Биографии Характеристики Анализ

Угол преломления света в воде. Законы отражения и преломления света, ход лучей в линзе

4.1. Основные понятия и законы геометрической оптики

Законы отражения света.
Первый закон отражения:
лучи, падающий и отражённый, лежат в одной плоскости с перпендикуляром к отражающей поверхности, восстановленным в точке падения луча.
Второй закон отражения:
угол падения равен углу отражения (см. рис. 8).
α - угол падения, β - угол отражения.

Законы преломления света. Показатель преломления.
Первый закон преломления:
падающий луч, преломлённый луч и перпендикуляр, восстановленный в точке падения к границе раздела, лежат в одной плоскости (см. рис. 9).


Второй закон преломления:
отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и называемая относительным показателем преломления второй среды относительно первой.

 Относительный показатель преломления показывает, во сколько раз скорость света в первой среде отличается от скорости света во второй среде:

Полное отражение.
Если свет переходит из оптически более плотной среды в оптически менее плотную, то при выполнении условия α > α 0 , где α 0 - предельный угол полного отражения, свет вообще не выйдет во вторую среду. Он полностью отразится от границы раздела и останется в первой среде. При этом закон отражения света даёт следующее соотношение:

4.2. Основные понятия и законы волновой оптики

Интерференцией называется процесс наложения волн от двух или нескольких источников друг на друга, в результате которого происходит перераспределение энергии волн в пространстве. Для перераспределения энергии волн в пространстве необходимо, чтобы источники волн были когерентны. Это означает, что они должны испускать волны одинаковой частоты и сдвиг по фазе между колебаниями этих источников с течением времени не должен изменяться.
 В зависимости от разности хода (∆) в точке наложения лучей наблюдается максимум или минимум интерференции. Если разность хода лучей от синфазных источников ∆ равна целому числу длин волн (m - целое число), то это максимум интерференции:

если нечётному числу полуволн - минимум интерференции:

Дифракцией называют отклонение в распространении волны от прямолинейного направления или проникновение энергии волн в область геометрической тени. Дифракция хорошо наблюдается в тех случаях, когда размеры препятствий и отверстий, через которые проходит волна, соизмеримы с длиной волны.
 Один из оптических приборов, на котором хорошо наблюдать дифракцию света - это дифракционная решётка. Она представляет собой стеклянную пластинку, на которую на равном расстоянии друг от друга алмазом нанесены штрихи. Расстояние между штрихами - постоянная решётки d. Лучи, прошедшие через решётку, дифрагируют под всевозможными углами. Линза собирает лучи, идущие под одинаковым углом дифракции, в одной из точек фокальной плоскости. Идущие под другом углом - в других точках. Накладываясь друг на друга, эти лучи дают максимум или минимум дифракционной картины. Условия наблюдения максимумов в дифракционной решётке имеют вид:

где m - целое число, λ - длина волны (см. рис. 10).

Рассмотрим, как меняется направление луча при переходе его из воздуха в воду. В воде скорость света меньше, чем в воздухе. Среда, в которой скорость распространения света меньше, является оптически более плотной средой.

Таким образом, оптическая плотность среды характеризуется различной скоростью распространения света .

Это значит, что скорость распространения света больше в оптически менее плотной среде. Например, в вакууме скорость света равна 300 000 км/с, а в стекле - 200 000 км/с. Когда световой пучок падает на поверхность, разделяющую две прозрачные среды с разной оптической плотностью, например воздух и воду, то часть света отражается от этой поверхности, а другая часть проникает во вторую среду. При переходе из одной среды в другую луч света изменяет направление на границе сред (рис. 144). Это явление называется преломлением света .

Рис. 144. Преломление света при переходе луча из воздуха в воду

Рассмотрим преломление света подробнее. На рисунке 145 показаны: падающий луч АО, преломлённый луч ОВ и перпендикуляр к поверхности раздела двух сред, проведённый в точку падения О. Угол АОС - угол падения (α) , угол DOB - угол преломления (γ) .

Рис. 145. Схема преломления луча света при переходе из воздуха в воду

Луч света при переходе из воздуха в воду меняет своё направление, приближаясь к перпендикуляру CD.

