Биографии Характеристики Анализ

Теория френеля кратко. Метод зон Френеля

Дифра́кция све́та - явление, наблюдаемое при распространении света в среде с резкими неоднородностями. Свет отклоняется от прямолинейного распространения при прохождении его через малое отверстие или узкие щели (0,1-1,0 мм). В этом случае лучи света распространяются не только прямо, но и в стороны, отчего вокруг светлого кружка или светлой полосы появляется цветная кайма - дифракционные кольца или полосы. Первые легко наблюдать, если смотреть сквозь малое отверстие на стоящий недалеко источник света. Чем меньше отверстие, тем больше диаметр первого кольца дифракции. С увеличением отверстия его диаметр уменьшается. Дифракция ухудшает резкость изображения при очень сильном диафрагмировании объектива. Она начинает сказываться сотносительного отверстия 1:8-1:11

Вследствие дифракции при освещении непрозрачных экранов на границе тени, где, согласно законамгеометрической оптики, должен был бы происходить скачкообразный переход от тени к свету, наблюдается ряд светлых и тёмных дифракционных полос.

Дифракция света - явление огибания светом препятствия вследствие интерференции вторичных волн от источников на краях препятствия. Условие дифракции: Размеры препятствий должны быть меньше или равны размеру волн.

Принцип Гюйгенса - Френеля - основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности, световых.

Принцип Гюйгенса является развитием принципа, который ввёл Христиан Гюйгенс в 1678 году: каждая точка фронта(поверхности, достигнутой волной) является вторичным (т.е. новым) источником сферических волн. Огибающая фронтов волн всех вторичных источников становится фронтом волны в следующий момент времени.

Принцип Гюйгенса объясняет распространение волн, согласующееся с законами геометрической оптики, но не может объяснить явлений дифракции. Огюстен Жан Френель в 1815 году дополнил принцип Гюйгенса, введя представления о когерентности иинтерференции элементарных волн, что позволило рассматривать на основе принципа Гюйгенса - Френеля и дифракционные явления.

Принцип Гюйгенса - Френеля формулируется следующим образом:

Пусть волна света, созданная источниками, расположенными в области , достигла плоскости . Световое поле в этой плоскости нам известно. Пусть его комплексная амплитуда есть , где функции и описывают распределение амплитуд и фаз колебаний в плоскости .

Согласно принципу Гюйгенса каждую точку плоскости , куда пришла волна, можно рассматривать как источник вторичной волны. То есть можно представить себе, что волна возбуждает колебания некоторого фиктивного источника, который и переизлучает вторичную волну. Френель дополнил принцип Гюйгенса, предложив рассматривать световое колебание в любой точке наблюдения в области как результат интерференции этих вторичных волн.

Френель предложил оригинальный метод разбиения волновой поверхности S на зоны, позволивший сильно упростить решение задач (метод зон Френеля ).

Границей первой (центральной) зоны служат точки поверхности S , находящиеся на расстоянии от точки M (рис. 9.2). Точки сферы S , находящиеся на расстояниях , , и т.д. от точки M , образуют 2, 3 и т.д. зоны Френеля.

Колебания, возбуждаемые в точке M между двумя соседними зонами, противоположны по фазе, так как разность хода от этих зон до точки M .

Поэтому при сложении этих колебаний, они должны взаимно ослаблять друг друга:

, (9.2.2)

где A – амплитуда результирующего колебания, – амплитуда колебаний, возбуждаемая i -й зоной Френеля.

Дифракция света – в узком, но наиболее употребительном смысле – огибание лучами света границы непрозрачных тел (экранов); проникновение света в область геометрической тени. Наиболее рельефно дифракция света проявляется в областях резкого изменения плотности потока лучей: вблизи каустик, фокуса линзы, границ геометрической тени и др. дифракция волн тесно переплетается с явлениями распространения и рассеяния волн в неоднородных средах.

