Биографии Характеристики Анализ

Алгоритм нахождения дифференциала функции. Основные теоремы о дифференциалах

Дифференциал… Для одних это прекрасное далёкое, а для других – непонятное слово, связанное с математикой. Но если это ваше суровое настоящее, наша статья поможет узнать, как правильно “приготовить” дифференциал и с чем его “подавать”.

Под дифференциалом в математике понимают линейную часть приращения функции. Понятие дифференциала неразрывно связано с записью производной согласно Лейбница f′(x 0) = df/dx·x 0 . Исходя из этого, дифференциал первого порядка для функции f, заданной на множестве X, имеет такой вид: d x0 f = f′(x 0)·d x0 x. Как видите, для получения дифференциала нужно уметь свободно находить производные. Поэтому нелишним будет повторить правила вычисления производных, дабы понимать, что будет происходить в дальнейшем. Итак, рассмотрим дифференцирование поближе на примерах. Нужно найти дифференциал функции, заданной в таком виде: y = x 3 -x 4 . Сначала найдём производную от функции: y′= (x 3 -x 4)′ = (x 3)′-(x 4)′ = 3x 2 -4x 3 . Ну, а теперь получить дифференциал проще простого: df = (3x 3 -4x 3)·dx. Сейчас мы получили дифференциал в виде формулы, на практике зачастую также интересует цифровое значение дифференциала при заданных конкретных параметрах х и ∆х. Бывают случаи, когда функция выражена неявно через х. Например, y = x²-y x . Производная функции имеет такой вид: 2x-(y x)′. Но как получить (y x)′? Такая функция называется сложной и дифференцируется согласно соответствующего правила: df/dx = df/dy·dy/dx. В данном случае: df/dy = x·y x-1 , а dy/dx = y′. Теперь собираем всё воедино: y′ = 2x-(x·y x-1 ·y′). Группируем все игреки в одной стороне: (1+x·y x-1)·y′ = 2x, и в итоге получаем: y′ = 2x/(1+x·y x-1) = dy/dx. Исходя из этого, dy = 2x·dx/(1+x·y x-1). Конечно, хорошо, что такие задания встречаются нечасто. Но теперь вы готовы и к ним. Кроме рассмотренных дифференциалов первого порядка, ещё существуют дифференциалы высшего порядка. Попробуем найти дифференциал для функции d/d (x 3 (x 3 2 x 6 x 9 ), который и будет дифференциалом второго порядка для f(x) . Исходя из формулы f′(u) = d/du·f(u), где u = f(x), примем u = x 3 . Получаем: d/d(u)·(u-2u 2 -u 3) = (u-2u 2 -u 3)′ = 1-4u-3u 2 . Возвращаем замену и получаем ответ – 1x 3 x 6 , x≠0. Помощником в нахождении дифференциала также может стать онлайн-сервис . Естественно, что на контрольной или экзамене им не воспользуешься. Но при самостоятельной проверке правильности решения его роль сложно переоценить. Кроме самого результата, он также показывает промежуточные решения, графики и неопределённый интеграл дифференциальной функции, а также корни дифференциального уравнения. Единственный недостаток – это запись в одну строку функции при вводе, но со временем можно привыкнуть и к этому. Ну, и естественно, такой сервис не справляется со сложными функциями, но всё, что попроще, ему по зубам. Практическое применение дифференциал находит в первую очередь в физике и экономике. Так, в физике зачастую дифференцированием решаются задачи, связанные с определением скорости и её производной – ускорения. А в экономике дифференциал является неотъемлемой частью расчёта эффективности деятельности предприятия и фискальной политики государства, например, эффекта финансового рычага.

В этой статье рассмотрены типовые задачи дифференцирования. Курс высшей математики учащихся ВУЗов зачастую содержит ещё задания на использование дифференциала в приближенных вычислениях, а также поиск решений дифференциальных уравнений. Но главное – при чётком понимании азов вы с лёгкостью расправитесь со всеми новыми задачами.

ЛЕКЦИЯ 10. ДИФФЕРЕНЦИАЛ ФУНКЦИИ. ТЕОРЕМЫ ФЕРМА, РОЛЛЯ, ЛАГРАНЖА И КОШИ.

1. Дифференциал функции

1.1. Определение дифференциала функции

С понятием производной теснейшим образом связано другое фундаментальное понятие математического анализа – дифференциал функции.

Определение 1. Функция y = f (x), определенная в некоторой окрестности точки x , называется дифференцируемой в точке x , если ее приращение в этой точке

y = f (x + x) − f (x)

имеет вид

y = A · x + α(Δx) · x,

где A – постоянная, а функция α(Δx) → 0 при x → 0.

