Биографии Характеристики Анализ

Биномиальное распределение его свойства и числовые характеристики. Свойства биномиального распределения

Здравствуйте! Мы уже знаем, что такое распределение вероятностей. Оно может быть дискретным или непрерывным, и мы узнали, что его называют плотностью распределения вероятностей. Теперь давайте изучим парочку более распространенных распределений. Предположим, у меня есть монета, причем правильная монета, и я собираюсь ее подбросить 5 раз. Также я определю случайную величину Х, обозначу ее заглавной буквой X, она будет равна количеству «орлов» при 5 подбрасываниях. Может, у меня есть 5 монет, я подброшу их все сразу и посчитаю, сколько у меня выпало «орлов». Или у меня могла бы быть одна монета, я могла бы ее подбросить 5 раз и посчитать, сколько раз у меня выпал «орел». Это, собственно, не имеет значения. Но давайте предположим, что у меня одна монета, и я подброшу ее 5 раз. Тогда у нас не будет неопределенности. Итак, вот определение моей случайной величины. Как мы знаем, случайная величина немного отличается от обычной переменной, она больше похожа на функцию. Она присваивает какое-то значение эксперименту. И эта случайная величина довольно проста. Мы просто считаем, сколько раз выпал «орел» после 5 подбрасываний, – это и есть наша случайная величина X. Давайте подумаем, какие могут быть вероятности разных значений в нашем случае? Так, какова вероятность того, что Х (заглавная Х) равна 0? Т.е. какова вероятность того, что после 5 подбрасываний ни разу не выпадет «орел»? Ну, это, по сути, то же самое, что вероятность выпадения одних «решек» (это так, небольшой обзор теории вероятностей). У вас должны выпасть одни «решки». Какова вероятность каждой из этих «решек»? Это 1/2. Т.е. здесь должно быть 1/2 умножить на 1/2, на 1/2, на 1/2 и снова на 1/2. Т.е. (1/2)⁵. 1⁵=1, разделить на 2⁵, т.е. на 32. Вполне логично. Так… Я немного повторю то, что мы проходили по теории вероятностей. Это важно для того, чтобы понимать, куда мы сейчас движемся и как, собственно, формируется дискретное распределение вероятностей. Итак, а какова вероятность того, что у нас ровно 1 раз выпадет «орел»? Ну, «орел» мог бы выпасть при первом подбрасывании. Т.е. могло бы быть так: «орел», «решка», «решка», «решка», «решка». Или «орел» мог бы выпасть при втором подбрасывании. Т.е. могла бы быть такая комбинация: «решка», «орел», «решка», «решка», «решка» и так далее. Один «орел» мог бы выпасть после любого из 5 подбрасываний. Какова вероятность каждой из этих ситуаций? Вероятность выпадения «орла» равна 1/2. Затем вероятность выпадения «решки», равная 1/2, умножить на 1/2, на 1/2, на 1/2. Т.е. вероятность каждой из этих ситуаций равна 1/32. Так же, как и вероятность ситуации, где Х=0. По сути, вероятность любого особого порядка выпадений «орла» и «решки» будет равна 1/32. Итак, вероятность этого равна 1/32. И вероятность этого равна 1/32. И вот такие ситуации имеют место потому, что «орел» мог бы выпасть при любом из 5 подбрасываний. Следовательно, вероятность того, что точно выпадет один «орел», равна 5*1/32, т.е. 5/32. Вполне логично. Теперь начинается интересное. Какова вероятность… (буду писать каждый из примеров другим цветом)… какова вероятность того, что моя случайная величина равна 2? Т.