Дифракцией называется совокупность явлений , наблюдаемых при распространении света в среде с резкими неоднородностями, размеры которых сравнимы с длиной волны, и связанных с отклонениями от законов геометрической оптики .

Огибание препятствий звуковыми волнами (дифракция звуковых волн) наблюдается нами постоянно (мы слышим звук за углом дома). Для наблюдения дифракции световых лучей нужны особые условия, это связано с малой длиной световых волн.

Между интерференцией и дифракцией нет существенных физических различий. Оба явления заключаются в перераспределении светового потока в результате суперпозиции волн.

Явление дифракции объясняется с помощью принципа Гюйгенса , согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн , а огибающая этих волн задает положение волнового фронта в следующий момент времени.

Пусть плоская волна нормально падает на отверстие в непрозрачном экране (рис. 9.1). Каждая точка участка волнового фронта, выделенного отверстием, служит источником вторичных волн (в однородной изотопной среде они сферические).

Построив огибающую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т.е. волна огибает края отверстия.

Принцип Гюйгенса решает лишь задачу о направлении распространения волнового фронта, но не затрагивает вопроса об амплитуде и интенсивности волн, распространяющихся по разным направлениям.

Решающую роль в утверждении волновой природы света сыграл О. Френель в начале XIX века. Он объяснил явление дифракции и дал метод ее количественного расчета. В 1818 году он получил премию Парижской академии за объяснение явления дифракции и метод его количественного расчета.

Френель вложил в принцип Гюйгенса физический смысл, дополнив его идеей интерференции вторичных волн.

При рассмотрении дифракции Френель исходил из нескольких основных положений, принимаемых без доказательства. Совокупность этих утверждений и называется принципом Гюйгенса–Френеля.

Согласно принципу Гюйгенса , каждую точку фронта волны можно рассматривать как источник вторичных волн.

Френель существенно развил этот принцип.

· Все вторичные источники фронта волны, исходящей из одного источника, когерентны между собой.

· Равные по площади участки волновой поверхности излучают равные интенсивности (мощности).

· Каждый вторичный источник излучает свет преимущественно в направлении внешней нормали к волновой поверхности в этой точке. Амплитуда вторичных волн в направлении, составляющем угол α с нормалью, тем меньше, чем больше угол α, и равна нулю при .

· Для вторичных источников справедлив принцип суперпозиции: излучение одних участков волновой поверхности не влияет на излучение других (если часть волновой поверхности прикрыть непрозрачным экраном, вторичные волны будут излучаться открытыми участками так, как если бы экрана не было).

Используя эти положения, Френель уже мог сделать количественные расчеты дифракционной картины.

Дифракция Волн - явление огибания волнами препятствий и проникновение их в область геометрической тени. Явление дифракции можно качественно объяснить применением принципа Гюйгенса к распространению волн в среде при наличии преград.

Рассмотрим плоскую преграду ab (рис. 69). На рисунке показаны построенные по принципу Гюйгенса волновые поверхности позади преграды. Видно, что волны действи-

тельно загибаются в область тени. Но принцип Гюйгенса ничего не говорит об амплитуде колебаний в волне за преградой. Ее можно найти, рассматривая интерференцию волн, приходящих в область геометрической тени. Распределение амплитуд колебаний позади преграды называетсядифракционной картиной . Полный вид дифракционной картины позади преграды зависит от соотношения между длиной волны Л, размером преграды d и расстоянием L от преграды до точки наблюдения. Если длина волны Л больше размеров преграды d, то волна его почти не замечает. Если длина волны Л одного порядка с размером преграды d, то дифракция проявляется даже на очень малом расстоянии L, и волны за преградой лишь чуть-чуть слабее, чем в свободном волновом поле с обеих сторон. Если, наконец, длины волн много меньше размеров препятствия, то дифракционную картину можно наблюдать только на большом расстоянии от преграды, величина которой зависит от Л и d.