Вода - среда оптически более плотная, чем воздух. Если воду заменить какой-либо иной прозрачной средой, оптически более плотной, чем воздух, то преломлённый луч также будет приближаться к перпендикуляру. Поэтому можно сказать, что если свет идёт из среды оптически менее плотной в более плотную среду, то угол преломления всегда меньше угла падения (см. рис. 145):

Луч света, направленный перпендикулярно к границе раздела двух сред, проходит из одной среды в другую без преломления.

При изменении угла падения меняется и угол преломления. Чем больше угол падения, тем больше угол преломления (рис. 146). При этом отношение между углами не сохраняется. Если составить отношение синусов углов падения и преломления, то оно остаётся постоянным.

Рис. 146. Зависимость угла преломления от угла падения

Для любой пары веществ с различной оптической плотностью можно написать:

где n - постоянная величина, не зависящая от угла падения. Она называется показателем преломления для двух сред. Чем больше показатель преломления, тем сильнее преломляется луч при переходе из одной среды в другую.

Таким образом, преломление света происходит по следующему закону: лучи падающий, преломлённый и перпендикуляр, проведённый к границе раздела двух сред в точке падения луча, лежат в одной плоскости.

Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред:

В атмосфере Земли происходит преломление света, поэтому мы видим звёзды и Солнце выше их истинного расположения на небе.

Вопросы

  1. Как меняется направление луча света (см. рис. 144) после того, как в сосуд наливают воду?
  2. Какие выводы получены из опытов по преломлению света (см. рис. 144, 145)?
  3. Какие положения выполняются при преломлении света?

Упражнение 47

Изменение направления распространения оптического излучения (с в е т а) при его прохождении через границу раздела двух сред. На протяжённой плоской границе раздела однородных изотропных прозрачных (непоглощающих) сред с преломления показателями n1 и n2 П. С. определяется . двумя закономерностями: преломлённый лежит в плоскости, проходящей через падающий луч и нормаль (перпендикуляр) к поверхности раздела; углы падения j и преломления c (рис.) связаныn Снелля законом преломления: n1sinj=n2sinc.

Ход лучей света при преломлении на плоской поверхности, разделяющей две прозрачные среды. Пунктиром обозначен отражённый луч. Угол преломления % больше угла падения j; это указывает, что в данном случае происходит преломление из оптически более плотной первой среды в оптически менее плотную вторую (n1>n2). n - нормаль к поверхности раздела.

П. с. сопровождается и отражением света; при этом сумма энергий преломлённого и отражённого пучков лучей (количеств. выражения для них следуют из Френеля формул) равна энергии падающего пучка. Их относит. интенсивности зависят от угла падения, значений n1 и n2 и поляризации света в падающем пучке. При н о р м а л ь н о м п а д е н и и отношение ср. энергий преломлённой и упавшей световых волн равно 4n1n2/(n1+n2)2; в существенном частном случае прохождения света из воздуха (n1 с большой точностью=1) в стекло с n2=1,5 оно составляет 96%. Если n2 энергия, принесённая на границу раздела падающей световой волной, уносится отражённой волной (явление полного внутреннего отражения). При любых j, кроме j=0, П. с. сопровождается изменением поляризации света (наиболее сильным при т. н. угле Брюстера j=arctg(n2/n1), (см. БРЮСТЕРА ЗАКОН), что используют для получения линейно-поляризованного света (см. В ОПТИКЕ). Зависимость П. с. от поляризации падающих лучей наглядно проявляется при двойном лучепреломлении в оптически анизотропных средах. В поглощающих средах П. с. можно строго описать, формально используя те же выражения, что и для непоглощающих сред, но рассматривая n как комплексную величину (мнимая часть к-рой характеризует средой; (см. МЕТАЛЛООПТИКА). c при этом становится также комплексным и теряет простой смысл угла преломления, какой он имеет для непоглощающих сред. В общем случае n среды зависит от длины l света (дисперсия света); поэтому при преломлении немонохроматич. света составляющие его лучи с разл. l идут по разным направлениям. На законах П. с. основано устройство линз и мн. оптич. приборов, служащих для изменения направления световых лучей и получения изображений оптических.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

Изменение направления распространения световой волны (светового луча) при прохождении через границу раздела двух различных прозрачных сред. На плоской границе раздела двух однородных изотропных сред с абс. преломления показателями и П. с. определяется след. законами: падающий, отражённый и преломлённый лучи и нормаль к границе раздела в точке падения лежат в одной плоскости (плоскости падения); углы падения и преломления (рис. 1), образованные соответствующими лучами с нормалью, и показатели преломления сред и связаны для монохроматич. света Снелля законом преломления

Рис. 1. Преломление света на границе раздела двух сред с n 1 и стрелками показано расположение компонент электрического вектора в плоскости падения, кружками с точкой - перпендикулярно плоскости падения.