е. я подброшу монету 5 раз, и какова вероятность того, что 2 раза точно выпадет «орел»? Это уже интереснее, правда? Какие возможны комбинации? Могла бы быть «орел», «орел», «решка», «решка», «решка». Также могла бы быть «орел», «решка», «орел», «решка», «решка». И если подумать, что эти два «орла» могут стоять в разных местах комбинации, то можно немного запутаться. Уже нельзя размышлять о размещениях так, как мы это делали здесь, вверху. Хотя… можно, только рискуете запутаться. Вы должны понять одно. Для каждой из этих комбинаций вероятность равна 1/32. ½*½*½*½*½. Т.е. вероятность каждой из этих комбинаций равна 1/32. И мы должны подумать над тем, сколько существует таких комбинаций, удовлетворяющих нашему условию (2 «орла»)? Т.е. по сути, нужно представить, что есть 5 подбрасываний монеты, и нужно из них выбрать 2, при которых выпадает «орел». Давайте представим, что наши 5 подбрасываний собрались в кружочек, также представим, что у нас есть только два стула. И мы говорим: «Хорошо, кто из вас сядет на эти стулья для «орлов»? Т.е. кто из вас будет «орлом»? И нас не интересует то, в каком порядке они сядут. Я привожу такой пример, надеясь, что так вам будет понятнее. И может, вам захочется посмотреть некоторые уроки по теории вероятностей на эту тему, когда я буду говорить о биноме Ньютона. Потому что там я более детально углублюсь во все это. Но если вы будете рассуждать таким путем, то поймете, что такое биномиальный коэффициент. Потому что если будете думать так: хорошо, у меня 5 подбрасываний, при каком подбрасывании выпадет первый «орел»? Ну, здесь 5 возможностей того, при каком по счету подбрасывании выпадет первый «орел». А сколько возможностей для второго «орла»? Ну, первое подбрасывание, которое мы уже использовали, забрало одну возможность выпадения «орла». Т.е. одна позиция «орла» в комбинации уже занята одним из подбрасываний. Теперь осталось 4 подбрасывания, значит, второй «орел» может выпасть при одном из 4 подбрасываний. И вы это видели, вот здесь. Я выбрала так, что «орел» выпал при 1-м подбрасывании, и предположила, что при 1 из 4 оставшихся бросков также должен выпасть «орел». Итак, здесь только 4 возможности. Все, что я говорю, означает, что для первого «орла» у вас есть 5 различных позиций, на которые он может выпасть. А для второго уже остается только 4 позиции. Подумайте над этим. Когда мы вычисляем вот так, то порядок учитывается. Но для нас сейчас неважно, в какой последовательности выпадают «орлы» и «решки». Мы не говорим, что это «орел 1» или что это «орел 2». В обоих случаях это просто «орел». Мы могли бы предположить, что это «орел 1», а это – «орел 2». Или могло бы быть наоборот: это мог бы быть второй «орел», а это – «первый». И я говорю это потому, что важно понять, где использовать размещения, а где – сочетания. Нас не интересует последовательность. Так что, собственно, есть только 2 способа происхождения нашего события. Значит, делим это на 2. И как вы позже увидите, здесь 2! способов происхождения нашего события. Если было бы 3 «орла», тогда здесь было бы 3!, и я покажу вам, почему. Итак, это будет равно… 5*4=20 и разделить на 2 – получится 10. Поэтому здесь 10 различных комбинаций из 32, в которых у вас точно будет 2 «орла». Итак, 10*(1/32) равно 10/32, а чему это равно? 5/16. Запишу через биномиальный коэффициент. Это значение, вот здесь, вверху. Если подумать, то это – то же самое, что и 5!, деленный на… Что означает вот это 5*4? 5! – это 5*4*3*2*1. Т.е. если мне здесь нужно только 5*4, то для этого я могу разделить 5! на 3! Это равно 5*4*3*2*1, деленное на 3*2*1. И остается только 5*4. Значит, это – то же самое, что и этот числитель. И затем, т.