Биографии Характеристики Анализ

Независимые случайные величины. Операции над случайными величинами

Для решения многих практических задач необходимо знать комплекс условий, благодаря которому результат совокупного воздействия большого количества случайных факторов почти не зависит от случая. Данные условия описаны в нескольких теоремах, носящих общее название закона больших чисел, где случайная величина к равна 1 или 0 в зависимости от того, будет ли результатом k-го испытания успех или неудача. Таким образом, Sn является суммой n взаимно независимых случайных величин, каждая из которых принимает значения 1 и 0 с вероятностями р и q.

Простейшая форма закона больших чисел - теорема Бернулли, утверждающая, что если вероятность события одинакова во всех испытаниях, то с увеличением числа испытаний частота события стремится к вероятности события и перестает быть случайной.

Теорема Пуассона утверждает, что частота события в серии независимых испытаний стремится к среднему арифметическому его вероятностей и перестает быть случайной.

Предельные теоремы теории вероятностей, теоремы Муавра-Лапласа объясняют природу устойчивости частоты появлений события. Природа эта состоит в том, что предельным распределением числа появлений события при неограниченном возрастании числа испытаний (если вероятность события во всех испытаниях одинакова) является нормальное распределение.

Центральная предельная теорема объясняет широкое распространение нормального закона распределения. Теорема утверждает, что всегда, когда случайная величина образуется в результате сложения большого числа независимых случайных величин с конечными дисперсиями, закон распределения этой случайной величины оказывается практически нормальным законом.

Теорема Ляпунова объясняет широкое распространение нормального закона распределения и поясняет механизм его образования. Теорема позволяет утверждать, что всегда, когда случайная величина образуется в результате сложения большого числа независимых случайных величин, дисперсии которых малы по сравнению с дисперсией суммы, закон распределения этой случайной величины оказывается практически нормальным законом. А поскольку случайные величины всегда порождаются бесконечным количеством причин и чаще всего ни одна из них не имеет дисперсии, сравнимой с дисперсией самой случайной величины, то большинство встречающихся в практике случайных величин подчинено нормальному закону распределения.

В основе качественных и количественных утверждений закона больших чисел лежит неравенство Чебышева . Оно определяет верхнюю границу вероятности того, что отклонение значения случайной величины от ее математического ожидания больше некоторого заданного числа. Замечательно, что неравенство Чебышева дает оценку вероятности события для случайной величины, распределение которой неизвестно, известны лишь ее математическое ожидание и дисперсия.

Неравенство Чебышева . Если случайная величина x имеет дисперсию, то для любого x > 0 справедливо неравенство, где M x и D x - математическое ожидание и дисперсия случайной величины x .

Теорема Бернулли . Пусть x n - число успехов в n испытаниях Бернулли и p - вероятность успеха в отдельном испытании. Тогда при любом s > 0 справедливо.

Теорема Ляпунова . Пусть s 1 , s 2 , …, s n , …- неограниченная последовательность независимых случайных величин с математическими ожиданиями m 1 , m 2 , …, m n , … и дисперсиями s 1 2 , s 2 2 , …, s n 2 … . Обозначим,.

Тогда = Ф(b) - Ф(a) для любых действительных чисел a и b , где Ф(x) - функция распределения нормального закона.

Пусть дана дискретная случайная величина. Рассмотрим зависимость числа успехов Sn от числа испытаний n. При каждом испытании Sn возрастает на 1 или на 0. Это утверждение можно записать в виде:

Sn = 1 +…+ n . (1.1)

Закон больших чисел . Пусть { к }--последовательность взаимно независимых случайных величин с одинаковыми распределениями. Если математическое ожидание = М(к) существует, то для любого > 0 при n

Иначе говоря, вероятность того, что среднее S n /n отличается от математического ожидания меньше, чем на произвольно заданное, стремится к единице.