Обычно П. с. сопровождается отражением света от той же границы. Для непоглощающих (прозрачных) сред полная энергия светового потока преломлённой волны равна разности энергий потоков падающей и отражённой волн (закон сохранения энергии). Отношение интенсивностей светового потока преломлённой волны к падающей - коэф. пропускания границы раздела сред - зависит от поляризации света падающей волны, угла падения и показателей преломления и Строгое определение интенсивности преломлённой (и отражённой) волны может быть получено из решения ур-ний Максвелла с соответствующими граничными условиями для элект-рич. и магн. векторов световой волны и выражается Френеля формулами. Если электрич. вектор падающей и преломлённой волн разложить на две (лежащую в плоскости падения) и (перпендикулярную к ней), ф-лы Френеля для коэф. пропускания соответствующих компонент имеют вид


Зависимость величин и от приведена на рис. 2. Из выражений (*) и рис. 2 следует, что для всех углов падения кроме частного случая нормального падения , когда

Это означает, что для всех (кроме = 0) происходит преломлённого света. Если на границу раздела падает естественный (не поляризованный) , для к-рого то в преломлённой волне т. е. свет будет частично поляризованным. Наиб. значит. преломлённой волны происходит при падении под углом Брюстера = когда (рис. 2). При этом < 1, а = 1, т. е. преломление поляризов. света с не сопровождается отражением.

Рис. 2. Зависимость коэффициентов пропускания и для волн различной поляризации от угла падения при преломлении на границе ( =1) - стекло (с показателем преломления = 1,52); - для падающего неполяризованного света.


Если свет падает из среды оптически менее плотной в более плотную (), то и преломлённый луч существует при всех значениях угла от О до Если свет падает из среды оптически более плотной в менее плотную то и преломлённая волна существует лишь в пределах угла падения от = 0 до = arcsin. При углах падения > arcsinП. с. не происходит, существует только отраженная волна - явление полного внутреннего отражения.

В оптически анизотропных средах в общем случае образуются две преломлённые световые волны с взаимно перпендикулярной поляризацией (см. Кристаллооптика).

Формально законы П. с. для прозрачных сред могут быть распространены и на поглощающие среды, если рассматривать для таких сред как комплексную величину где к - показатель поглощения. В случае металлов, обладающих сильным поглощением (и большим коэф. отражения), идущая внутрь металла волна поглощается в тонком приповерхностном слое и понятие проломленной волны теряет смысл (см. Металлооптика).

Поскольку показатель преломления сред зависит от длины волны света l (см. Дисперсия света), то в случае падения на границу раздела прозрачных сред немоно-хроматич. света преломлённные лучи разл. длин волн идут по разл. направлениям что используется в дисперсионных призмах.

На П. с. на выпуклых, вогнутых и плоских поверхностях прозрачных сред основано линз, служащих для получения изображений оптических, дисперсионных призм и др. оптич. элементов.

Если показатель преломления изменяется непрерывно (напр., в атмосфере с высотой), то при распространении светового луча в такой среде также происходит непрерывное изменение направления распространения - луч искривляется в сторону большего значения показателя преломления (см. Рефракция света в атмосфере), но при этом отражения света не происходит.

Под действием излучения большой интенсивности, создаваемого мощными лазерами, среда становится нелинейной. Индуцированные в молекулах среды под действием сильного электрич. поля световой волны диполи вследствие ангармоничности колебаний электронов молекул излучают в среде вторичные волны не только на частоте падающего излучения, но также волны с удвоенной частотой - гармоники - 2 (и более высокие гармоники 3, ...). С молекулярной точки зрения интерференция этих вторичных волн приводит к образованию в среде результирующих преломлённых волн с частотой (как в линейной оптике) (см. Гюйгенса - Френеля принцип), а также с частотой , к-рым соответствуют макроскопич. показатели преломления и Вследствие дисперсии среды и, следовательно, в среде образуются две преломлённые волны с частотами и распространяющиеся по разл. направлениям. При этом интенсивность преломлённой волны на частоте значительно меньше интенсивности на частоте (подробнее см. в ст. Нелинейная оптика).