Пусть y = f (x) – дифференцируемая функция, тогда дадим следующее определение.

Определение 2. Главная линейная

часть A · x

приращения

функции f (x)

называется дифференциалом функции в точке x и обозначается dy.

Таким образом,

y = dy + α(Δx) · x.

Замечание 1. Величина dy =

x называется

главной линейной частью

приращения y в связи с тем, что другая часть приращения α(Δx) ·

x при малых

x становится гораздо меньше A ·

Утверждение 1. Для того чтобы функция y = f (x) была дифференцируемой в точке x необходимо и достаточно, чтобы она имела в этой точке производную.

Доказательство. Необходимость. Пусть функция f (x) дифференцируема в точке

x + α(Δx) · x, при

x → 0. Тогда

A + lim α(Δx) = A.

Поэтому производная f ′ (x) существует и равна A.

Достаточность. Пусть существует

f ′ (x), т. е. существует предел lim

F ′ (x).

F ′ (x) + α(Δx),

y = f ′ (x)Δx + α(Δx) · x.

Последнее равенство означает дифференцируемость функции y = f (x).

1.2. Геометрический смысл дифференциала

Пусть l касательная к графику функции y = f (x) в точке M (x, f (x)) (рис. 1). Покажем, что dy величина отрезка P Q. Действительно,

dy = f ′ (x)Δx = tg α x =

" "l

"" " "

" α

Итак, дифференциал dy функции f (x) в точке x равен приращению ординаты касательной l в этой точке.

1.3. Инвариантность формы дифференциала

Если x независимая переменная, то

dy = f ′ (x)dx.

Допустим, что x = ϕ(t), где t независимая переменная, y = f (ϕ(t)). Тогда

dy = (f (ϕ(t))′ dt = f′ (x)ϕ′ (t)dt = f′ (x)dx (ϕ′ (t)dt = dx).

Итак, форма дифференциала не изменилась, несмотря на то, что x не является независимой переменной. Это свойство и называется инвариантностью формы дифференциала.

1.4. Применение дифференциала в приближенных вычислениях

Из формулы y = dy + α(Δx) · x, отбрасывая α(Δx) · x, видно, что при малых

y ≈ dy = f ′ (x)Δx.

Отсюда получим

f (x + x) − f (x) ≈ f ′ (x)Δx,

f (x + x) ≈ f (x) + f ′ (x)Δx. (1) Формула (1) и используется в приближенных вычислениях.

1.5. Дифференциалы высших порядков

По определению, вторым дифференциалом от функции y = f (x) в точке x называется дифференциал от первого дифференциала в этой точке, который обозначается

d2 y = d(dy).

Вычислим второй дифференциал:

d2 y = d(dy) = d(f′ (x)dx) = (f′ (x)dx)′ dx = (f′′ (x)dx)dx = f′′ (x)dx2

(при вычислении производной (f ′ (x)dx)′ учтено, что величина dx не зависит от x и, следовательно, при дифференцировании является постоянной).

Вообще, дифференциалом порядка n функции y = f (x) называется первый

дифференциал

от дифференциала

этой функции, который

обозначается через

dn y = d(dn−1 y)

dn y = f(n) (x)dxn .

Найти дифференциал функции y = arctg x .

Решение. dy = (arctg x)′ · dx =

1+x2

Найти дифференциалы первого и второго порядков функции v = e2t .

Решение. dv = 2e2t dt , d2 v = 4e2t dt2 .

Сравнить приращение и дифференциал функции y = 2x3 + 5x2 .

Решение. Находим

5x2 =

10x)Δx + (6x + 5)Δx

dy = (6x2 + 10x)dx.

Разность между приращением

y и дифференциалом dy есть бесконечно малая высшего

порядка по сравнению с

x , равная (6x + 5)Δx2 + 2Δx3 .

Пример 4. Вычислить приближенное значение площади круга, радиус которого равен 3, 02 м.

Решение. Воспользуемся формулой S = πr2 . Полагая r = 3 , r = 0, 02 , имеем

S ≈ dS = 2πr · r = 2π · 3 · 0, 02 = 0, 12π.

Следовательно, приближенное значение площади круга составляет 9π + 0, 12π = 9, 12π ≈

28, 66 (м 2 ).

Пример 5. Вычислить приближенное значение arcsin 0, 51 c точностью до 0,001. Решение. Рассмотрим функцию y = arcsin x . Полагая x = 0, 5 , x = 0, 01 и

применяя формулу (1)

x) ≈ arcsin x + (arcsin x)′ ·

(arcsin x)′

≈ arcsin 0, 5 +

0, 011 = 0, 513.