к. нас не интересует последовательность, нам нужно здесь 2. Собственно, 2!. Умножить на 1/32. Такой была бы вероятность того, что у нас выпало бы точно 2 «орла». Какова вероятность того, что у нас точно 3 раза выпадет «орел»? Т.е. вероятность того, что Х=3. Итак, по той же логике, первый случай выпадения «орла» может иметь место при 1 из 5 подбрасываний. Второй случай выпадения «орла» может иметь место при 1 из 4 оставшихся подбрасываний. А третий случай выпадения «орла» может иметь место при 1 из 3 оставшихся подбрасываний. А сколько существует различных способов расставить 3 подбрасывания? В общем, сколько есть способов, чтобы расставить 3 предмета по местам? Это 3! И вы можете это вычислить или, возможно, захотите пересмотреть те уроки, в которых я подробнее это объясняла. Но если вы, например, возьмете буквы A, B и C, то всего есть 6 способов, с помощью которых вы их можете расставить. Можете рассматривать это как случаи выпадения «орлов». Здесь могли бы быть ACB, CAB. Могло бы быть BAC, BCA, и… Какой последний вариант, который я не назвала? CBA. Есть 6 способов расставить 3 разных предмета. Мы делим на 6, потому что не хотим повторно засчитывать эти 6 разных способов, потому что рассматриваем их как равнозначные. Здесь нас не интересует, при каком по счету подбрасывании выпадет «орел». 5*4*3… Это можно переписать, как 5!/2!. И разделить это еще на 3!. Это он и есть. 3! равен 3*2*1. Тройки сокращаются. Это становится равным 2. Это – равным 1. Еще раз, 5*2, т.е. равно 10. Каждая ситуация имеет вероятность 1/32, потому это опять равно 5/16. И это интересно. Вероятность того, что у вас выпадет 3 «орла» равна вероятности того, что у вас есть 2 орла. И причина этому… Ну, есть много причин тому, что так получилось. Но если подумать, что вероятность того, что выпадет 3 «орла» – то же самое, что вероятность выпадения 2 «решек». И вероятность выпадения 3 «решек» должна быть такой же, как и вероятность выпадения 2-х «орлов». И хорошо, что значения вот так срабатывают. Хорошо. Какова вероятность того, что Х=4? Мы можем использовать ту же формулу, что использовали прежде. Это могло бы быть 5*4*3*2. Итак, здесь запишем 5*4*3*2… Сколько есть различных способов расставить 4 предмета? Это 4!. 4! – это, по сути, вот эта часть, вот здесь. Это 4*3*2*1. Так, это сокращается, остается 5. Затем, каждая комбинация имеет вероятность 1/32. Т.е. это равно 5/32. И еще раз заметьте, что вероятность того, что 4 раза выпадет «орел» равна вероятности того, что 1 раз выпадет «орел». И в этом есть смысл, т.к. 4 «орла» – это то же самое, что случай выпадения 1 «решки». Вы скажете: ну, и при каком же подбрасывании выпадет эта одна «решка»? Ага, для этого здесь есть 5 различных комбинаций. И каждая из них имеет вероятность 1/32. И наконец, какова вероятность того, что Х=5? Т.е. выпадает «орел» 5 раз подряд. Должно быть так: «орел», «орел», «орел», «орел», «орел». Каждый из «орлов» имеет вероятность 1/2. Вы их перемножаете и получаете 1/32. Можно пойти другим путем. Если всего есть 32 способа, с помощью которых вы можете получить «орлы» и «решки» в этих экспериментах, то это – только один из этих способов. Здесь таких способов было 5 из 32. Здесь - 10 из 32. Тем не менее, вычисления мы провели, а теперь готовы нарисовать распределение вероятностей. Но мое время истекло. Позвольте продолжить на следующем уроке. А если вы в настроении, то, может, нарисуете перед тем, как смотреть следующий урок? До скорой встречи!