Лит.: Ландсберг Г. С., Оптика, 5 изд., М., 1976; Сивухин Д. В., Общий курс физики, 2 изд., [т. 4] - Оптика, М., 1985. В. И. Малышев.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ПРЕЛОМЛЕНИЕ СВЕТА" в других словарях:

    ПРЕЛОМЛЕНИЕ СВЕТА, изменение направления распространения света при прохождении через границу раздела двух прозрачных сред. Угол падения j и угол преломления c связаны соотношением: sinj/sinc=n2/n1=v1/v2, где n1 и n2 показатели преломления сред,… … Современная энциклопедия

    Изменение направления распространения света при прохождении через границу раздела двух прозрачных сред. угол падения и угол преломления связаны соотношением: где n1 и n2 показатели преломления сред, v1 и v2 скорости света в 1 й и 2 й средах … Большой Энциклопедический словарь

    преломление света - рефракция Изменение направления распространения света при прохождении через границу раздела двух сред или в среде с переменным от точки к точке коэффициентом преломления. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия… … Справочник технического переводчика

    ПРЕЛОМЛЕНИЕ СВЕТА, изменение направления светового луча при переходе из одной среды в другую. Отношение синуса угла падения (р к синусу угла преломления ip или, что то же, отношение скоростей распространения световой волны в одной и в другой… … Большая медицинская энциклопедия

    Изменение направления распространения света при прохождении через границу раздела двух прозрачных сред. Угол падения (и отражения) φ и угол преломления χ связаны соотношением: , где n1 и n2 показатели преломления сред, v1 и v2 скорости света… … Энциклопедический словарь

    Изменение направления распространения света при прохождении через границу раздела двух прозрачных сред. Угол падения (и отражения) ф и угол преломления х связаны соотношением: где п1 и n2 показатели преломления сред, v1 и v2 скорости света в 1 й… … Естествознание. Энциклопедический словарь

    преломление света - šviesos lūžimas statusas T sritis Standartizacija ir metrologija apibrėžtis Šviesos bangų sklidimo krypties kitimas nevienalytėje aplinkoje. atitikmenys: angl. refraction of light vok. Lichtbrechung, f rus. преломление света, n pranc. réfraction… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

Под явлением преломления световой волны понимают изменение направления распространения фронта этой волны при ее переходе из одной прозрачной среды в другую. Многие оптические инструменты и глаз человека используют это явление для выполнения своих функций. В статье рассматриваются законы преломления света и их использование в оптических приборах.

Процессы отражения и преломления света

Рассматривая вопрос законов преломления света, следует упомянуть и о явлении отражения, поскольку оно тесным образом связано с данным явлением. Когда свет переходит из одной прозрачной среды в другую, то на границе раздела этих сред с ним происходит одновременно 2 процесса:

  1. Часть светового пучка отражается обратно в первую среду под углом, равным углу падения начального пучка на поверхность раздела.
  2. Вторая часть пучка попадает во вторую среду и продолжает распространение в уже ней.

Отмеченное выше говорит о том, что интенсивность начального пучка света будет всегда больше, чем у отраженного и преломленного света по отдельности. Как распределится эта интенсивность этими между пучками, зависит от свойства сред и от угла падения света на границу их раздела.

В чем заключается суть процесса преломления света?

Часть пучка света, который падает на поверхность между двумя прозрачными средами, продолжает свое распространение во второй среде, однако направление его распространения уже будет отличаться от первоначального направления в 1-й среде на некоторый угол. В этом и заключается явления преломления света. Физическая причина этого явления заключается в разнице скоростей распространения световой волны в разных средах.

Напомним, что свет имеет максимальную скорость распространения в вакууме, она равна 299 792 458 м/с. В любом материале эта скорость всегда меньше, причем, чем большую плотность имеет среда, тем медленнее в ней распространяется электромагнитная волна. Например, в воздухе скорость света равна 299 705 543 м/с, в воде при 20 °C уже 224 844 349 м/с, а в алмазе она падает больше, чем в 2 раза относительно скорости в вакууме, и составляет 124 034 943 м/с.