Центральная предельная теорема. Пусть { к }--последовательность взаимно независимых случайных величин с одинаковыми распределениями. Предположим, что и существуют. Пусть Sn = 1 +…+ n , Тогда для любых фиксированных

Ф () -- Ф () (1.3)

Здесь Ф (х) -- нормальная функция распределенияю. Эту теорему сформулировал и доказал Линлберг. Ляпунов и другие авторы доказывали ее раньше, при более ограничительных условиях. Необходимо представить себе, что сформулированная выше теорема является только весьма частным случаем гораздо более общей теоремы, которая в свою очередь тесно связана со многими другими предельными теоремами. Отметим, что (1.3) намного сильнее, чем (1.2), так как (1.3) дает оценку для вероятности того, что разность больше, чем. С другой стороны, закон больших чисел (1.2) верен, даже если случайные величины k не имеют конечной дисперсии, так что он применим к более общему случаю, чем центральная предельная теорема (1.3). Проиллюстрируем последние две теоремы примерами.

Примеры. а) Рассмотрим последовательность независимых бросаний симметричной кости. Пусть k -- число очков, выпавших при k-м бросании. Тогда

M(k)=(1+2+3+4+5+6)/6=3.5,

a D(k)=(1 2 +2 2 +3 2 +4 2 +5 2 +6 2)/6-(3.5) 2 =35/12 и S n /n

является средним числом очков, выпавших в результате n бросаний.

Закон больших чисел утверждает: правдоподобно, что при больших п это среднее окажется близким к 3,5. Центральная предельная теорема устанавливает вероятность того, что |Sn -- 3,5n | < (35n/12) 1/2 близка к Ф() -- Ф(-). При n = 1000 и а=1 мы находим, что вероятность неравенства 3450 < Sn < 3550 равна примерно 0,68. Выбрав для а значение а 0 = 0,6744, удовлетворяющее соотношению Ф(0)-- Ф(-- 0)=1/2, мы получим, что для Sn шансы находиться внутри или вне интервала 3500 36 примерно одинаковы.

б) Выборка. Предположим, что в генеральной совокупности,

состоящей из N семей, Nk семей имеют ровно по k детей

(k = 0, 1 ...; Nk = N). Если семья выбрана наугад, то число детей в ней является случайной величиной, которая принимает значение с вероятностью p = N/N. При выборе с возвращением можно рассматривать выборку объема n как совокупность n независимых случайных величин или «наблюдений» 1 , ..., n , которые имеют все одно и то же распределение; S n /n является средним значением выборки. Закон больших чисел утверждает, что для достаточно большой случайной выборки ее среднее значение будет, вероятно, близким к, т. е, к среднему значению генеральной совокупности. Центральная предельная теорема позволяет оценить вероятную величину расхождения между этими средними значениями и определить объем выборки, необходимый для надежной оценки. На практике и и обычно неизвестны; однако в большинстве случаев удается легко получить предварительную оценку для и всегда можно заключить в надежные границы. Если мы желаем, чтобы с вероятностью 0,99 или большей среднее значение выборки S n /n отличалось от неизвестного среднего значения генеральной совокупности менее, чем на 1/10, то объем выборки должен быть взят таким, чтобы

Корень х уравнения Ф(х) -- Ф(-- х) = 0,99 равен х = 2,57 ..., и, следовательно, n должно быть таким, что 2,57 или n > 660 . Осторожная предварительная оценка дает возможность найти необходимый объем выборки.

в) Распределение Пуассона.

Предположим, что случайные величины k имеют распределение Пуассона {p(k;)}. Тогда Sn имеет распределение Пуассона с математическим ожиданием и дисперсией, равными n.

Написав вместо n, мы заключаем, что при n

Суммирование производится по всем k от 0 до. Ф-ла (1.5) имеет место и тогда, когда произвольным образом.

Пусть известны средние квадратические отклонения нескольких взаимно независимых случайных величин. Как найти среднее квадратическое отклонение суммы этих величин? Ответ на этот вопрос дает следующая теорема.

