагоцитозе иммунными клетками собственных тканей

Двумембранные органоиды (митохондрии и пластиды)

Эти органоиды являются полуавтономными, поскольку обладают собственной ДНК и собственным белоксинтезирующим аппаратом. Митохондрии имеются практически во всех эукариотических клетках. Пластиды имеются только в растительных клетках.

И) Митохондрии

Это органеллы энергообеспечения метаболических процессов в клетке. В гиалоплазме митохондрии распределены обычно диффузно, однако в специализированных клетках сосредоточены в тех участках, где имеется наибольшая потребность в энергии. Например, в мышечных клетках большие количества митохондрий сосредоточены вдоль сократительных фибрилл, вдоль жгутика сперматозоида, в эпителии почечных канальцев, в области синапсов и т. д. Такое расположение митохондрий обеспечивает меньшие потери АТФ во время ее диффузии.

Наружная мембрана отделяет митохондрию от цитоплазмы, замкнута сама на себя и не образует впячиваний. Внутренняя мембрана ограничивает внутреннее содержимое митохондрий – матрикс. Характерная особенность – образование многочисленных впячиваний – крист, за счет чего площадь внутренних мембран увеличивается. Количество и степень развития крист зависит от функциональной активности ткани. Митохондрии имеют собственный генетический материал (рис. 2.19).

ДНК митохондрий – это замкнутая кольцевая двуспиральная молекула, в клетках человека имеет размер 16569 нуклеотидных пар, это приблизительно в 105 раз меньше ДНК, локализованной в ядре. Митохондрии обладают собственной белоксинтезирующей системой, количество же транслируемых с митохондриальной мРНК белков ограничено. Митохондриальные ДНК не могут кодировать все митохондриальные белки. Большая часть белков митохондрий находится под генетическим контролем ядра.

Рис. 2.19. Строение митохондрий

Функции митохондрий

1) образование АТФ

2) синтез белка

3) участие в специфических синтезах, например, синтез стероидных гормонов (надпочечники)

4) отработавшие митохондрии могут накапливать и продукты экскреции, вредные вещества, т.е. способны брать на себя функции других органелл клетки

К) Пластиды

Пластиды –органеллы, характерные только для растений.

Различают три типа пластид:

1) хлоропласты (пластиды зеленого цвета);

2) хромопласты (пластиды желтого, оранжевого или красного цвета)

3) лейкопласты (бесцветные пластиды).

Обычно в клетке встречаются пластиды только одного типа.

Хлоропласты

Эти органоиды содержатся в клетках листьев и других зеленых органов растений, а также у разнообразных водорослей. У высших растений в одной клетке обычно бывает несколько десятков хлоропластов. Зеленый цвет хлоропластов зависит от содержания в них пигмента хлорофилла.

Хлоропласт - основной органоид клеток растений, в котором происходит фотосинтез, т. е. образование органических веществ (углеводов) из неорганических (СО 2 и Н 2 О) при использовании энергии солнечного света. По строению хлоропласты сходны с митохондриями.

Хлоропласты имеют сложное строение. От гиалоплазмы они отграничены двумя мембранами – наружной и внутренней. Внутреннее содержимое называется строма . Внутренняя мембрана формирует внутри хлоропласта сложную, строго упорядоченную систему мембран, имеющих форму плоских пузырьков, называемых тилакоидами .

Тилакоиды собраны в стопки - граны , напоминающие столбики монет. Граны связаны между собой тилакоидами стромы, проходящими через них насквозь вдоль пластиды (рис. 2.20-2.22). Хлорофилл и хлоропласты образуются только на свету.

Рис. 2.20. Хлоропласты под световым микроскопом

Рис. 2.21. Строение хлоропласта под электронным микроскопом

Рис. 2.22. Схематичное строение хлоропластов

Функции

1) фотосинтез (образование органических веществ из неорганических веществ за счет энергии света). Центральная роль в этом процессе принадлежит хлорофиллу. Он поглощает энергию света и направляет ее на осуществление реакций фотосинтеза. В хлоропластах, как и в митохондриях, происходит синтез АТФ.

2) участвуют в синтезе аминокислот и жирных кислот,

3) служат хранилищем временных запасов крахмала.

Лейкопласты - мелкие бесцветные пластиды, которые встречаются в клетках органов, скрытых от солнечного света (корни, корневища, клубни, семена). Строение их сходно со строением хлоропластов (рис. 2.23).

Однако, в отличие от хлоропластов, у лейкопластов слабо развита внутренняя мембранная система, т.к. они участвуют в синтезе и накоплении запасных питательных веществ - крахмала, белков и липидов. На свету лейкопласты могут превращаться в хлоропласты.