Глава 7.

Конкретные законы распределения случайных величин

Виды законов распределения дискретных случайных величин

Пусть дискретная случайная величина может принимать значения х 1 , х 2 , …, х n , … . Вероятности этих значений могут быть вычислены по различным формулам, например, при помощи основных теорем теории вероятностей, формулы Бернулли или по каким-то другим формулам. Для некоторых из этих формул закон распределения имеет свое название.

Наиболее часто встречающимися законами распределения дискретной случайной величины являются биномиальный, геометрический, гипергеометрический, закон распределения Пуассона.

Биномиальный закон распределения

Пусть производится n независимых испытаний, в каждом из которых может появиться или не появиться событие А . Вероятность появления этого события в каждом единичном испытании постоянна, не зависит от номера испытания и равна р =Р (А ). Отсюда вероятность не появления события А в каждом испытании также постоянна и равна q =1–р . Рассмотрим случайную величину Х равную числу появлений события А в n испытаниях. Очевидно, что значения этой величины равны

х 1 =0 – событие А в n испытаниях не появилось;

х 2 =1 – событие А в n испытаниях появилось один раз;

х 3 =2 – событие А в n испытаниях появилось два раза;

…………………………………………………………..

х n +1 = n – событие А в n испытаниях появилось все n раз.

Вероятности этих значений могут быть вычислены по формуле Бернулли (4.1):

где к =0, 1, 2, …, n .

Биномиальным законом распределения Х , равной числу успехов в n испытаниях Бернулли, с вероятностью успеха р .

Итак, дискретная случайная величина имеет биномиальное распределение (или распределена по биномиальному закону), если ее возможные значения 0, 1, 2, …, n , а соответствующие вероятности вычисляются по формуле (7.1).

Биномиальное распределение зависит от двух параметров р и n .

Ряд распределения случайной величины, распределенной по биномиальному закону, имеет вид:

Х k n
Р

Пример 7.1 . Производится три независимых выстрела по мишени. Вероятность попадания при каждом выстреле равна 0,4. Случайная величина Х – число попаданий в мишень. Построить ее ряд распределения.

Решение. Возможными значениями случайной величины Х являются х 1 =0; х 2 =1; х 3 =2; х 4 =3. Найдем соответствующие вероятности, используя формулу Бернулли. Нетрудно показать, что применение этой формулы здесь вполне оправдано. Отметим, что вероятность не попадания в цель при одном выстреле будет равна 1-0,4=0,6. Получим

Ряд распределения имеет следующий вид:

Х
Р 0,216 0,432 0,288 0,064

Нетрудно проверить, что сумма всех вероятностей равна 1. Сама случайная величина Х распределена по биномиальному закону. ■

Найдем математическое ожидание и дисперсию случайной величины, распределенной по биномиальному закону.

При решении примера 6.5 было показано, что математическое ожидание числа появлений события А в n независимых испытаниях, если вероятность появления А в каждом испытании постоянна и равна р , равно n ·р

В этом примере использовалась случайная величина, распределенная по биномиальному закону. Поэтому решение примера 6.5, по сути является доказательством следующей теоремы.

Теорема 7.1. Математическое ожидание дискретной случайной величины, распределенной по биномиальному закону, равно произведению числа испытаний на вероятность "успеха", т.е. М (Х )= n ·р.

Теорема 7.2. Дисперсия дискретной случайной величины, распределенной по биномиальному закону, равна произведению числа испытаний на вероятность "успеха" и на вероятность "неудачи", т.е. D (Х )= nрq.

Асимметрия и эксцесс случайной величины, распределенной по биномиальному закону, определяются по формулам

Эти формулы можно получить, воспользовавшись понятием начальных и центральных моментов.

Биномиальный закон распределения лежит в основе многих реальных ситуаций. При больших значениях n биномиальное распределение может быть аппроксимировано с помощью других распределений, в частности с помощью распределения Пуассона.

Распределение Пуассона

Пусть имеется n испытаний Бернулли, при этом число испытаний n достаточно велико. Ранее было показано, что в этом случае (если к тому же вероятность р события А очень мала) для нахождения вероятности того, что событие А появиться т раз в испытаниях можно воспользоваться формулой Пуассона (4.9). Если случайная величина Х означает число появлений события А в n испытаниях Бернулли, то вероятность того, что Х примет значение k может быть вычислена по формуле

, (7.2)

где λ = .

Законом распределения Пуассона называется распределение дискретной случайной величины Х , для которой возможными значениями являются целые неотрицательные числа, а вероятности р т этих значений находятся по формуле (7.2).

Величина λ = называется параметром распределения Пуассона.

Случайная величина, распределенная по закону Пуассона, может принимать бесконечное множество значений. Так как для этого распределения вероятность р появления события в каждом испытании мала, то это распределение иногда называют законом редких явлений.