1 − (0, 5)2

Пример 6. Вычислить приближенно √ 3

c точностью до 0,0001.

Решение. Рассмотрим функцию y = √ 3

и положим x = 8,

x = 0, 01. Аналогично

по формуле (1)

(√ 3 x)′ =

√3

√ x + x ≈√ 3 x + (√ 3 x)′ · x,

3√ 3 64

· 0, 01 = 2 + 3 · 4 · 0, 01 ≈ 2, 0008.

p 8, 01 ≈√ 8 +

2. Теоремы Ферма, Ролля, Лагранжа и Коши

Определение 3. Говорят, что функция y = f (x) имеет (или достигает) в точке α локальный максимум (минимум), если найдется такая окрестность U (α) точки α, что для всех x U (α) :

f (α) ≥ f (x) (f (α) ≤ f (x)).

Локальный максимум и локальный минимум объединяются общим названием

локальный экстремум.

Функция, график которой изображен на рис. 4, имеет локальный максимум в точках β, β1 и локальный минимум в точках α, α1 .

Утверждение 2. (Ферма) Пусть функция y = f (x) дифференцируема в точке α и имеет в этой точке локальный экстремум. Тогда f ′ (α) = 0.

Идея доказательства теоремы Ферма следующая. Пусть для определенности f (x) имеет в точке α локальный минимум. По определению f ′ (α) есть предел при x → 0 отношения

f (α + x) − f (α)

Но при достаточно малых (по абсолютной величине) x

f (α + x) − f (α) ≥ 0.

Следовательно, при таких

x получаем

Отсюда и следует, что

f ′ (α) = lim g(Δx) = 0.

Проведите полное доказательство самостоятельно.

Утверждение 3. (Ролля)

Если y = f (x) непрерывна на

Дифференцируема на

(a, b) и f (a) = f (b), то существует такая точка α (a, b),

что f ′ (α) = 0.

Доказательство. По свойству функций, непрерывных на отрезке, найдутся такие точки x1 , x2 , что

экстремум. По условию теоремы f (x) дифференцируема в точке α. По теореме Ферма f ′ (α) = 0. Теорема доказана.

Теорема Ролля имеет простой геометрический смысл (рис. 5): если крайние ординаты кривой y = f (x) равны, то на кривой y = f (x) найдется точка, в которой касательная к кривой параллельна оси Ox.

Доказательство. Заметим, что g(a) =6 g(b). Действительно, в противном случае для функции g(x) были бы выполнены все условия теоремы Ролля. Следовательно, нашлась бы такая точка β (a, b), что g′ (β) = 0. Но это противоречит условию теоремы.

Рассмотрим следующую вспомогательную функцию:

F (x) = f (x) − f (a) − f (b) − f (a) (g(x) − g(a)). g(b) − g(a)

Функция F (x) непрерывна на ,

дифференцируема на (a, b). Кроме того, очевидно,

что′

F (a) = F (b) = 0. Поэтому по теореме Ролля найдется такая точка α (a, b), что

F (α) = 0, т. е.

f ′ (α)

g′ (α) = 0.

− g(b)

Отсюда следует

f ′ (α)

g′ (α)

Теорема доказана.

Утверждение 5. (Лагранжа) Если y = f (x) непрерывна на , дифференцируема на (a, b), то найдется такое α (a, b), что

F ′ (α).

Доказательство. Теорема Лагранжа прямо следует из теоремы Коши при g(x) =

Геометрически теорема Лагранжа означает, что на кривой y = f (x) между точками

A и B найдется такая точка C, касательная в которой параллельна хорде AB. y

теорема Ролля на этом отрезке

выполняется. Значение c

определяем

уравнения

f ′ (x) = 2x − 6 = 0, т. е. c = 3.

найти точку

M, в которой

Пример 8. На дуге

AB кривой y = 2x − x

касательная параллельна хорде

Решение. Функция y = 2x −x

непрерывна и дифференцируема при всех значениях

x. По теореме Лагранжа между двумя значениями a = 1,

b = 3 существует значение

x = c, удовлетворяющее равенству y(b) − y(a) = (b − a) ·y′ (c), где y′ = 2 − 2x. Подставив соответствующие значения, получим

y(3) − y(1) = (3 − 1) · y′ (c),

(2 · 3 − 32 ) − (2 · 1 − 12 ) = (3 − 1) · (2 − 2c),

отсюда c = 2, y(2) = 0.

Таким образом, точка M имеет координаты (2; 0).

Пример 9. На дуге AB кривой, заданной параметрическими уравнениями

x = t2 , y = t3 , найти точку

M, в которой касательная параллельна хорде AB, если

точкам A и B соответствуют значения t = 1 и t = 3.

