Биографии Характеристики Анализ

Временное и стационарное уравнение шредингера. Уравнение Шредингера для частицы в потенциальной яме

УРАВНЕНИЕ ШРЕДИНГЕРА
И ЕГО ЧАСТНЫЕ СЛУЧАИ (продолжение): прохождение частицы через ПОТЕНЦИАЛЬНЫЙ БАРЬЕР, Гармонический осциллятор

Прохождение частицы через потенциальный барьер для классического случая нами уже рассматривался в ЛЕКЦИИ 7 ЧАСТИ 1 (см. рис. 7.2). Рассмотрим теперь микрочастицу, полная энергия которой меньше уровня U потенциального барьера (рис. 19.1). В классическом варианте в этом случае прохождение частицы через барьер невозможно. Однако в квантовой физике существует вероятность, что частица пройдет. Причем она не "перепрыгнет" через него, а как бы "просочится", употребив свои волновые качества. Поэтому эффект еще называется "туннельным". Для каждой из областей I, II, III запишем стационарное уравнение Шредингера (18.3).

Для I и III : , (19.1, а)

для II: https://pandia.ru/text/78/010/images/image005_107.gif" width="71" height="32">, где a = const. Тогда и y" = . Подстановка y" в (19.1a) дает: Искомое общее решение для области I запишется в виде суперпозиции

https://pandia.ru/text/78/010/images/image010_62.gif" width="132" height="32 src="> . (19.3)

В этом случае начальная точка распространения волны сдвинута на L , a В 3 = 0 , поскольку в области III имеется только проходящая волна.

В области II (барьер) подстановка y" в (19.1б) дает

https://pandia.ru/text/78/010/images/image012_51.gif" width="177" height="32">.

Вероятность прохождения характеризуется коэффициентом прохождения - отношением интенсивности прошедшей волны к интенсивности падающей:

(0) = y2"(0) , y2"(L ) = y3"(L ); (19.5)

из которых первые два означают "сшивание" функций на левой и на правой границах барьера, а третье и четвертое - гладкость такого перехода. Подставляя в (19.5) функции y1, y2 и y3, получим уравнения

Поделим их на А 1 и обозначим a 2=A 2/A 1; b 1=B 1/A 1; a 3=A 3/A 1; b 2=B 2/A 1.

. (19.6)

Умножим первое уравнение (19.6) на i k и сложим со вторым. Получим 2 i k = a 2(q + i k ) - b 2(q - i k ) . (19.7)

Вторую пару уравнений (19.6) будем рассматривать как систему двух уравнений с неизвестными a 2 и b 2.

Детерминанты этой системы:

https://pandia.ru/text/78/010/images/image017_33.gif" width="319" height="32">,

где e-qL (q+ i k) 2 » 0, т. к. qL >> 1.

Поэтому https://pandia.ru/text/78/010/images/image019_32.gif" width="189" height="63">, и, чтобы найти модуль комплексной величины а 3, умножим числитель и знаменатель полученной дроби на (q + i k )2. После простых преобразований получим

https://pandia.ru/text/78/010/images/image021_30.gif" width="627" height="135 src=">Обычно E/U ~ 90% и весь коэффициент перед "е" имеет порядок единицы. Поэтому вероятность прохождения частицы через барьер определяется следуюшим соотношением:

https://pandia.ru/text/78/010/images/image023_24.gif" width="91" height="44">.

Это означает, что при E < U частица барьера не преодолеет, т. е. туннельный эффект в классической физике отсутствует.

Этот эффект используется в инженерной практике для создания туннельных диодов, широко применяемых в радиотехнических устройствах (см. ЧАСТЬ 3, ЛЕКЦИЯ 3).

Кроме того, оказалось возможным инициировать в земных условиях термоядерную реакцию синтеза, которая на Солнце идет в обычных для Солнца условиях - при температуре T ~ 109 K . На Земле такой температуры нет, однако, благодаря туннельному эффекту, есть вероятность запуска реакции при температуре T ~ 107 K , имеющей место при взрыве атомной бомбы, которая и явилась запальным устройством для водородной . Более подробно об этом в следующей части курса.