Ряд распределения случайной величины, распределенной по закону Пуассона, имеет вид

Х т
Р

Нетрудно убедиться, что сумма вероятностей второй строки равна 1. Для этого необходимо вспомнить, что функцию можно разложить в ряд Маклорена, который сходится для любого х . В данном случае имеем

. (7.3)

Как было отмечено, закон Пуассона в определенных предельных случаях заменяет биномиальный закон. В качестве примера можно привести случайную величину Х , значения которой равны количеству сбоев за определенный промежуток времени при многократном применении технического устройства. При этом предполагается, что это устройство высокой надежности, т.е. вероятность сбоя при одном применении очень мала.

Кроме таких предельных случаев, на практике встречаются случайные величины, распределенные по закону Пуассона, не связанные с биномиальным распределением. Например, распределение Пуассона часто используется тогда, когда имеют дело с числом событий, появляющихся в промежутке времени (число поступлений вызовов на телефонную станцию в течение часа, число машин, прибывших на авто мойку в течение суток, число остановок станков в неделю и т.п.). Все эти события должны образовывать, так называемый поток событий, который является одним из основных понятий теории массового обслуживания. Параметр λ характеризует среднюю интенсивность потока событий.


Конечно, при вычислении кумулятивной функции распределения следует воспользоваться упомянутой связью биномиального и бета- распределения. Этот способ заведомо лучше непосредственного суммирования, когда n > 10.

В классических учебниках по статистике для получения значений биномиального распределения часто рекомендуют использовать формулы, основанные на предельных теоремах (типа формулы Муавра-Лапласа). Необходимо отметить, что с чисто вычислительной точки зрения ценность этих теорем близка к нулю, особенно сейчас, когда практически на каждом столе стоит мощный компьютер. Основной недостаток приведенных аппроксимаций – их совершенно недостаточная точность при значениях n, характерных для большинства приложений. Не меньшим недостатком является и отсутствие сколько-нибудь четких рекомендаций о применимости той или иной аппроксимации (в стандартных текстах приводятся лишь асимптотические формулировки, они не сопровождаются оценками точности и, следовательно, мало полезны). Я бы сказал, что обе формулы пригодны лишь при n < 200 и для совсем грубых, ориентировочных расчетов, причем делаемых “вручную” с помощью статистических таблиц. А вот связь между биномиальным распределением и бета-распределением позволяет вычислять биномиальное распределение достаточно экономно.

Я не рассматриваю здесь задачу поиска квантилей: для дискретных распределений она тривиальна, а в тех задачах, где такие распределения возникают, она, как правило, и не актуальна. Если же квантили все-таки понадобятся, рекомендую так переформулировать задачу, чтобы работать с p-значениями (наблюденными значимостями). Вот пример: при реализации некоторых переборных алгоритмов на каждом шаге требуется проверять статистическую гипотезу о биномиальной случайной величине. Согласно классическому подходу на каждом шаге нужно вычислить статистику критерия и сравнить ее значение с границей критического множества. Поскольку, однако, алгоритм переборный, приходится определять границу критического множества каждый раз заново (ведь от шага к шагу объем выборки меняется), что непроизводительно увеличивает временные затраты. Современный подход рекомендует вычислять наблюденную значимость и сравнивать ее с доверительной вероятностью, экономя на поиске квантилей.

Поэтому в приводимых ниже кодах отсутствует вычисление обратной функции, взамен приведена функция rev_binomialDF , которая вычисляет вероятность p успеха в отдельном испытании по заданному количеству n испытаний, числу m успехов в них и значению y вероятности получить эти m успехов. При этом используется вышеупомянутая связь между биномиальным и бета распределениями.

Фактически, эта функция позволяет получать границы доверительных интервалов. В самом деле, предположим, что в n биномиальных испытаниях мы получили m успехов. Как известно, левая граница двухстороннего доверительного интервала для параметра p с доверительным уровнем равна 0, если m = 0, а для является решением уравнения . Аналогично, правая граница равна 1, если m = n, а для является решением уравнения . Отсюда вытекает, что для поиска левой границы мы должны решать относительно уравнение , а для поиска правой – уравнение . Они и решаются в функциях binom_leftCI и binom_rightCI , возвращающих верхнюю и нижнюю границы двустороннего доверительного интервала соответственно.