Решение. Угловой коэффициент хорды AB равен

А угловой коэффициент

касательной в точке M (при

t = c) равен

y′

(c)/x′

x′ = 2t,

y′ = 3t2 . Для

определения c по теореме Коши получаем уравнение

yt ′ (c)

xt ′ (c)

т. е. c = 13/6.

Найденное значение c удовлетворяет неравенству 1 < c < 3. Подставив значение t = c в параметрические уравнения кривой, получаем x = 169/36, y = 2197/216. Итак искомая точка M (169/36; 2197/216).

ЛОГАРИФМИЧЕСКОЕ ДИФФЕРЕНЦИРОВАНИЕ

Дифференцирование многих функций упрощается, если их предварительно прологарифмировать. Для этого поступают следующим образом. Если требуется найти y " из уравнения y=f(x) , то можно:

Примеры.


ПОКАЗАТЕЛЬНО-СТЕПЕННАЯ ФУНКЦИЯ И ЕЕ ДИФФЕРЕНЦИРОВАНИЕ

Показательно-степенной функцией называется функция вида y = u v , где u=u(x), v=v(x) .

Логарифмическое дифференцирование применяется для нахождения производной от показательно-степенной функции.

Примеры.


ТАБЛИЦА ПРОИЗВОДНЫХ

Объединим в одну таблицу все основные формулы и правили дифференцирования, выведенные ранее. Всюду будем полагать u=u(x) , v=v(x) , С=const. Для производных основных элементарных функций будем пользоваться теоремой о производной сложной функции.

Примеры.



ПОНЯТИЕ ДИФФЕРЕНЦИАЛА ФУНКЦИИ. СВЯЗЬ МЕЖДУ ДИФФЕРЕНЦИАЛОМ И ПРОИЗВОДНОЙ

Пусть функция y=f(x) дифференцируема на отрезке [a ; b ]. Производная этой функции в некоторой точке х 0 Î [a ; b ] определяется равенством

.

Следовательно, по свойству предела

Умножая все члены полученного равенства на Δx , получим:

Δy = f " (x 0)·Δx + a·Δx.

Итак, бесконечно малое приращение Δy дифференцируемой функции y=f(x) может быть представлено в виде суммы двух слагаемых, из которых первое есть (при f " (х 0) ≠ 0) главная часть приращения , линейная относительно Δx , а второе – бесконечно малая величина более высокого порядка, чем Δx . Главную часть приращения функции, т.е. f " (х 0)·Δx называют дифференциалом функции в точке х 0 и обозначают через dy .

Таким образом, если функция y=f(x) имеет производную f " (x ) в точке x , то произведение производной f " (x ) на приращение Δx аргумента называют дифференциалом функции и обозначают:


Найдем дифференциал функции y= x . В этом случае y " = (x )" = 1 и, следовательно, dy =dx x . Таким образом, дифференциал dx независимой переменной x совпадает с ее приращением Δx . Поэтому формулу (1) мы можем записать так:

dy = f "(x )dx

Но из этого соотношения следует, что . Следовательно, производную f "(x ) можно рассматривать как отношение дифференциала функции к дифференциалу независимой переменной.

Ранее мы показали, что из дифференцируемости функции в точке следует существование дифференциала в этой точке.

Справедливо и обратное утверждение.

Если для данного значения x приращение функции Δy = f (x x ) – f(x) можно представить в виде Δy = A ·Δx + α, где α – бесконечно малая величина, удовлетворяющая условию , т.е. если для функции y=f(x) существует дифференциал dy=A·dx в некоторой точке x , то эта функция имеет производную в точке x и f "(x )=А .

Действительно, имеем , и так как при Δx →0, то .

Таким образом, между дифференцируемостью функции и существованием дифференциала имеется очень тесная связь, оба понятия равносильны.

Примеры. Найти дифференциалы функций:


ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ДИФФЕРЕНЦИАЛА

Рассмотрим функцию y=f(x) и соответствующую ей кривую. Возьмем на кривой произвольную точку M(x; y), проведем касательную к кривой в этой точке и обозначим через α угол, который касательная образует с положительным направлением оси Ox . Дадим независимой переменной x приращение Δx , тогда функция получит приращение Δy = NM 1 . Значениям x x и y y на кривой y = f(x) будет соответствовать точка

M 1 (x x ; y y ).

Из ΔMNT находим NT =MN ·tg α. Т.к. tg α = f "(x ), а MN = Δx , то NT = f "(x )·Δx . Но по определению дифференциала dy =f "(x )·Δx , поэтому dy = NT .