Принцип Гюйгенса - Френеля является развитием принципа, который ввёл Христиан Гюйгенс в 1678 году: каждая точка фронта (поверхности, достигнутой волной) является вторичным (т.е. новым) источником сферических волн. Огибающая фронтов волн всех вторичных источников становится фронтом волны в следующий момент времени.

Принцип Гюйгенса объясняет распространение волн, согласующееся с законами геометрической оптики, но не может объяснить явлений дифракции. Огюстен Жан Френель в 1815 году дополнил принцип Гюйгенса, введя представления о когерентности и интерференции элементарных волн, что позволило рассматривать на основе принципа Гюйгенса - Френеля и дифракционные явления.



Принцип Гюйгенса - Френеля формулируется следующим образом:

Густав Кирхгоф придал принципу Гюйгенса строгий математический вид, показав, что его можно считать приближенной формой теоремы, называемой интегральной теоремой Кирхгофа.

Фронтом волны точечного источника в однородном изотропном пространстве является сфера. Амплитуда возмущения во всех точках сферического фронта волны, распространяющейся от точечного источника, одинакова.

Дальнейшим обобщением и развитием принципа Гюйгенса является формулировка через интегралы по траекториям, служащая основой современной квантовой механики.

Метод зон Френеля Френель предложил метод разбиения фронта волны на кольцевые зоны, который впоследствии получил название метод зон Френеля .

Пусть от источника света S распространяется монохроматическая сферическая волна, P - точка наблюдения. Через точку O проходит сферическая волновая поверхность. Она симметрична относительно прямой SP.

Разобьем эту поверхность на кольцевые зоны I, II, III и т.д. так, чтобы расстояния от краев зоны до точки P отличались на l/2 - половину длины световой волны. Это разбиение было предложено O. Френелем и зоны называют зонами Френеля.

Возьмем произвольную точку 1 в первой зоне Френеля. В зоне II найдется, в силу правила построения зон, такая соответствующая ей точка, что разность хода лучей, идущих в точку P от точек 1 и 2 будет равна l/2. Вследствие этого колебания от точек 1 и 2 погасят друг друга в точке P.

Из геометрических соображениях следует, что при не очень больших номерах зон их площади примерно одинаковы. Значит каждой точке первой зоны найдется соответствующая ей точка во второй, колебания которых погасят друг друга. Амплитуда результирующего колебания, приходящего в точку P от зоны с номером m, уменьшается с ростом m, т.е.

В лекции 2 мы рассматривали явления перераспределения интенсивности светового потока в результате суперпозиции волн . Это явление мы называли интерференцией и рассмотрели интерференционную картину от двух источников. Настоящая лекция - непосредственное продолжение предыдущей. Между интерференцией и дифракцией нет существенного физического различия. Оба явления заключаются в перераспределении светового потока в результате суперпозиции волн.

По историческим причинам перераспределение интенсивности, возникающее в результате суперпозиции волн, возбуждаемых конечным числом дискретных когерентных источников принято называть интерференцией . Перераспределение интенсивности, возникающее в результате суперпозиции волн, возбуждаемых когерентными источниками, расположенными непрерывно, принято называть дифракцией волн. (Когда источников мало, напр. два, то результат их совместного действия обычно называют интерференцией, а если источников много, то чаще говорят о дифракции .)

Дифракцией называется любое отклонение распространения волн вблизи препятствий от законов геометрической оптики.

В геометрической оптике пользуются понятием светового луча - узкого пучка света, распространяющегося прямолинейно. Прямолинейность распространения света объясняется теорией Ньютона и подтверждается наличием тени позади непрозрачного источника, находящегося на пути света от точечного источника. Но - противоречие с волновой теорией, т.к. по принципу Гюйгенса каждую точку поля волны можно рассматривать как источник вторичных волн, распространяющихся по всем направлениям, в том числе и в область геометрической тени препятствия (волны должны огибать препятствия). Как может возникать тень? Теория Гюйгенса не могла дать ответа. Но теория Ньютона не могла объяснить явление интерференции и нарушение закона прямолинейного распространения света при прохождении света сквозь достаточно узкие щели и отверстия, а так же при освещении небольших непрозрачных препятствий.