Гармонический осциллятор. Классический гармонический осциллятор нами также уже рассматривался (ЛЕКЦИИ 1,2 ЧАСТИ 3). Им, например, является пружинный маятник, полная энергия которого E = mV 2/2 + kx 2/2. Теоретически эта энергия может принимать непрерывный ряд значений, начиная от нуля.

Квантовый гармонический осциллятор - это колеблющаяся по гармоническому закону микрочастица, находящаяся в связанном состоянии внутри атома или ядра. При этом потенциальная энергия остается классической, характеризуя аналогичную упругую возвращающую силу kx . Учитывая, что циклическая частота получим для потенциальной энергии https://pandia.ru/text/78/010/images/image026_19.gif" width="235" height="59">. (19.9)

В математическом отношении задача эта еще более сложная, чем предыдущие. Поэтому ограничимся констатацией того, что получится в результате. Как и в случае с одномерной ямой, мы получим дискретный спектр собственных функций и собственных энергий, и одному собственному значению энергии будет соответствовать одна волновая функция: En Û yn (нет вырождения состояний, как в случае с трехмерной ямой). Плотность вероятности |yn|2 также представляет собой осциллирующую функцию, однако высота "горбов" различна. Это уже не банальный sin 2 , а более экзотические полиномы Эрмита Hn (x ). Волновая функция имеет вид

, где С n - зависящая от n константа. Спектр собственных значений энергий:

, (19.10)

где квантовое число n = 0, 1, 2, 3 ... . Таким образом, существует и "нулевая энергия" , выше которой спектр энергий образует "этажерку", где полочки расположены на одинаковом расстоянии друг от друга (рис. 19.2). На том же рисунке для каждого уровня энергии показана соответствующая плотность вероятности |yn|2, а также потенциальная энергия внешнего поля (пунктирная парабола).

Существование отличной от нуля минимально возможной энергии осциллятора имеет глубокий смысл. Это означает, что колебания микрочастиц не прекращаются никогда , что в свою очередь означает недостижимость абсолютного нуля температуры.

1. , Бурсиан физика: Курс лекций с компьютерной поддержкой: Учеб. пособие для студ. высш. учеб. заведений: В 2 т. – М.: Изд-во ВЛАДОС-ПРЕСС, 2001.

В принципе ничего особенного, их можно найти в таблицах и даже построить графики.

Временное и стационарное уравнение Шредингера

Статистическое толкование волн де Бройля и соотношение неопределенностей Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции (x,y,z,t), так как именно она, или точнее, величина 2 , определяет вероятность пребывания частицы в момент времени t в объеме dV, т.е. в области с координатами х и х+dx, y и y+dy, z и z+dz. Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны.

Это уравнение постулируется, а его правильность подтверждается согласием с опытом получаемых с его помощью результатов.

Основное уравнение нерелятивистской квантовой механики (1926 г.)

4.1.Временное уравнение Шредингера:

Уравнение справедливо для нерелятивистских частиц << ,

где {\displaystyle \hbar ={h \over 2\pi }} – масса частицы; - мнимая единица; – потенциальная функция частицы в силовом поле, в котором она движется; – искомая волновая функция; ∆ – оператор Лапласа

Условия, накладываемые на волновую функцию:

Волновая функция должна быть конечной, однозначной и непрерывной.

Производные ∂Ψ/∂x, ∂Ψ/∂y, ∂Ψ/∂z , ∂Ψ/∂t должны быть непрерывны.

Функция 2 должна быть интегрируема (это условие сводится к условию нормировки вероятностей).

4.2.Стационарное уравнение Шредингера

В случае стационарного силового поля (функция U=U(x, у, z) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем ).