Таким образом, дифференциал функции f(x), соответствующей данным значениям x и Δx, равен приращению ординаты касательной к кривой y=f(x) в данной точке х.


ТЕОРЕМА ОБ ИНВАРИАНТНОСТИ ДИФФЕРЕНЦИАЛА

Ранее мы видели, что если u является независимой переменной, то дифференциал функции y =f "(u ) имеет вид dy = f "(u )du .

Покажем, что эта форма сохраняется и в том случае, когда u является не независимой переменной, а функцией, т.е. найдем выражение для дифференциала сложной функции. Пусть y=f(u), u=g(x) или y = f(g(x)) . Тогда по правилу дифференцирования сложной функции:

.

Следовательно, по определению

Но g "(x )dx = du , поэтому dy= f"(u)du .

Мы доказали следующую теорему.

Теорема. Дифференциал сложной функции y=f(u) , для которой u=g(x) , имеет тот же вид dy=f"(u)du , какой он имел бы, если бы промежуточный аргумент u был независимой переменной.

Иначе говоря, форма дифференциала не зависит от того, является аргумент функции независимой переменной или функцией другого аргумента. Это свойство дифференциала называется инвариантностью формы дифференциала .

Пример. . Найти dy .

Учитывая свойство инвариантности дифференциала, находим

.

ПРИМЕНЕНИЕ ДИФФЕРЕНЦИАЛА К ПРИБЛИЖЕННЫМ ВЫЧИСЛЕНИЯМ

Пусть нам известно значение функции y 0 =f(x 0 ) и ее производной y 0 " = f "(x 0 ) в точке x 0 . Покажем, как найти значение функции в некоторой близкой точке x .

Как мы уже выяснили приращение функции Δy можно представить в виде суммы Δy =dy +α·Δx , т.е. приращение функции отличается от дифференциала на величину бесконечно малую. Поэтому, пренебрегая при малых Δx вторым слагаемым в приближенных вычислениях, иногда пользуются приближенным равенством Δy dy или Δy »f "(x 0 )·Δx .

Т.к., по определению, Δy = f (x ) – f (x 0 ), то f(x) – f(x 0) f "(x 0 )·Δx .

Примеры.

ПРОИЗВОДНЫЕ ВЫСШИХ ПОРЯДКОВ

Пусть функция y=f(x) дифференцируема на некотором отрезке [a ; b ]. Значение производной f "(x ), вообще говоря, зависит от x , т.е. производная f "(x ) представляет собой тоже функцию переменной x . Пусть эта функция также имеет производную. Дифференцируя ее, получим так называемую вторую производную от функции f(x).

Производная от первой производной называется производной второго порядка или второй производной от данной функции y=f(x) и обозначается y ""или f ""(x ). Итак, y "" = (y ")".

Например, если у = х 5 , то y "= 5x 4 , а y ""= 20x 4 .

Аналогично, в свою очередь, производную второго порядка тоже можно дифференцировать. Производная от второй производной называется производной третьего порядка или третьей производной и обозначается y"""или f"""(x ).

Вообще, производной n-го порядка от функции f(x) называется производная (первая) от производной (n – 1)-го порядка и обозначается символом y (n) или f (n) (x ): y (n) = (y (n-1))".

Таким образом, для нахождения производной высшего порядка от данной функции последовательно находят все ее производные низших порядков.

Являясь неразрывно связанными между собой, оба они уже несколько столетий активно используются при решении практически всех задач, которые возникали в процессе научно-технической деятельности человека.

Возникновение понятия о дифференциале

Впервые разъяснил, что такое дифференциал, один из создателей (наряду с Исааком Ньютоном) дифференциального исчисления знаменитый немецкий математик Готфрид Вильгельм Лейбниц. До этого математиками 17 ст. использовалось весьма нечеткое и расплывчатое представление о некоторой бесконечно малой «неделимой» части любой известной функции, представлявшей очень малую постоянную величину, но не равную нулю, меньше которой значения функции быть просто не могут. Отсюда был всего один шаг до введения представления о бесконечно малых приращениях аргументов функций и соответствующих им приращениях самих функций, выражаемых через производные последних. И этот шаг был сделан практически одновременно двумя вышеупомянутыми великими учеными.

Исходя из необходимости решения насущных практических задач механики, которые ставила перед наукой бурно развивающаяся промышленность и техника, Ньютон и Лейбниц создали общие способы нахождения скорости изменения функций (прежде всего применительно к механической скорости движения тела по известной траектории), что привело к введению таких понятий, как производная и дифференциал функции, а также нашли алгоритм решения обратной задачи, как по известной (переменной) скорости найти пройденный путь, что привело к появлению понятия интеграла.