Теорема. Среднее квадратическое отклонение суммы конечного числа взаимно независимых случайных величин равно квадратному корню из суммы квадратов средних квадратических отклонений этих величин".

Доказательство. Обозначим через X сумму рассматриваемых взаимно независимых величин:

Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме дисперсий слагаемых (см. § 5, следствие 1), поэтому

или окончательно

Одинаково распределенные взаимно независимые случайные величины

Уже известно, что по закону распределения можно найти числовые характеристики случайной величины. Отсюда следует, что если несколько случайных величин имеют одинаковые распределения, то их числовые характеристики одинаковы.

Рассмотрим п взаимно независимых случайных величин X v X v ..., X fi , которые имеют одинаковые распределения, а следовательно, и одинаковые характеристики (математическое ожидание, дисперсию и др.). Наибольший интерес представляет изучение числовых характеристик среднего арифметического этих величин, чем мы и займемся в настоящем параграфе.

Обозначим среднее арифметическое рассматриваемых случайных величин через X :

Следующие ниже три положения устанавливают связь между числовыми характеристиками среднего арифметического X и соответствующими характеристиками каждой отдельной величины.

1. Математическое ожидание среднего арифметического одина ково распределенных взаимно независимых случайных величин равно математическому ожиданию а каждой из величин:

Доказательство. Пользуясь свойствами математического ожидания (постоянный множитель можно вынести за знак математического ожидания; математическое ожидание суммы равно сумме математических ожиданий слагаемых), имеем


Приняв во внимание, что математическое ожидание каждой из величин по условию равно а , получим

2. Дисперсия среднего арифметического п одинаково распределенных взаимно независимых случайных величин в п раз меньше дисперсии D каждой из величин :

Доказательство. Пользуясь свойствами дисперсии (постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат; дисперсия суммы независимых величин равна сумме дисперсий слагаемых), имеем

§ 9. Одинаково распределенные взаимно независимые случайные величины 97

Приняв во внимание, что дисперсия каждой из величин по условию равна Д получим

3. Среднее квадратическое отклонение среднего арифметического п одинаково распределенных взаимно независимых случайных

величин в 4п раз меньше среднего квадратического отклонения а каждой из величин:

Д о к а з а т е л ь с т в о. Так как D(X ) = D/n, то среднее квадратическое отклонение X равно

Общий вывод из формул (*) и (**): вспоминая, что дисперсия и среднее квадратическое отклонение служат мерами рассеяния случайной величины, заключаем, что среднее арифметическое достаточно большого числа взаимно независимых случайных величин имеет

значительно меньшее рассеяние, чем каждая отдельная величина.

Поясним на примере значение этого вывода для практики.

Пример. Обычно для измерения некоторой физической величины производят несколько измерений, а затем находят среднее арифметическое полученных чисел, которое принимают за приближенное значение измеряемой величины. Предполагая, что измерения производятся в одних и тех же условиях, доказать:

  • а) среднее арифметическое дает результат более надежный, чем отдельные измерения;
  • б) с увеличением числа измерений надежность этого результата возрастает.

Решение, а) Известно, что отдельные измерения дают неодинаковые значения измеряемой величины. Результат каждого измерения зависит от многих случайных причин (изменение температуры, колебания прибора и т.п.), которые нс могут быть заранее полностью учтены.

Поэтому мы вправе рассматривать возможные результаты п отдельных измерений в качестве случайных величин X v Х 2 , ..., Х п (индекс указывает номер измерения). Эти величины имеют одинаковое распределение вероятностей (измерения производятся но одной и той же методике и теми же приборами), а следовательно, и одинаковые числовые характеристики; кроме того, они взаимно независимы (результат каждого отдельного измерения не зависит от остальных измерений).