В этих случаях на экране, установленном позади отверстий или препятствий, вместо четко разграниченных областей света и тени наблюдается система интерференционных максимумов и минимумов освещенности. Даже для препятствий и отверстий, имеющих большие размеры, нет резкого перехода от тени к свету. Всегда существует некоторая переходная область, в которой можно обнаружить слабые интерференционные максимумы и минимумы. Т. е. при прохождении волн вблизи границ непрозрачных или прозрачных тел, сквозь малые отверстия и т.д., волны отклоняются от прямолинейного распространения (законов геометрической оптики), и эти отклонения сопровождаются их интерференционными явлениями.


Свойства дифракции:

1) Дифракция волн - характерная особенность распространения волн независимо от их природы.

2) Волны могут попадать в область геометрической тени (огибать препятствия, проникать через не-большие отверстия в экранах…). На-пр., звук хорошо слышен за углом дома - звуковая волна его огибает. Дифракцией радиоволн вокруг поверхности Земли объясняется прием радиосигналов в диапазоне длинных и средних радиоволн за пределами прямой видимости излучающей антенны.

3) Дифракция волн зависит от соотношения между длиной волны и размером объекта, вызывающего дифракцию. В пределе при законы волновой оптики переходят в законы геометрической оптики отклонения от законов геометрической оптики при прочих равных условиях оказывается тем меньше, чем меньше длина волны. Поэтому легко наблюдать дифракцию звуковых, сейсмических и радиоволн, для которых ~ от м до км; гораздо труднее наблюдать без специальных устройств дифракцию света. Дифракция обнаруживается в тех случаях, когда размеры огибаемых препятствий соизмеримы с длиной волны .

Дифракция света была открыта в 17 в. итальянским физиком и астрономом Ф. Гримальди и была объяснена в начале 19 в. французским физиком О. Френелем , что стало одним из основных доказательств волновой природы света.

Явление дифракции можно объяснить с по-мощью принципа Гюйгенса-Френеля .

Принцип Гюйгенса: каждая точка, до кото-рой доходит волна в данный момент времени, служит центром вто-ричных (элементарных) волн. Огибающая этих волн дает положение волнового фронта в следующий момент времени.

Допущения:

1) волна является плоской;

2) на отверстие свет пада-ет нормально;

3) экран непрозрачный; ма-териал экрана считается в первом приближении не играющим роли;

4) волны распространяется в однородной изотропной среде;

5) обратные элементарные волны не должны приниматься во внимание.

Согласно Гюйгенсу, каждая точка выделяемого отверстием участка во-лнового фронта служит источником вто-ричных волн (в однородной изотропной среде они сферические). Построив огиба-ющую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т. е. волна огибает края отверстия - наблюдается дифракция - свет является волновым процессом.

Выводы: принцип Гюйгенса

1) является геометрическим методом построения фронта волны;

2) решает за-дачу о направлении распространения во-лнового фронта;

3) дает объяснение распространения волн, согласующееся с законами геометрической оптики;

4) упрощает задачу определения влияния всего волнового процесса, совершающегося в некотором пространстве, на точку, сведя ее к вычислению действия на данную точку произвольно выбранной волновой поверхности.

5) но: справедлив при условии, что дли-на волны много меньше размеров волнового фронта;

6) не затрагивает вопро-са об амплитуде и интенсивности волн, распространяющихся по разным направлениям.

Принцип Гюйгенса дополнен Френелем

Принцип Гюйгенса-Френеля : волновое возмущение в некоторой точке Р можно рассматривать как результат интерференции ко-герентных вторичных вол, излучаемых каждым элементом некоторой волновой поверхности.