В трудах Лейбница и Ньютона впервые появилось представление о том, что дифференциалы - это пропорциональные приращениям аргументов Δх основные части приращений функций Δу, которые могут быть с успехом применены для вычисления значений последних. Иначе говоря, ими было открыто, что приращение функции может быть в любой точке (внутри области ее определения) выражено через ее производную как Δу = y"(x) Δх + αΔх, где α Δх - остаточный член, стремящийся к нулю при Δх→0, гораздо быстрее, чем само Δх.

Согласно основоположникам матанализа, дифференциалы - это как раз и есть первые члены в выражениях приращений любых функций. Еще не обладая четко сформулированным понятием предела последовательностей, они интуитивно поняли, что величина дифференциала стремится к производной функции при Δх→0 - Δу/Δх→ y"(x).

В отличие от Ньютона, который был прежде всего физиком, и рассматривал математический аппарат как вспомогательный инструмент исследования физических задач, Лейбниц уделял большее внимание самому этому инструментарию, включая и систему наглядных и понятных обозначений математических величин. Именно он предложил общепринятые обозначения дифференциалов функции dy = y"(x)dx, аргумента dx и производной функции в виде их отношения y"(x) = dy/dx.

Современное определение

Что такое дифференциал с точки зрения современной математики? Он тесно связан с понятием приращения переменной величины. Если переменная y принимает сначала значение y = y 1 , а затем y = y 2 , то разность y 2 ─ y 1 называется приращением величины y.

Приращение может быть положительным. отрицательным и равным нулю. Слово «приращение» обозначается Δ, запись Δу (читается «дельта игрек») обозначает приращение величины y. так что Δу = y 2 ─ y 1 .

Если величину Δу произвольной функции y = f (x) возможно представить в виде Δу = A Δх + α, где у A нет зависимости от Δх, т. е. A = const при данном х, а слагаемое α при Δх→0 стремится к нему же еще быстрее, чем само Δх, тогда первый («главный») член, пропорциональный Δх, и является для y = f (x) дифференциалом, обозначаемымdy или df(x) (читается «дэ игрек», «дэ эф от икс»). Поэтому дифференциалы - это «главные» линейные относительно Δх составляющие приращений функций.

Механическое истолкование

Пусть s = f (t) - расстояние прямолинейно движущейся от начального положения (t - время пребывания в пути). Приращение Δs - это путь точки за интервал времени Δt, а дифференциал ds = f" (t) Δt - это путь, который точка прошла бы за то же время Δt, если бы она сохранила скорость f"(t), достигнутую к моменту t. При бесконечно малом Δt воображаемый путь ds отличается от истинного Δs на бесконечно малую величину, имеющую высший порядок относительно Δt. Если скорость в момент t не равна нулю, то ds дает приближенную величину малого смещения точки.

Геометрическая интерпретация

Пусть линия L является графиком y = f (x). Тогда Δ х= MQ, Δу = QM" (см. рисунок ниже). Касательная MN разбивает отрезок Δу на две части, QN и NM". Первая пропорциональна Δх и равна QN = MQ∙tg (угла QMN) = Δх f "(x), т. е QN есть дифференциал dy.

Вторая часть NM"дает разность Δу ─ dy, при Δх→0 длина NM" уменьшается еще быстрее, чем приращение аргумента, т.е у нее порядок малости выше, чем у Δх. В рассматриваемом случае, при f "(x) ≠ 0 (касательная не параллельна ОХ), отрезки QM"и QN эквивалентны; иными словами NM" уменьшается быстрее (порядок малости ее выше), чем полное приращение Δу = QM". Это видно на рисунке (с приближением M"к М отрезок NM"составляет все меньший процент отрезка QM").

Итак, графически дифференциал произвольной функции равен величине приращения ординаты ее касательной.

Производная и дифференциал

Коэффициент A в первом слагаемом выражения приращения функции равен величине ее производной f "(x). Таким образом, имеет место следующее соотношение - dy = f "(x)Δх, или же df (x) = f "(x)Δх.

Известно, что приращение независимого аргумента равно его дифференциалу Δх = dx. Соответственно, можно написать: f "(x) dx = dy.

Нахождение (иногда говорят, «решение») дифференциалов выполняется по тем же правилам, что и для производных. Перечень их приведен ниже.

Что более универсально: приращение аргумента или его дифференциал

Здесь необходимо сделать некоторые пояснения. Представление величиной f "(x)Δх дифференциала возможно при рассмотрении х в качестве аргумента. Но функция может быть сложной, в которой х может быть функцией некоторого аргумента t. Тогда представление дифференциала выражением f "(x)Δх, как правило, невозможно; кроме случая линейной зависимости х = at + b.