Рис. 2.23. Строение лейкопласта

Хромопласты - пластиды оранжевого, красного и желтого цвета, который обусловлен пигментами, относящимися к группе каротиноидов. Хромопласты встречаются в клетках лепестков многих растений, зрелых плодов, редко - корнеплодов, а также в осенних листьях. Внутренняя мембранная система в хромопластах, как правило, отсутствует (рис. 24) .

Рис. 2.24. Строение хромопласта

Значение хромопластов до конца еще не выяснено. Большинство из них представляют собой стареющие пластиды. Они, как правило, развиваются из хлоропластов, при этом в пластидах разрушаются хлорофилл и внутренняя мембранная структура, и накапливаются каротиноиды. Это происходит при созревании плодов и пожелтении листьев осенью. Биологическое значение хромопластов состоит в том, что они обусловливают яркую окраску цветков и плодов, привлекающую насекомых для перекрестного опыления и других животных для распространения плодов. В хромопласты могут превращаться и лейкопласты.

Функции пластид

Синтез в хлорофилле органических веществ из простых неорганических соединений: углекислого газа и воды в присутствии квантов солнечного света – фотосинтез, синтез АТФ в световую фазу фотосинтеза

Синтез белков на рибосомах (между внутренними мембранами хлоропласта содержатся ДНК, РНК и рибосомы, следовательно, в хлоропластах, так же как и в митохондриях, происходит синтез белка, необходимого для деятельности этих органоидов).

Присутствие хромопластов объясняется желтая, оранжевая и красная окраска венчиков цветков, плодов, осенних листьев.

Лейкопласты содержат запасающие вещества (в стеблях, корнях, клубнях).

Хлоропласты, хромопласты и лейкопласты способны клетка взаимному переходу. Так при созревании плодов или изменении окраски листьев осенью хлоропласты превращаются в хромопласты, а лейкопласты могут превращаться в хлоропласты, например, при приобретении зеленого цвета клубней картофеля.

В эволюционном смысле первичным, исходным типом пластид являются хлоропласты, из которых произошли пластиды остальных двух типов. Пластиды имеют много общих черт с митохондриями, отличающих их от других компонентов цитоплазмы. Это, прежде всего, оболочка из двух мембран и относительная генетическая автономность, обусловленная наличием собственных рибосом и ДНК. Такое своеобразие органелл легло в основу представления, что предшественниками пластид и митохондрий были бактерии, которые в процессе эволюции оказались встроенными в эукариотическую клетку и постепенно превратились в хлоропласты и митохондрии (рис. 2.25).

Рис. 2.25. Образование митохондрий и хлоропластов по теории симбиогенеза

Плазматическая мембрана , или плазмалемма, - наиболее постоянная, основная, универсальная для всех клеток мембрана. Она представляет собой тончайшую (около 10 нм) пленку, покрывающую всю клетку. Плазмалемма состоит из молекул белков и фосфолипидов (рис. 1.6).

Молекулы фосфолипидов расположены в два ряда - гидрофобными концами внутрь, гидрофильными головками к внутренней и внешней водной среде. В отдельных местах бислой (двойной слой) фосфолипидов насквозь пронизан белковыми молекулами (интегральные белки). Внутри таких белковых молекул имеются каналы - поры, через которые проходят водорастворимые вещества. Другие белковые молекулы пронизывают бислой липидов наполовину с одной или с другой стороны (полуинтегральные белки). На поверхности мембран эукариотических клеток имеются периферические белки. Молекулы липидов и белков удерживаются благодаря гидрофильно-гидрофобным взаимодействиям.

Свойства и функции мембран. Все клеточные мембраны представляют собой подвижные текучие структуры, поскольку молекулы липидов и белков не связаны между собой ковалентными связями и способны достаточно быстро перемещаться в плоскости мембраны. Благодаря этому мембраны могут изменять свою конфигурацию, т. е. обладают текучестью.

Мембраны - структуры очень динамичные. Они быстро восстанавливаются после повреждения, а также растягиваются и сжимаются при клеточных движениях.

Мембраны разных типов клеток существенно различаются как по химическому составу, так и по относительному содержанию в них белков, гликопротеинов, липидов, а следовательно, и по характеру имеющихся в них рецепторов. Каждый тип клеток поэтому характеризуется индивидуальностью, которая определяется в основном гликопротеинами. Разветвленные цепи гликопротеинов, выступающие из клеточной мембраны, участвуют в распознава-нии факторов внешней среды, а также во взаимном узнавании родственных клеток. Например, яйцеклетка и сперматозоид узнают друг друга по гликопротеинам клеточной поверхности, которые подходят другкдругу как отдельные элементы цельной структуры. Такое взаимное узнавание - необходимый этап, предшествующий оплодотворению.