Замечание:

1) Результат интерференция вторичных элементарных волн зависит от направления.

2) Вторичные источники явл. фиктивными. Ими могут служить бесконечно малые элементы любой замкнутой поверхности, охватывающей источник. Обычно в ка-честве поверхности выбирают одну из волновых поверхностей, все фик-тивные источники действуют синфазно.

Допущения Френеля:

1) исключил возможность возникновения обратных вторичных волн;

2) предположил, что если между источником и точкой наблюдения находится непрозрачный экран с отверстием, то на поверхности экрана амплитуда вторичных волн равна нулю, а в отверстии — такая же, как при отсутствии экрана.

Вывод: принцип Гюйгенса-Френеля служит приемом для расчетов направления распространения волн и распределения их интенсивности (амплитуды) по различным направлениям.

1) Учет амплитуд и фаз вторичных волн позволяет в каждом конкретном случае найти амплитуду (интенсивность) результирующей волны в любой точке пространства. Амплитуда волны, прошедшей экран, определяется расчетом в точке наблюдения интерференции вторичных волн от вторичных источников, располагающихся в отверстии экрана.

2) Математически строгое решение дифракционных задач на основе волнового уравнения с граничными условиями, зависящими от характера препятствий, пред-ставляет исключительные трудности. Применяются приближенные методы решения, напр. метод зон Френеля.

3) Принцип Гюйгенса-Френеля в рамках волновой теории объяснил прямолинейное распространение света.

В результате изучения данной главы студент должен: знать

  • суть метода зон Френеля;
  • теорию дифракции на круглом отверстии и круглом диске;
  • теорию дифракции в параллельных лучах от одной щели;
  • теорию дифракционной решетки (условия максимумов и минимумов, дисперсия и разрешающая способность решетки);
  • теорию дифракции от объемных решеток и формулу Брэгга - Вульфа; уметь
  • применять метод зон Френеля для расчета дифракционных картин;
  • решать типовые прикладные физические задачи на дифракцию света; владеть
  • навыками использования стандартных методов и моделей математики применительно к дифракции света;
  • навыками проведения физического эксперимента, а также обработки результатов эксперимента по дифракции света.

Метод зон Френеля. Дифракция на круглом отверстии и круглом диске

Дифракцией света называют явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Проиллюстрировать это явление могут волны на воде, которые огибают даже довольно крупное препятствие, а мелкое (по сравнению с длиной волны) препятствие проходят так, как будто его и не было. И свет при определенных условиях может заходить в область геометрической тени. Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина - чередующиеся светлые и темные кольца. Если препятствие прямолинейное (нить, щель, край экрана), то на экране возникают параллельные полосы.

Рассмотрим сначала дифракцию на круглом отверстии - дифракционную задачу о прохождении плоской монохроматической волны через небольшое круглое отверстие радиуса R в непрозрачном экране (рис. 27.1). Точка наблюдения Р находится на оси симметрии на достаточно большом расстоянии L от экрана, причем

где X - длина волны.

Рис. 27.1

В соответствии с принципом Гюйгенса - Френеля можно разбить волновую поверхность плоскости отверстия на набор вторичных источников, волны от которых дают интерференционную картину в точке Р. Исходя из круговой симметрии задачи, Френель разбил волновую поверхность падающей волны на кольцевые зоны (зоны Френеля) так, чтобы расстояния от границ соседних зон до точки Р отличались на полдлины волны:

Таким образом, волновая поверхность будет разбита на концентрические окружности (см. рис. 27.1). Найдем по теореме Пифагора радиусы р т этих окружностей (зон Френеля):

Здесь учтено условие удаленности экрана от отверстия, которое соблюдается на опыте обычно с большим запасом. Количество зон Френеля, укладывающихся на отверстии, определяется радиусом отверстия R:

где т - не обязательно целое число. Хотя для четкой интерференционной картины, как будет видно ниже, т с достаточно высокой точностью должно быть целым. Результат интерференции в точке Р зависит от числа т участвующих в интерференции зон Френеля. Покажем, что все зоны имеют одинаковую площадь S m:

Одинаковые по площади зоны, излучающие одинаковую по амплитуде волну, на первый взгляд, должны давать одинаковый вклад в освещенность в точке наблюдения. Однако это не совсем так. Чем больше номер зоны, тем больше угол а между лучом г т и нормалью к излучающей волновой поверхности. К тому же растет и расстояние до точки наблюдения г т. Оба эти фактора приводят к небольшому уменьшению амплитуды колебаний с увеличением т в точке наблюдения А т> обеспечиваемой зоной т:

Существенно, что возбуждаемые соседними зонами колебания находятся в противофазе, поскольку расстояния от них до точки наблюдения отличаются на Х/2. Поэтому волна от последующей зоны почти гасит волну от предыдущей зоны. При этом суммарная амплитуда в точке наблюдения равна конечной сумме, число слагаемых в которой ограничено величиной т

В результате группировки амплитуд видно, что суммарная амплитуда колебаний в точке наблюдения всегда меньше амплитуды колебаний, которые вызвала бы одна первая зона Френеля. Если бы отверстие было бесконечно большим и были открыты все зоны Френеля, то до точки наблюдения дошла бы невозмущенная препятствием волна с амплитудой А 0 . Тогда имеем в результате группировки амплитуд бесконечную сумму, упрощающуюся с учетом равенства (27.7):

Таким образом, действие (амплитуда), вызванное всей волновой поверхностью невозмущенной волны, равно лишь половине действия одной первой зоны. Иными словами, если отверстие в непрозрачном экране оставляет открытой одну зону Френеля, то амплитуда колебаний в точке наблюдения возрастает в 2 раза (а интенсивность - в 4 раза) по сравнению с действием невозмущенной волны. Если открыть две зоны, то амплитуда колебаний практически обращается в нуль. А если изготовить непрозрачный экран, который оставлял бы открытыми только несколько нечетных (или только несколько четных) зон, то амплитуда колебаний в точке наблюдения резко возрастет. Так, если открыты первая, третья, пятая и седьмая зоны, то амплитуда колебаний возрастает в 8 раз, а интенсивность - в 64 раза. Можно сделать вывод, что такие зонные пластинки обладают свойством фокусировать свет.

Перейдем теперь к задаче о дифракции на круглом диске , не пропускающем свет. Предположим, что при этом зоны Френеля с номерами от 1 до т оказываются закрытыми. Тогда амплитуда колебаний в точке наблюдения по аналогии с предыдущими рассуждениями дается бесконечной суммой:

Здесь учтено, что выражения в скобках в соответствии с равенством (27.7) равны нулю. Если экран закрывает не слишком много зон, то

и аналогично формуле (27.10)

Таким образом, в центре картины при дифракции света на диске наблюдается интерференционный максимум, называемый пятном Пуассона. Э го пятно окружено светлыми и темными дифракционными кольцами, причем интенсивность максимумов убывает но мере удаления от центра.

Оценим теперь характерные размеры зон Френеля. Пусть, например, дифракционная картина наблюдается на экране, расположенном на расстоянии L- 1м от препятствия, а длина волны света X = 0,5 мкм (зеленый свет). Тогда радиус первой зоны Френеля по формуле (27.3) равен

р, = 4XL ~ 0,71 мм, а радиус сотой зоны Френеля

p wo = V100XL ~ 7,1 мм.

Дифракционные явления проявляются наиболее отчетливо, когда на

препятствии укладывается малое число зон (27.4): т = ~гу ~ 1, или

Это соотношение между длиной волны X, размером препятствия R и расстоянием от препятствия до точки наблюдения L можно рассматривать как границу применимости геометрической оптики. При больших длинах волн дифракция существенна, а при меньших работают геометрическая оптика и понятие геометрического луча света.