Этот принцип предоставляет геометрический метод для нахождения волнового фронта в любой момент времени. Принцип Гюйгенса предполагает, что каждая точка, до которой доходит волновой фронт, является источником электромагнитных вторичных волн. Они распространяются во всех направлениях с одинаковой скоростью и частотой. Результирующий же фронт волны определяется, как совокупность фронтов всех вторичных волн. Иными словами, фронт представляет собой поверхность, которая касается сфер всех вторичных волн.

Демонстрация использования этого геометрического принципа для определения волнового фронта показана на рисунке ниже. Как видно из данной схемы, все радиусы сфер вторичных волн (показаны стрелками) одинаковы, поскольку волновой фронт распространяется в гомогенной с оптической точки зрения среде.

Применение принципа Гюйгенса для процесса преломления света

Для понимания закона преломления света в физике можно воспользоваться принципом Гюйгенса. Рассмотрим некоторый световой поток, который падает на границу раздела двух сред, причем скорость движения электромагнитной волны в первой среде больше таковой для второй.

Как только часть фронта (слева на рисунке ниже) доходит до раздела сред, в каждой точке поверхности раздела начинают возбуждаться вторичные сферические волны, которые будут уже распространяться во второй среде. Поскольку скорость движения света во второй среде меньше этой величины для первой среды, то часть фронта, которая еще не достигла границы раздела сред (справа на рисунке) продолжит распространяться с большей скоростью, чем та часть фронта (левая), которая уже попала во вторую среду. Рисуя окружности вторичных волн для каждой точки с соответствующим радиусом, равным v*t, где t - некоторое определенное время распространения вторичной волны, а v - скорость ее распространения во второй среде, а затем проводя кривую касательную ко всем поверхностям вторичных волн, можно получить фронт распространения света во второй среде.

Как видно из рисунка, этот фронт окажется отклоненным на некоторый угол от первоначального направления его распространения.

Отметим, что если бы скорости движения волн были равны в обеих средах, или если бы свет падал перпендикулярно на границу раздела, тогда никакой речи о процессе преломления не могло бы идти.

Законы преломления света

Эти законы были получены экспериментальным путем. Пусть 1 и 2 - это две прозрачные среды, скорости распространения электромагнитных волн в которых равны v 1 и v 2 , соответственно. Пусть из среды 1 на границу раздела падает луч света под углом θ 1 к нормали, а во второй среде он продолжает распространяться уже под углом θ 2 к нормали к поверхности раздела. Тогда формулировка законов преломления света будет следующей:

  1. В одной и той же плоскости будут находиться два луча (падающий и преломленный) и нормаль, восстановленная к поверхности раздела сред 1 и 2.
  2. Отношение скоростей распространения луча в средах 1 и 2 будет прямо пропорционально отношению синусов углов падения и преломления, то есть sin(θ 1)/sin(θ 2) = v 1 /v 2 .

Второй закон называется законом Снелла. Если учесть, что показатель или коэффициент преломления прозрачной среды определяется, как отношения скорости света в вакууме к этой скорости в среде, тогда формулу закона преломления света можно переписать в виде: sin(θ 1)/sin(θ 2) = n 2 /n 1 , где n 1 и n 2 - коэффициенты преломления сред 1 и 2, соответственно.

Таким образом, математическая формула закона свидетельствует о том, что произведение синуса угла на коэффициент преломления для конкретной среды является постоянной величиной. Более того, учитывая тригонометрические свойства синуса, можно сказать, что если v 1 >v 2 , тогда свет при переходе через границу раздела сред будет приближаться к нормали, и наоборот.

Краткая история открытия закона

Кто открыл закон преломления света? На самом деле впервые он был сформулирован средневековым астрологом и философом Ибн Сахлом в X веке. Вторичное открытие закона произошло в XVII веке, и сделал это голландский астроном и математик Снелл ван Ройен, поэтому во всем мире второй закон преломления носит его имя.

Интересно отметить, что немного позднее этот закон также был открыт французом Рене Декартом, поэтому во франкоговорящих странах он носит его имя.