Что же касается формулы f "(x)dx= dy, то и в случае независимого аргумента х (тогда dx = Δх), и в случае параметрической зависимости х от t, она представляет дифференциал.

Например, выражение 2 x Δх представляет для y = x 2 ее дифференциал, когда х есть аргумент. Положим теперь х= t 2 и будем считать t аргументом. Тогда y = x 2 = t 4 .

Это выражение не пропорционально Δt и потому теперь 2xΔх не является дифференциалом. Его можно найти из уравнения y = x 2 = t 4 . Он оказывается равен dy=4t 3 Δt.

Если же взять выражение 2xdx, то оно представляет дифференциал y = x 2 при любом аргументе t. Действительно, при х= t 2 получим dx = 2tΔt.

Значит 2xdx = 2t 2 2tΔt = 4t 3 Δt, т. е. выражения дифференциалов, записанные через две разные переменные, совпали.

Замена приращений дифференциалами

Если f "(x) ≠ 0, то Δу и dy эквивалентны (при Δх→0); при f "(x) = 0 (что означает и dy = 0), они не эквивалентны.

Например, если y = x 2 , то Δу = (x + Δх) 2 ─ x 2 = 2xΔх + Δх 2 , а dy=2xΔх. Если х=3, то имеем Δу = 6Δх + Δх 2 и dy = 6Δх, которые эквивалентны вследствие Δх 2 →0, при х=0 величины Δу = Δх 2 и dy=0 не эквивалентны.

Этот факт, вместе с простой структурой дифференциала (т. е. линейности по отношению к Δх), часто используется в приближенных вычислениях, в предположении, что Δу ≈ dy для малых Δх. Найти дифференциал функции, как правило, легче, чем вычислить точное значение приращения.

Например, имеем металлический куб с ребром х=10,00 см. При нагревании ребро удлинилось на Δх = 0,001 см. Насколько увеличился объем V куба? Имеем V = х 2 , так что dV = 3x 2 Δх = 3∙10 2 ∙0/01 = 3 (см 3). Увеличение объема ΔV эквивалентно дифференциалу dV, так что ΔV = 3 см 3 . Полное вычисление дало бы ΔV =10,01 3 ─ 10 3 = 3,003001. Но в этом результате все цифры, кроме первой ненадежны; значит, все равно, нужно округлить его до 3 см 3 .

Очевидно, что такой подход является полезным, только если возможно оценить величину привносимой при этом ошибки.

Дифференциал функции: примеры

Попробуем найти дифференциал функции y = x 3 , не находя производной. Дадим аргументу приращение и определим Δу.

Δу = (Δх + x) 3 ─ x 3 = 3x 2 Δх + (3xΔх 2 + Δх 3).

Здесь коэффициент A= 3x 2 не зависит от Δх, так что первый член пропорционален Δх, другой же член 3xΔх 2 + Δх 3 при Δх→0 уменьшается быстрее, чем приращение аргумента. Стало быть, член 3x 2 Δх есть дифференциал y = x 3:

dy=3x 2 Δх=3x 2 dx или же d(x 3) = 3x 2 dx.

При этом d(x 3) / dx = 3x 2 .

Найдем теперь dy функции y = 1/x через ее производную. Тогда d(1/x) / dx = ─1/х 2 . Поэтому dy = ─ Δх/х 2 .

Дифференциалы основных алгебраических функций приведены ниже.

Приближенные вычисления с применением дифференциала

Вычислить функцию f (x), а также ее производную f "(x) при x=a часто нетрудно, а вот сделать то же самое в окрестности точки x=a бывает нелегко. Тогда на помощь приходит приближенное выражение

f(a + Δх) ≈ f "(a)Δх + f(a).

Оно дает приближенное значение функции при малых приращениях Δх через ее дифференциал f "(a)Δх.

Следовательно, данная формула дает приближенное выражение для функции в конечной точке некоторого участка длиной Δх в виде суммы ее значения в начальной точке этого участка (x=a) и дифференциала в той же начальной точке. Погрешность такого способа определения значения функции иллюстрирует рисунок ниже.

Однако известно и точное выражение значения функции для x=a+Δх, даваемое формулой конечных приращений (или, иначе, формулой Лагранжа)

f(a+ Δх) ≈ f "(ξ) Δх + f(a),

где точка x = a+ ξ находится на отрезке от x = a до x = a + Δх, хотя точное положение ее неизвестно. Точная формула позволяет оценивать погрешность приближенной формулы. Если же в формуле Лагранжа положить ξ = Δх /2, то хотя она и перестает быть точной, но дает, как правило, гораздо лучшее приближение, чем исходное выражение через дифференциал.