Хочу заметить, что если не нужна совсем уж неимоверная точность, то при достаточно больших n можно воспользоваться следующей аппроксимацией [Б.Л. ван дер Варден, Математическая статистика. М: ИЛ, 1960, гл. 2, разд. 7]: , где g – квантиль нормального распределения. Ценность этой аппроксимации в том, что имеются очень простые приближения, позволяющие вычислять квантили нормального распределения (см. текст о вычислении нормального распределения и соответствующий раздел данного справочника). В моей практике (в основном, при n > 100) эта аппроксимация давала примерно 3-4 знака, чего, как правило, вполне достаточно.

Для вычислений с помощью нижеследующих кодов потребуются файлы betaDF.h , betaDF.cpp (см. раздел о бета-распределении), а также logGamma.h , logGamma.cpp (см. приложение А). Вы можете посмотреть также пример использования функций.

Файл binomialDF.h

#ifndef __BINOMIAL_H__ #include "betaDF.h" double binomialDF(double trials, double successes, double p); /* * Пусть имеется "trials" независимых наблюдений * с вероятностью "p" успеха в каждом. * Вычисляется вероятность B(successes|trials,p) того, что число * успехов заключено между 0 и "successes" (включительно). */ double rev_binomialDF(double trials, double successes, double y); /* * Пусть известна вероятность y наступления не менее m успехов * в trials испытаниях схемы Бернулли. Функция находит вероятность p * успеха в отдельном испытании. * * В вычислениях используется следующее соотношение * * 1 - p = rev_Beta(trials-successes| successes+1, y). */ double binom_leftCI(double trials, double successes, double level); /* Пусть имеется "trials" независимых наблюдений * с вероятностью "p" успеха в каждом * и количество успехов равно "successes". * Вычисляется левая граница двустороннего доверительного интервала * с уровнем значимости level. */ double binom_rightCI(double n, double successes, double level); /* Пусть имеется "trials" независимых наблюдений * с вероятностью "p" успеха в каждом * и количество успехов равно "successes". * Вычисляется правая граница двустороннего доверительного интервала * с уровнем значимости level. */ #endif /* Ends #ifndef __BINOMIAL_H__ */

Файл binomialDF.cpp

/***********************************************************/ /* Биномиальное распределение */ /***********************************************************/ #include #include #include "betaDF.h" ENTRY double binomialDF(double n, double m, double p) /* * Пусть имеется "n" независимых наблюдений * с вероятностью "p" успеха в каждом. * Вычисляется вероятность B(m|n,p) того, что число успехов заключено * между 0 и "m" (включительно), т.е. * сумму биномиальных вероятностей от 0 до m: * * m * -- (n) j n-j * > () p (1-p) * -- (j) * j=0 * * Вычисления не подразумевают тупое суммирование - используется * следующая связь с центральным бета-распределением: * * B(m|n,p) = Beta(1-p|n-m,m+1). * * Аргументы должны быть положительными, причем 0 <= p <= 1. */ { assert((n > 0) && (p >= 0) && (p <= 1)); if (m < 0) return 0; else if (m == 0) return pow(1-p, n); else if (m >= n) return 1; else return BetaDF(n-m, m+1).value(1-p); }/* binomialDF */ ENTRY double rev_binomialDF(double n, double m, double y) /* * Пусть известна вероятность y наступления не менее m успехов * в n испытаниях схемы Бернулли. Функция находит вероятность p * успеха в отдельном испытании. * * В вычислениях используется следующее соотношение * * 1 - p = rev_Beta(y|n-m,m+1). */ { assert((n > 0) && (m >= 0) && (m <= n) && (y >= 0) && (y <= 1)); return 1-BetaDF(n-m, m+1).inv(y); }/*rev_binomialDF*/ ENTRY double binom_leftCI(double n, double m, double y) /* Пусть имеется "n" независимых наблюдений * с вероятностью "p" успеха в каждом * и количество успехов равно "m". * Вычисляется левая граница двухстороннего доверительного интервала * с уровнем значимости y. */ { assert((n > 0) && (m >= 0) && (m <= n) && (y >= 0.5) && (y < 1)); return BetaDF(m, n-m+1).inv((1-y)/2); }/*binom_leftCI*/ ENTRY double binom_rightCI(double n, double m, double y) /* Пусть имеется "n" независимых наблюдений * с вероятностью "p" успеха в каждом * и количество успехов равно "m". * Вычисляется правая граница доверительного интервала * с уровнем значимости y. */ { assert((n > 0) && (m >= 0) && (m <= n) && (y >= 0.5) && (y < 1)); return BetaDF(m+1, n-m).inv((1+y)/2); }/*binom_rightCI*/

Распределения вероятностей дискретных случайных величин. Биномиальное распределение. Распределение Пуассона. Геометрическое распределение. Производящая функция.