Пример задачи

Все задачи на закон преломления света основаны на математической формулировке закона Снелла. Приведем пример такой задачи: необходимо найти угол распространения светового фронта при его переходе из алмаза в воду при условии, что на поверхность раздела этот фронт падает под углом 30 o к нормали.

Чтобы решить эту задачу необходимо знать либо коэффициенты преломления рассматриваемых сред, либо скорости распространения электромагнитной волны в них. Обращаясь к справочным данным можно записать: n 1 = 2,417 и n 2 = 1,333, где цифрами 1 и 2 обозначены алмаз и вода соответственно.

Подставляя полученные значения в формулу, получаем: sin(30 o)/sin(θ 2) = 1,333/2,417 или sin(θ 2) = 0,39 и θ 2 = 65,04 o , то есть луч значительно удалится от нормали.

Интересно отметить, что если бы угол падения составил больше 33,5 o , то, в соответствии с формулой закона преломления света, не существовало бы преломленного луча, а весь световой фронт отразился бы обратно в алмазную среду. Этот эффект известен в физике как полное внутреннее отражение.

Где применяется закон преломления?

Практическое применение закона преломления света разнообразно. Можно без преувеличения сказать, что на этом законе работает большинство оптических приборов. Преломление светового потока в оптических линзах используется в таких приборах, как микроскопы, телескопы и бинокли. Без существования эффекта преломления невозможно было бы человеку видеть окружающий мир, ведь стекловидное тело и хрусталик глаза - это биологические линзы, выполняющие функцию фокусировки светового потока в точку на чувствительной сетчатке глаза. Кроме того, закон полного внутреннего отражения находит свое применение в световых волокнах.

В предыдущих параграфах мы изучили явление отражения света. Познакомимся теперь со вторым явлением, при котором лучи меняют направление своего распространения. Это явление – преломление света на границе раздела двух сред. Взгляните на чертежи с лучами и аквариумом в § 14-б. Луч, выходящий из лазера, был прямолинейным, но, дойдя до стеклянной стенки аквариума, луч изменил направление – преломился.

Преломлением света называют изменение направления луча на границе раздела двух сред, при котором свет переходит во вторую среду (сравните с отражением). Например, на рисунке мы изобразили примеры преломления светового луча на границах воздуха и воды, воздуха и стекла, воды и стекла.

Из сравнения левых чертежей следует, что пара сред «воздух-стекло» преломляет свет сильнее, чем пара сред «воздух-вода». Из сравнения правых чертежей видно, что при переходе из воздуха в стекло свет преломляется сильнее, чем при переходе из воды в стекло. То есть, пары сред, прозрачные для оптических излучений, обладают различной преломляющей способностью, характеризующейся относительным показателем преломления. Он вычисляется по формуле, указанной на следующей странице, поэтому может быть измерен экспериментально. Если в качестве первой среды выбран вакуум, то получаются значения:

Эти значения измерены при 20 °С для жёлтого света. При другой температуре или другом цвете света показатели будут иными (см. § 14-з). При качественном рассмотрении таблицы отметим: чем больше показатель преломления отличается от единицы, тем больше угол, на который отклоняется луч, переходя из вакуума в среду. Поскольку показатель преломления воздуха почти не отличается от единицы, влияние воздуха на распространение света практически незаметно.

Закон преломления света. Чтобы рассмотреть этот закон, введём определения. Угол между падающим лучом и перпендикуляром к границе раздела двух сред в точке излома луча назовём углом падения (a ). Аналогично, угол между преломлённым лучом и перпендикуляром к границе раздела двух сред в точке излома луча назовём углом преломления (g ).

При преломлении света всегда выполняются закономерности, составляющие закон преломления света: 1. Луч падающий, луч преломлённый и перпендикуляр к границе раздела сред в точке излома луча лежат в одной плоскости. 2. Отношение синуса угла падения к синусу угла преломления – постоянная величина, не зависящая от углов:

Применяют и качественную трактовку закона преломления света: при переходе света в оптически более плотную среду луч отклоняется к перпендикуляру к границе раздела сред. И наоборот.

Принцип обратимости световых лучей. При отражении или преломлении света падающий и отражённый лучи всегда можно поменять местами. Это означает, что ход лучей не изменится, если изменить их направления на противоположные. Многочисленные опыты подтверждают: при этом «траектория» хода лучей не меняется (см. чертёж).