Тогда волновая функция для стационарных состояний (состояний с фиксированными значениями энергии) может быть представлена в виде:

Стационарное уравнение Шредингера:

получилось после подстановки волновой функции во временное уравнение Шредингера и преобразований (∆ - оператор Лапласа, m – масса частицы; - приведенная постоянная Планка ( = h/2π ); E – полная энергия частицы, U – потенциальная энергия частицы. В классической физике величина (E –U )равнялась бы кинетической энергии частицы. В квантовой механике вследствие соотношения неопределенностей понятие кинетической энергии лишено смысла. Здесь потенциальная энергия U – это характеристика внешнего силового поля , в котором движется частица. Это величина вполне определенная. Она также является функцией координат, в данном случае U =U (x,y,z)).

Уравнение Шредингера

Уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого вытекали бы волновые свойства частиц. Оно должно быть уравнением относительно волновой функции Ψ(х , у , z , t ), так как величина Ψ 2 определяет вероятность пребывания частицы в момент времени в объеме.

Основное уравнение сформулированоЭ. Шредингером: уравнения не выводится, а постулируется.

Уравнение Шредингера имеет вид:

- ΔΨ + U (x ,y , z , t = iħ , (33.9)

где ħ=h/ (2π ), т -масса частицы, Δ-оператор Лапласа, i - мнимая единица,U (x ,y ,z ,t ) - потенциальная функция частицы в силовом поле, в котором она движется, Ψ(x ,y , z , t ) - искомая волновая функция частицы.

Уравнение (32.9) является общим уравнением Шредингера . Его также называют уравнением Шредингера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение (33.9) можно упростить, исключив зависимость Ψ от времени, иными словами, найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функцияU (x ,y ,z ,t ) не зависит явно от времени и имеет смысл потенциальной энергии.

Ψ + (E -U )Ψ = 0. (33.10)

Уравнение (33.10) называется уравнением Шредингера для стационарных состояний .

В это уравнение в качестве параметра входит полная энергия Е частицы. Решение уравнения имеет место не при любых значениях параметра Е , а лишь при определенном наборе, характерном для данной задачи. Эти значения энергии называются собственными. Собственные значения Е могут образовывать как непрерывный и дискретный ряд.

33.5. Частица в одномерной прямоугольной «потенциальной яме с бесконечно высокими «стенками»

Свободная частица - частица, движущаяся в отсутствие внешних полей. Так как на свободную частицу (пусть она движется вдоль оси х ) силы не действуют, то потенциальная энергия частицы U (х ) = соnstи ее можно принять равной нулю. Тогда полная энергия частицы совпадает с ее кинетической энергией. Энергия свободной частицы может принимать любые значения, т. е. ее энергетический спектр является непрерывным. Свободная квантовая частица описывается плоской монохроматической волной де Бройля, и все положения свободной частицы в пространстве являются равновероятными.

Проведем качественный анализ решений уравнения Шредингера применительно к свободной частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками» (рис.33.1). Такая «яма» описывается потенциальной энергией вида (для простоты принимаем, что частица движется вдоль оси х )

∞, х < 0

U (x ) = {0, 0 ≤ х ≤ l }(33.11)

∞, х > 1

где l - ширина «ямы», а энергия отсчитывается от ее дна (рис.33.1).

Уравнение Шредингера для стационарных состояний в случае одномерной задачи запишется в виде

+ (Е- U = 0. (33.12)

По условию задачи (бесконечно высокие «стенки»), частица не проникает за пределы «ямы», поэтому вероятность ее обнаружения (а следовательно, и волновая функция) за пределами «ямы» равна нулю. На границах «ямы» (при х =0 и х=l ) непрерывная волновая функция также должна обращаться в нуль. Следовательно, граничные условия в данном случае имеют вид

Ψ(0)=Ψ(l )=0. (33.13)

В пределах «ямы» уравнение Шредингера сведется к уравнению

+ Е Ψ = 0. (33.14)

Стационарное уравнение Шредингера, описывающее движение частицы в «потенциальной яме» с бесконечно высокими «стенками», удовлетворяется только при собственных значениях Е п зависящих от целого числа п .

Е п = ,( n= 1, 2, 3, …).(33.15)

Основная идея Шрёдингера состоит в том, чтобы математическую аналогию между геометрической оптикой и классической механикой перенести на волновые свойства света и частиц.

Получим уравнение Шрёдингера из выражения для волновой функции свободного электрона . Перепишем его в комплексной форме .