Подобное явление наблюдается в процессе дифференциров-ки тканей. В этом случае сходные по строению клетки с помощью распознающих участков плазмалеммы правильно ориентируются относительно друг друга, обеспечивая тем самым их сцепление и образование тканей. С распознаванием связана и регуляция транспорта молекул и ионов через мембрану, а также иммунологический ответ, в котором гликопротеины играют роль антигенов. Сахара, таким образом, могут функционировать как информационные молекулы (подобно белкам и нуклеиновым кислотам). В мембранах содержатся также специфические рецепторы, переносчики электронов, преобразователи энергии, ферментные белки. Белки участвуют в обеспечении транспорта определенных молекул внутрь клетки или из нее, осуществляют структурную связь цитоскелета с клеточными мембранами или же служат в качестве рецепторов для получения и преобразования химических сигналов из окружающей среды.

Важнейшим свойством мембраны является также избирательная проницаемость. Это значит, что молекулы и ионы проходят через нее с различной скоростью, и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы; значительно медленнее проходят сквозь мембрану ионы. Диффузия воды через мембрану называется осмосом.

Существует несколько механизмов транспорта веществ через мембрану.

Диффузия -проникновение веществ через мембрану по градиенту концентрации {из области, где их концентрация выше, в область, где их концентрация ниже). Диффузный транспорт веществ (воды, ионов) осуществляется при участии белков мембраны, в которых имеются молекулярные поры, либо при участии липидной фазы (для жирорастворимых веществ).

При облегченной диффузии специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану по градиенту концентрации.

Активный транспорт сопряжен с затратами энергии и служит для переноса веществ против их градиента концентрации. Он осуществляется специальными белками-переносчиками, образующими так называемыеионные насосы. Наиболее изученным является Na - / К - -насос в клетках животных, активно выкачивающих ионы Na + наружу, поглощая при этом ионы К - . Благодаря этому в клетке поддерживается большая концентрация К - и меньшая Na + по сравнению с окружающей средой. На этот процесс затрачивается энергия АТФ.

В результате активного транспорта с помощью мембранного насоса в клетке происходит также регуляция концентрации Mg 2- и Са 2+ .

В процессе активного транспорта ионов в клетку через цито-плазматическую мембрану проникают различные сахара, нукле-отиды, аминокислоты.

Макромолекулы белков, нуклеиновых кислот, полисахаридов, липопротеидные комплексы и др. сквозь клеточные мембраны не проходят, в отличие от ионов и мономеров. Транспорт макромолекул, их комплексов и частиц внутрь клетки происходит совершенно иным путем - посредством эндоцитоза. При эндоци-тозе {эндо... - внутрь) определенный участок плазмалеммы захватывает и как бы обволакивает внеклеточный материал, заключая его в мембранную вакуоль, возникшую вследствие впя-чивания мембраны. В дальнейшем такая вакуоль соединяется с лизосомой, ферменты которой расщепляют макромолекулы до мономеров.

Процесс, обратный эндоцитозу, - экзоцитоз (экзо... - наружу). Благодаря ему клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли или пу-

зырьки. Пузырек подходит к цитоплазматической мембране, сливается с ней, а его содержимое выделяется в окружающую среду. Гак выводятся пищеварительные ферменты, гормоны, гемицел-люлоза и др.

Таким образом, биологические мембраны как основные структурные элементы клетки служат не просто физическими границами, а представляют собой динамичные функциональные поверхности. На мембранах органелл осуществляются многочисленные биохимические процессы, такие как активное поглощение веществ, преобразование энергии, синтез АТФ и др.

Функции биологических мембран следующие:

    Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы.

    Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот.

    Выполняют роль рецепторов (получение и преобразование сит-налов из окружающей среды, узнавание веществ клеток и т. д.).

    Являются катализаторами (обеспечение примембранных химических процессов).

    Участвуют в преобразовании энергии.