Мы уже знаем, что среднее арифметическое таких величин имеет меньшее рассеяние, чем каждая отдельная величина. Иначе говоря, среднее арифметическое оказывается более близким к истинному значению измеряемой величины, чем результат отдельного измерения. Это и означает, что среднее арифметическое нескольких измерений дает более падежный результат, чем отдельное измерение.

б) Нам уже известно, что при возрастании числа отдельных случайных величин рассеяние среднего арифметического убывает. Это значит, что с увеличением числа измерений среднее арифметическое нескольких измерений все менее отличается от истинного значения измеряемой величины. Таким образом, увеличивая число измерений, получают более надежный результат.

Например, если среднее квадратическое отклонение отдельного измерения а = 6 м, а всего произведено п = 36 измерений, то среднее квадратическое отклонение среднего арифметического этих измерений равно лишь 1 м. Действительно,

Мы видим, что среднее арифметическое нескольких измерений, как и следовало ожидать, оказалось более близким к истинному значению измеряемой величины, чем результат отдельного измерения.

Курсовая работа

на тему: «Законы больших чисел»


Одинаково распределенные случайные величины

Для решения многих практических задач необходимо знать комплекс условий, благодаря которому результат совокупного воздействия большого количества случайных факторов почти не зависит от случая. Данные условия описаны в нескольких теоремах, носящих общее название закона больших чисел, где случайная величина к равна 1 или 0 в зависимости от того, будет ли результатом k-го испытания успех или неудача. Таким образом, Sn является суммой n взаимно независимых случайных величин, каждая из которых принимает значения 1 и 0 с вероятностями р и q.

Простейшая форма закона больших чисел - теорема Бернулли, утверждающая, что если вероятность события одинакова во всех испытаниях, то с увеличением числа испытаний частота события стремится к вероятности события и перестает быть случайной.

Теорема Пуассона утверждает, что частота события в серии независимых испытаний стремится к среднему арифметическому его вероятностей и перестает быть случайной.

Предельные теоремы теории вероятностей, теоремы Муавра-Лапласа объясняют природу устойчивости частоты появлений события. Природа эта состоит в том, что предельным распределением числа появлений события при неограниченном возрастании числа испытаний (если вероятность события во всех испытаниях одинакова) является нормальное распределение.

Центральная предельная теорема объясняет широкое распространение нормального закона распределения. Теорема утверждает, что всегда, когда случайная величина образуется в результате сложения большого числа независимых случайных величин с конечными дисперсиями, закон распределения этой случайной величины оказывается практически нормальным законом.

Теорема Ляпунова объясняет широкое распространение нормального закона распределения и поясняет механизм его образования. Теорема позволяет утверждать, что всегда, когда случайная величина образуется в результате сложения большого числа независимых случайных величин, дисперсии которых малы по сравнению с дисперсией суммы, закон распределения этой случайной величины оказывается практически нормальным законом. А поскольку случайные величины всегда порождаются бесконечным количеством причин и чаще всего ни одна из них не имеет дисперсии, сравнимой с дисперсией самой случайной величины, то большинство встречающихся в практике случайных величин подчинено нормальному закону распределения.

В основе качественных и количественных утверждений закона больших чисел лежит неравенство Чебышева . Оно определяет верхнюю границу вероятности того, что отклонение значения случайной величины от ее математического ожидания больше некоторого заданного числа. Замечательно, что неравенство Чебышева дает оценку вероятности события для случайной величины, распределение которой неизвестно, известны лишь ее математическое ожидание и дисперсия.

Неравенство Чебышева. Если случайная величина x имеет дисперсию, то для любого x > 0 справедливо неравенство , где M x и D x - математическое ожидание и дисперсия случайной величины x .

Теорема Бернулли. Пусть x n - число успехов в n испытаниях Бернулли и p - вероятность успеха в отдельном испытании. Тогда при любом s > 0 справедливо .