6. Распределения вероятностей дискретных случайных величин

6.1. Биномиальное распределение

Пусть производится n независимых испытаний, в каждом из которых событие A может либо появится, либо не появится. Вероятность p появления события A во всех испытаниях постоянна и не изменяется от испытания к испытанию. Рассмотрим в качестве случайной величины X число появлений события A в этих испытаниях. Формула, позволяющая найти вероятность появления события A ровно k раз в n испытаниях, как известно, описывается формулой Бернулли

Распределение вероятностей, определяемое формулой Бернулли, называется биномиальным .

Этот закон назван "биномиальным" потому, что правую часть можно рассматривать как общий член разложения бинома Ньютона

Запишем биномиальный закон в виде таблицы

p n

np n –1 q

q n

Найдем числовые характеристики этого распределения.

По определению математического ожидания для ДСВ имеем

.

Запишем равенство, являющееся бином Ньютона

.

и продифференцируем его по p. В результате получим

.

Умножим левую и правую часть на p :

.

Учитывая, что p + q =1, имеем

(6.2)

Итак, математическое ожидание числа появлений событий в n независимых испытаниях равно произведению числа испытаний n на вероятность p появления события в каждом испытании .

Дисперсию вычислим по формуле

.

Для этого найдем

.

Предварительно продифференцируем формулу бинома Ньютона два раза по p :

и умножим обе части равенства на p 2:

Следовательно,

Итак, дисперсия биномиального распределения равна

. (6.3)

Данные результаты можно получить и из чисто качественных рассуждений. Общее число X появлений события A во всех испытаниях складываются из числа появлений события в отдельных испытаниях. Поэтому если X 1 – число появлений события в первом испытании, X 2 – во втором и т.д., то общее число появлений события A во всех испытаниях равно X=X 1 +X 2 +…+X n . По свойству математического ожидания:

Каждое из слагаемых правой части равенства есть математическое ожидание числа событий в одном испытании, которое равно вероятности события. Таким образом,

По свойству дисперсии:

Так как , а математическое ожидание случайной величины, которое может принимать только два значения, а именно 1 2 с вероятностью p и 0 2 с вероятностью q , то
. Таким образом,
В результате, получаем

Воспользовавшись понятием начальных и центральных моментов, можно получить формулы для асимметрии и эксцесса:

. (6.4)

Рис. 6.1

Многоугольник биномиального распределения имеет следующий вид (см. рис. 6.1). ВероятностьP n (k ) сначала возрастает при увеличении k , достигает наибольшего значения и далее начинает убывать. Биномиальное распределение асимметрично, за исключением случая p =0,5. Отметим, что при большом числе испытаний n биномиальное распределение весьма близко к нормальному. (Обоснование этого предложения связано с локальной теоремой Муавра-Лапласа.)

Число m 0 наступлений события называется наивероятнейшим , если вероятность наступления события данное число раз в этой серии испытаний наибольшая (максимум в многоугольнике распределения) . Для биномиального распределения

Замечание. Данное неравенство можно доказать, используя рекуррентную формулу для биномиальных вероятностей:

(6.6)

Пример 6.1. Доля изделий высшего сорта на данном предприятии составляет 31%. Чему равно математического ожидание и дисперсия, также наивероятнейшее число изделий высшего сорта в случайно отобранной партии из 75 изделий?

Решение. Поскольку p =0,31, q =0,69, n =75, то

M[X ] = np = 750,31 = 23,25; D[X ] = npq = 750,310,69 = 16,04.

Для нахождения наивероятнейшего числа m 0 , составим двойное неравенство

Отсюда следует, что m 0 = 23.