Мембрана состоит из двух слоев липидных молекул (бислой), в который встроены белки. К некоторым липидным и белковым молекулам присоединены углеводы. Их немного. Толщина мембраны около 10 нм (0,00001 мм). Основную часть мембраны составляет непрерывный слой фосфолипидных молекул. В этот жидкий слой погружены молекулы различных по строению и функций белковых молекул. Белки не полностью покрывают липидный бислой, а располагаются в нём по отдельности или группами. В целом это напоминает мозаику (рис. 2. Б. В). В связи с этим принятая в настоящее время модель мембраны носит название жидкостно-мозаичная . Белки способны перемещаться по липидному слою. Перемещаются и молекулы липидного слоя. Понятно, что движение молекул мембраны меняет физико-химические характеристики последней, а это, в свою очередь, меняет функциональные характеристики мембраны. Необходимо отметить, что плазматическая мембрана большинства клеток не имеет форму идеального шара. Наоборот, она имеет множество выступов, углублений, которые постоянно меняют свою форму и величину. Полученные в последнее время результаты внесли некоторые коррективы в теорию строение мембран. Было показано, что не все мембранные белки способны к движению, а некоторые участки мембран отличаются по своей структуре от классического липидного бислоя.

Молекула фосфолипида имеет вид головки с двумя хвостиками (рис. 2 А). Головка (глицерин) растворима в воде, гидрофильна, хвостики (жирные кислоты) нерастворимы в воде, гидрофобны. Поэтому, находясь в воде, молекулы самопроизвольно занимают определённое положение по отношению к водной фазе. Отталкиваясь от молекул воды, хвостики располагаются в глубине липидного слоя, а водорастворимые головки обращены к внешней и внутренней водной среде (рис. 2. Б). Бислой липидов носит название матрикс. Особо следует отметить наличие в мембранах клеток липидов, хвостик которых содержит жирные кислоты, имеющие в своей структуре двойные связи, расположенные через CH 2 -группу (– СН = СН – СН = СН – СН –) . Такие жирные кислоты называют ненасыщенными. Эти кислоты наиболее всего подвержены воздействию активных форм кислорода (АФК), которые постоянно присутствуют в организме всех живых существ. Их количество особенно возрастает при различных заболеваниях. Это может привести к неблагоприятным последствиям, о чём мы скажем ниже.

Вкрапленные в матрикс белки (рис. 2 В) располагаются по-разному. Одни на внутренней и наружной поверхности липидного слоя – примембранные или поверхностные белки, другие полупогружены в мембрану – полуинтегральные белки, третьи пронизывают всю мембрану – интегральные белки. Обычно полуинтегральные и интегральные белки объединяют одним термином – внутренние белки, поскольку их трудно отличить друг от друга. Чаще всего в мембранах встречаются интегральные белки. Они могут быть представлены, как одной молекулой и выполнять какую-либо одну функцию, так и группой (ансамблем) белков. Каждый участник ансамбля выполняет строго определённую роль. Эти комплексы также выполняют одну или несколько конечных функций.



Рис. 2. Схематическое строение плазматической мембраны.

Следует отметить, что интегральные и поверхностные белки-ферменты, функционирующие в мембране, достаточно часто меняют своё положение. В некоторых случаях сложно определить к какому типу (поверхностные или интегральные) относится тот или иной белок мембраны. Например, фермент фосфолипаза А, осаждаясь на мембрану, является поверхностным белком, но затем она активируется, становится интегральным белком и, взаимодействуя с липидами бислоя, образует из них арахидоновую кислоту (рис.3). Последняя покидает мембрану и превращается в другие активные соединения, которые участвуют в развитии различных патологических процессов.

Na + , K + - АТФ-аза Адренорецептор Аденилатциклаза

Ca 2+ -АТФ-аза

Фосфолипаза


Na + , K + Сa 2+ Арахидоновая

кислота G-белок Гликоген


Рис. 3. Гипотетическая схема локализации некоторых мембранных белков

Напротив, белки, участвующие в перемещении веществ через мембрану – например, белки, принимающие участие в облегчённой диффузии Na + , K + - АТФ-аза или Ca 2+ -АТФ-аза, как правило, не меняют своё положение, функционируя как интегральные белки (рис. 3). И, наконец, как мы уже говорили, в мембране могут находиться сложные комплексы из нескольких белков, связанных в единый ансамбль одной задачей. К таким комплексам относятся белки, принимающие участие в проведении информационного сигнала через мембрану (рис.3). К последним относится комплекс, содержащий три белка - адренорецептор, G-белок и аденилатциклазу. Все эти белки имеют существенное значение в нормальной жизнедеятельности клетки и при патологии. Об этом мы расскажем ниже.

Кроме липидов и белков в мембране имеются углеводы, но они располагаются не как самостоятельные компоненты, а как составные части липидов (гликолипиды) или белков (гликопротеинов). Углеводы располагаются на наружной поверхности плазмалеммы.