Используя связи частоты с энергией, а волнового числа с импульсом, получаем: .

В общем случае – полная энергия частицы, , – кинетическая энергия и –энергия взаимодействия.

Найдем первую производную по и вторую по координате от ф-ции Y: (1), (2).

Домножим уравнение (1) на , а уравнение (2) на (таким образом множители в правых частях будут иметь размерность энергии):

, .

Сложим полученные уравнения:

.

Так как , то последнее равенство перепишется в виде .

Это и есть уравнение Шрёдингера. Оно получено для одной координаты . Если его переписать для 3 координат , то введя оператор Лапласа, окончательно будем иметь

.

Уравнение Шрёдингера нельзя непосредственно вывести из фундаментальных законов классической физики. Уравнение Шрёдингера позволяет находить волновую функцию в произвольный момент времени. Для этого надо знать волновую ф-цию в фиксированный момент времени, массу частицы и энергию взаимодействия частицы с силовым полем. Найденная волновая ф-ция дает возможность рассчитать вероятность нахождения частицы в произвольной точке пространства для любого момента времени.

Основные свойства, которым должны удовлетворять волновые функции – решения уравнения Шрёдингера:

1. Волновая функция линейна, т.е. если …- решения уравнения, то их линейная комбинация – решение.

2. Первые частные производные по координатам являются линейными

3. Волновая функция и её пространственные производные должны быть однозначными, конечными и непрерывными.

4. При стремлении к ∞ значение волновой функции должно стремиться к нулю.

Уравнение Шрёдингера для стационарных состояний.

Если силовое поле, в котором движется описываемая частица, стационарно, то потенциал его не зависит явно от времени, а функция имеет смысл потенциальной энергии и зависит только от координат . В этом случае волновую функцию можно представить как произведение двух. Одна функция зависит только от , другая – только от времени :

Подставим последнее выражение в уравнение Шрёдингера

После сокращения на временной множитель и некоторых элементарных преобразований получим: (*).

Это уравнение Шрёдингера для стационарных состояний. В него входит только координатная часть волновой ф-ции – . Если последняя будет найдена, то полная волновая ф-ция находится домножением координатной части на временной множитель .

Поскольку вероятность определяется квадратом волновой ф-ции, а квадрат комплексной величины находится умножением на комплексно сопряженную, то имеет место следующее соотношение для стационарных волновых функций:

Таким образом, чтобы найти волновую ф-цию для стационарных состояний, необходимо решить уравнение (*) и знать полную энергию .

Свободное движение частиц.

Во время свободного движения квантовой частицы никакие силы на нее не действуют и можно ее потенциальную энергию равной нулю. Пусть движение частицы происходит в направлении , тогда (*) принимает вид: .

Частным решением этого уравнения является ф-ции вида , где и – константы. Если подставить искомое решение в само уравнение, то мы получим связь энергии частицы и величины :

Полная волновая функция с учетом зависимости от времени для свободной частицы имеет вид . Это плоская монохроматическая волна с частотой и волновым числом . Так как , а , то .

Частица со спином обладает также и определенным «собственным» магнитным моментом . Соответствующий ему квантовомеханический оператор пропорционален оператору спина s, т. е. может быть, записан в виде

где s - величина спина частицы, - характерная для частицы постоянная. Собственные значения проекции магнитного момента равны Отсюда видно, что коэффициент (который и называют обычно просто величиной магнитного момента) представляет собой наибольшее возможное значение достигаемое при проекции спина

Отношение дает отношение собственного магнитного момента частицы к ее собственному механическому моменту (когда оба направлены по оси ). Как известно, для обычного (орбитального) момента это отношение равно (см. II, § 44). Коэффициент же пропорциональности между собственным магнитным моментом и спином частицы оказывается иным. Для электрона он равен - т. е. вдвое больше обычного значения (такое значение получается теоретически из релятивистского волнового уравнения Дирака - см. IV, § 33). Собственный магнитный момент электрона (спин 1/2) равен, следовательно, где

Эту величину называют магнетоном Бора.