Оценка погрешности формул при помощи применения дифференциала

В принципе неточны, и привносят в данные измерений, соответствующие ошибки. Их характеризуют предельной или, короче, предельной погрешностью - положительным числом, заведомо превышающим эту ошибку по абсолютной величине (или в крайнем случае равным ей). Предельной называют частное от ее деления на абсолютное значение измеренной величины.

Пусть точная формула y= f (x) использована для вычисляения функции y, но значение x есть результат измерения и поэтому привносит в y ошибку. Тогда, чтобы найти предельную абсолютную погрешность │‌‌Δу│функции y, используют формулу

│‌‌Δу│≈│‌‌dy│=│ f "(x)││Δх│,

где │Δх│является предельной погрешностью аргумента. Величину │‌‌Δу│ следует округлить в сторону увеличения, т.к. неточной является сама замена вычисления приращения на вычисление дифференциала.

Если функция дифференцируема в точке, то её приращение можно представить в виде суммы двух слагаемых

. Эти слагаемые являются бесконечно малыми функциями при
.Первое слагаемое линейно относительно
,второе является бесконечно малой более высокого порядка, чем
.Действительно,

.

Таким образом второе слагаемое при
быстрее стремится к нулю и при нахождении приращения функции
главную роль играет первое слагаемое
или (так как
)
.

Определение . Главная часть приращения функции
в точке , линейная относительно
,называется дифференциалом функции в этой точке и обозначается dy или df (x )

. (2)

Таким образом, можно сделать вывод: дифференциал независимой переменной совпадает с её приращением, то есть
.

Соотношение (2) теперь принимает вид

(3)

Замечание . Формулу (3) для краткости часто записывают в виде

(4)

Геометрический смысл дифференциала

Рассмотрим график дифференцируемой функции
. Точки
ипринадлежат графику функции. В точкеМ проведена касательная К к графику функции, угол которой с положительным направлением оси
обозначим через
. Проведем прямыеMN параллельно оси Ox и
параллельно осиOy . Приращение функции равно длине отрезка
. Из прямоугольного треугольника
, в котором
, получим

Изложенные выше рассуждения позволяют сделать вывод:

Дифференциал функции
в точке изображается приращением ординаты касательной к графику этой функции в соответствующей её точке
.

Связь дифференциала с производной

Рассмотрим формулу (4)

.

Разделим обе части этого равенства на dx , тогда

.

Таким образом, производная функции равна отношению её дифференциала к дифференциалу независимой переменной .

Часто это отношение рассматривается просто как символ, обозначающий производную функцииу по аргументу х .

Удобными обозначениями производной также являются:

,
и так далее.

Употребляются также записи

,
,

особенно удобные, когда берется производная от сложного выражения.

2. Дифференциал суммы, произведения и частного.

Так как дифференциал получается из производной умножением её на дифференциал независимой переменной, то, зная производные основных элементарных функций, а также правила для отыскания производных, можно прийти к аналогичным правилам для отыскания дифференциалов.

1 0 . Дифференциал постоянной равен нулю

.

2 0 . Дифференциал алгебраической суммы конечного числа дифференцируемых функций равен алгебраической сумме дифференциалов этих функций

3 0 . Дифференциал произведения двух дифференцируемых функций равен сумме произведений первой функции на дифференциал второй и второй функции на дифференциал первой

.

Следствие . Постоянный множитель можно выносить за знак дифференциала

.

Пример . Найти дифференциал функции .

Решение.Запишем данную функцию в виде

,

тогда получим

.

4. Функции, заданные параметрически, их дифференцирование.

Определение . Функция
называется заданной параметрически, если обе переменныех и у определяются каждая в отдельности как однозначные функции от одной и той же вспомогательной переменной – параметра t :


где t изменяется в пределах
.

Замечание . Параметрическое задание функций широко применяется в теоретической механике, где параметр t обозначает время, а уравнения
представляют собой законы изменения проекций движущейся точки
на оси
и
.

Замечание . Приведем параметрические уравнения окружности и эллипса.

а) Окружность с центром в начале координат и радиусом r имеет параметрические уравнения:

где
.

б) Запишем параметрические уравнения для эллипса:

где
.

Исключив параметр t из параметрических уравнений рассматриваемых линий, можно прийти к их каноническим уравнениям.

Теорема . Если функция у от аргумента х задана параметрически уравнениями
, где
и
дифференцируемые по
t функции и
, то

.

Пример . Найти производную функции у от х , заданной параметрическими уравнениями.

Решение.
.