Теорема Ляпунова. Пусть s 1 , s 2 , …, s n , …– неограниченная последовательность независимых случайных величин с математическими ожиданиями m 1 , m 2 , …, m n , … и дисперсиями s 1 2 , s 2 2 , …, s n 2 … . Обозначим , , , .

Тогда = Ф(b) - Ф(a) для любых действительных чисел a и b , где Ф(x) - функция распределения нормального закона.

Пусть дана дискретная случайная величина . Рассмотрим зависимость числа успехов Sn от числа испытаний n. При каждом испытании Sn возрастает на 1 или на 0. Это утверждение можно записать в виде:

Sn = 1 +…+ n . (1.1)

Закон больших чисел. Пусть { к }-последовательность взаимно независимых случайных величин с одинаковыми распределениями. Если математическое ожидание = М( к) существует, то для любого > 0 при n

Иначе говоря, вероятность того, что среднее S n /n отличается от математического ожидания меньше, чем на произвольно заданное , стремится к единице.

Центральная предельная теорема. Пусть { к }-последовательность взаимно независимых случайных величин с одинаковыми распределениями. Предположим, что и существуют. Пусть Sn = 1 +…+ n , Тогда для любых фиксированных

Ф () - Ф () (1.3)

Здесь Ф (х) - нормальная функция распределенияю. Эту теорему сформулировал и доказал Линлберг. Ляпунов и другие авторы доказывали ее раньше, при более ограничительных условиях. Необходимо представить себе, что сформулированная выше теорема является только весьма частным случаем гораздо более общей теоремы, которая в свою очередь тесно связана со многими другими предельными теоремами. Отметим, что (1.3) намного сильнее, чем (1.2), так как (1.3) дает оценку для вероятности того, что разность больше, чем . С другой стороны, закон больших чисел (1.2) верен, даже если случайные величины k не имеют конечной дисперсии, так что он применим к более общему случаю, чем центральная предельная теорема (1.3). Проиллюстрируем последние две теоремы примерами.

Примеры. а) Рассмотрим последовательность независимых бросаний симметричной кости. Пусть k - число очков, выпавших при k-м бросании. Тогда

M( k)=(1+2+3+4+5+6)/6=3.5,

a D( k)=(1 2 +2 2 +3 2 +4 2 +5 2 +6 2)/6-(3.5) 2 =35/12 и S n /n

является средним числом очков, выпавших в результате n бросаний.

Закон больших чисел утверждает: правдоподобно, что при больших п это среднее окажется близким к 3,5. Центральная предельная теорема устанавливает вероятность того, что |Sn - 3,5n | < (35n/12) 1/2 близка к Ф() - Ф(- ). При n = 1000 и а=1 мы находим, что вероятность неравенства 3450 < Sn < 3550 равна примерно 0,68. Выбрав для а значение а 0 = 0,6744, удовлетворяющее соотношению Ф( 0)- Ф(- 0)=1/2, мы получим, что для Sn шансы находиться внутри или вне интервала 3500 36 примерно одинаковы.

б) Выборка. Предположим, что в генеральной совокупности,

состоящей из N семей, Nk семей имеют ровно по k детей

(k = 0, 1 ...; Nk = N). Если семья выбрана наугад, то число детей в ней является случайной величиной, которая принимает значение с вероятностью p = N /N. При выборе с возвращением можно рассматривать выборку объема n как совокупность n независимых случайных величин или «наблюдений» 1 , ..., n , которые имеют все одно и то же распределение; S n /n является средним значением выборки. Закон больших чисел утверждает, что для достаточно большой случайной выборки ее среднее значение будет, вероятно, близким к , т. е, к среднему значению генеральной совокупности. Центральная предельная теорема позволяет оценить вероятную величину расхождения между этими средними значениями и определить объем выборки, необходимый для надежной оценки. На практике и и обычно неизвестны; однако в большинстве случаев удается легко получить предварительную оценку для и всегда можно заключить в надежные границы. Если мы желаем, чтобы с вероятностью 0,99 или большей среднее значение выборки S n /n отличалось от неизвестного среднего значения генеральной совокупности менее, чем на 1/10, то объем выборки должен быть взят таким, чтобы

Корень х уравнения Ф(х) - Ф(- х) = 0,99 равен х = 2,57 ..., и, следовательно, n должно быть таким, что 2,57 или n > 660 . Осторожная предварительная оценка дает возможность найти необходимый объем выборки.