Магнитный момент тяжелых частиц принято измерять в ядерных магнетонах, определяемых как где - масса протона. Эксперимент дает для собственного магнитного момента протона значение 2,79 ядерных магнетонов, причем момент направлен по спину. Магнитный момент нейтрона направлен противоположно спину и равен 1,91 ядерного магнетона.

Обратим внимание на то, что величины и s, стоящие в обоих сторонах равенства (111,1), как и следовало, одинаковы по своему векторному характеру: обе являются аксиальными векторами.

Аналогичное же равенство для электрического двпольного момента противоречило бы симметрии по отношению к инверсии координат: при инверсии менялся бы относительный знак обеих сторон равенства.

В нерелятивистской квантовой механике магнитное поле может рассматриваться только в качестве внешнего поля. Магнитное взаимодействие частиц друг с другом является релятивистским эффектом, и его учет требует последовательной релятивистской теории.

В классической теории функция Гамильтона заряженной частицы в электромагнитном воле имеет вид

где - скалярный, А - векторный потенциал поля, - обобщенный импульс частицы (см. II, § 16). Если частица не обладает едином, то переход к квантовой механике производится обычным образом: обобщенный импульс надо заменить оператором и мы получим гамильтониан

Если же частица обладает спином, то такая операция недостаточна. Дело в том, что собственный магнитный момент частицы непосредственно взаимодействует с магнитным полем. В классической функции Гамильтона это взаимодействие вообще отсутствует, поскольку сам спин, будучи чисто квантовым эффектом, исчезает при переходе к классическому пределу. Правильное выражение для гамильтониана получится путем введения (в 111,3) дополнительного члена - соответствующего энергии магнитного момента , в поле Н. Таким образом, гамильтониан частицы, обладающей спином, имеет вид

При раскрытии квадрата надо иметь ввиду, оператор , вообще говоря, не коммутативен с вектором А, являющимся функцией координат. Поэтому надо писать

Согласно правилу коммутации (16,4) оператора импульса с любой функцией координат имеем

Таким образом, и А коммутативны, если , в частности, имеет место для однородного поля, если выбрать его векторный потенциал в виде

(111,7)

Уравнение с гамильтонианом (111,4) представляет собой обобщение уравнения Шредингера на случай наличия магнитного поля. Волновые функции, на которые действует гамильтониан в этом уравнении, - симметричные спиноры ранга

Волновые функции частины в электромагнитном поле обладают неоднозначностью, связанной с неоднозначностью потенциалов поля. Как известно (см. II, § 18), последние определены лишь с точностью до калибровочного преобразования

где - произвольная функция координат и времени. Такое преобразование не отражается на значениях напряженностей поля. Ясно поэтому, что оно не должно существенно изменять также и решений волнового уравнения; в частности, должен оставаться неизменным квадрат Действительно легко убедиться в том, что мы вернемся к исходному уравнению, если одновременно с заменой (111,8) в гамильтониане произвести также и замену волновой функции согласно

(111,9)

Эта неоднозначность волновой функции не сказывается ни на какой имеющей физический смысл величине (в определение которой не входят в явном виде потенциалы).

В классической механике обобщенный импульс частицы связан с ее скоростью соотношением Для того чтобы найти оператор v в квантовой механике, надо прокоммутировать вектор с гамильтонианом.

Простое вычисление приводит к результату

(111,10)

в точности аналогичному классическому. Для операторов компонент скорости имеют место правила коммутации

которые легко проверить непосредственным вычислением. Мы видим, что в магнитном поле операторы трех компонент скорости частицы (заряженной) оказываются некоммутативными. Это значит, что частица не может иметь одновременно определенных значений скорости по всем трем направлениям.

При движении в магнитном поле симметрия по отношению к обращению времени имеет место лишь при условии изменения знака поля Н (и векторного потенциала А). Это значит (см. § 18 и 60), что уравнение Шредингера должно сохранить свой вид при переходе к комплексно сопряженным величинам и изменении знака Н. Для всех членов в гамильтониане (111,4), за исключением члена - это непосредственно очевидно. Член же