в) Распределение Пуассона.

Предположим, что случайные величины k имеют распределение Пуассона {p(k; )}. Тогда Sn имеет распределение Пуассона с математическим ожиданием и дисперсией, равными n .

Написав вместо n , мы заключаем, что при n


Суммирование производится по всем k от 0 до . Ф-ла (1.5) имеет место и тогда, когда произвольным образом.

Выше мы рассмотрели вопрос о нахождении ФПВ для суммы статистически независимых случайных величин. В этом разделе мы снова рассмотрим сумму статистически независимых величин, но наш подход будет иным и не зависит от частных ФПВ случайных величин в сумме. В частности, предположим, что слагаемые суммы – статистически независимые и одинаково распределенные случайные величины, каждая из которых имеет ограниченные средние значения и ограниченную дисперсию.

Пусть определяется как нормированная сумма, называемая выборочным средним

Сначала определим верхние границы вероятности хвостов , а затем докажем очень важную теорему, определяющую ФПВ в пределе, когда стремится к бесконечности.

Случайная величина , определенная (2.1.187), часто встречается при оценивании среднего случайной величины по ряду наблюдений , . Другими словами, могут рассматриваться как независимые выборочные реализации из распределения , а является оценкой среднего .

Математическое ожидание равно

.

Дисперсия равна

Если рассматривать как оценку среднего , видим, что его математическое ожиданий равно , а его дисперсия уменьшается с ростом объема выборки . Если неограниченно возрастает, дисперсия стремится к нулю. Оценка параметра (в данном случае ), которая удовлетворяет условиям, что её математическое ожидание стремится к истинному значению параметра, а дисперсия строго к нулю, называется состоятельной оценкой.

Хвостовую вероятность случайной величины можно оценить сверху, используй границы, данные в разд. 2.1.5. Неравенство Чебышева применительно к имеет вид

,

. (2.1.188)

В пределе, когда , из (2.1.188) следует

. (2.1.189)

Следовательно, вероятность того, что оценка среднего отличается от истинного значения больше, чем на , стремится к нулю, если неограниченно растет. Это положение является формой закона больших чисел. Так как верхняя граница сходится к нулю относительно медленно, т.е. обратно пропорционально . выражение (2.1.188) называют слабым законом больших чисел .

Если к случайной величине применить границу Чернова, содержащую экспоненциальную зависимость от , тогда получим плотную верхнюю границу для вероятности одного хвоста. Следуя процедуре, изложенной в разд. 2.1.5, найдем, что вероятность хвоста для определяется выражением

где и . Но , статистически независимы и одинаковы распределены. Следовательно,

где - одна из величин . Параметр , который дает наиболее точную верхнюю границ получается дифференцированием (2.1.191) и приравниванием производной нулю. Это ведет к уравнению

(2.1.192)

Обозначим решение (2.1.192) через . Тогда граница для вероятности верхнего хвоста

, . (2.1.193)

Аналогично мы найдем, что вероятность нижнего хвоста имеет границу

, . (2.1.194)

Пример 2.1.7. Пусть , - ряд статистически независимых случайных величин, определенных так:

Мы хотим определить плотную верхнюю границу вероятности того, что сумма от больше, чем нуль. Так как , то сумма будет иметь отрицательное значение для математического ожидания (среднего), следовательно, будем искать вероятность верхнего хвоста. При в (2.1.193) имеем

, (2.1.195)

где - решение уравнения

Следовательно,

. (2.1.197)

Следовательно, для границы в (2.1.195) получаем

Мы видим, что верхняя граница уменьшается экспоненциально с , как ожидалось. В противоположность этому согласно границе Чебышева вероятность хвоста уменьшается обратно пропорционально .

Центральная предельная теорема. В этом разделе рассмотрим чрезвычайно полезную теорему, касающуюся ИФР суммы случайных величин в пределе, когда число слагаемых суммы неограниченно возрастает. Имеется несколько версий этой теоремы. Докажем теорему для случая, когда случайные суммируемые величины , , статистически независимы и одинаково распределены, каждая из них имеет ограниченное среднее и ограниченную дисперсию .

Для удобства определим нормированную случайную величину

Таким образом, имеет нулевое среднее и единичную дисперсию.

Теперь пусть

Так как каждое слагаемое суммы имеет нулевое среднее и единичную дисперсию нормированная (множителем ) величина имеет нулевое среднее и единичную дисперсию. Мы хотим определить ИФР для в пределе, когда .

Характеристическая функция равна

, (2.1.200).

,

или, что эквивалентно,

. (2.1.206)

Но это как раз характеристическая функция гауссовской случайной величины нулевым средним и единичной дисперсией. Таким образом, мы имеем важный результат; ФПВ суммы статистически независимых и одинаково распределенных случайных величин с ограниченным средним и дисперсией приближается к гауссовской при . Это результат известен как центральная предельная теорема .

Хотя мы предположили, что случайные величины в сумме распределены одинаково это предположение можно ослабить при условии, что определённые дополнительные ограничения все же накладываются на свойства случайных суммируемых величин. Имеется одна разновидность теоремы, например, когда отказываются от предположения об одинаковом распределении случайных величин в пользу условия, накладываемого на третий абсолютный момент случайных величин суммы. Для обсуждения этой и других версий центральной предельной теоремы читатель отсылается к книге Крамера (1946).

Центральная предельная теорема представляет собой группу теорем, посвященных установлению условий, при которых возникает нормальный закон распределения, и нарушение которых ведет к распределению, отличному от нормального. Различные формы центральной предельной теоремы различаются между собой условиями, накладываемыми на распределения образующих сумму случайных слагаемых. Докажем одну из самых простых форм этой теоремы, а именно, центральную предельную теорему для независимых одинаково распределенных слагаемых.

Рассмотрим последовательность независимых одинаково распределенных случайных величин, имеющих математическое ожидание. Предположим также, что существует дисперсия. Введем обозначение. Закон больших чисел для этой последовательности можно представить в следующей форме:

где сходимость можно понимать, как в смысле сходимости по вероятности (слабый закон больших чисел), так и в смысле сходимости с вероятностью, равной единице (усиленный закон больших чисел).

Теорема (центральная предельная теорема для независимых одинаково распределенных случайных величин). Пусть - последовательность независимых одинаково распределенных случайных величин, . Тогда имеет место равномерная относительно () сходимость

где - функция стандартного нормального распределения (с параметрами):

При выполнении условия такой сходимости последовательность называется асимптотически нормальной.

Теоремы Ляпунова и Линдеберга

Рассмотрим случай когда случайные величины имеют разные распределения, - независимы с разными распределениями.

Теорема (Линдеберга). Пусть - последовательность независимых случайных величин с конечными дисперсиями. Если для этой последовательности выполняется условие Линдеберга:

где, то для нее выполнена центральная предельная теорема.

Поскольку непосредственно проверка условия Линдеберга затруднительна, то рассматривается некоторое другое условие при котором имеет место центральная предельная теорема, а именно условие теоремы Ляпунова.

Теорема (Ляпунова). Если для последовательности случайных величин выполняется условие Ляпунова:

то последовательность является асимптотически нормальной, т.е. имеет место центральная предельная теорема.

Из выполнения условия Ляпунова следует выполнение условия Линдеберга, а из него следует центральная предельная теорема.