Βιογραφίες Χαρακτηριστικά Ανάλυση

Επίλυση τριγωνομετρικών εξισώσεων για ανδρείκελα. Επίλυση τριγωνομετρικών εξισώσεων

Κατά την επίλυση πολλών μαθηματικά προβλήματα , ειδικά αυτές που συμβαίνουν πριν από τον βαθμό 10, η σειρά των ενεργειών που εκτελούνται που θα οδηγήσουν στον στόχο είναι σαφώς καθορισμένη. Τέτοια προβλήματα περιλαμβάνουν, για παράδειγμα, γραμμικά και τετραγωνικές εξισώσεις, γραμμικό και τετραγωνικές ανισότητες, κλασματικές εξισώσειςκαι εξισώσεις που ανάγονται σε δευτεροβάθμιες. Αρχή επιτυχημένη λύσηκαθεμία από τις αναφερόμενες εργασίες έχει ως εξής: είναι απαραίτητο να καθοριστεί ποιος τύπος προβλήματος επιλύεται, να θυμάστε την απαραίτητη σειρά ενεργειών που θα οδηγήσουν στο επιθυμητό αποτέλεσμα, δηλ. απαντήστε και ακολουθήστε αυτά τα βήματα.

Είναι προφανές ότι η επιτυχία ή η αποτυχία στην επίλυση ενός συγκεκριμένου προβλήματος εξαρτάται κυρίως από το πόσο σωστά καθορίζεται ο τύπος της εξίσωσης που επιλύεται, πόσο σωστά αναπαράγεται η ακολουθία όλων των σταδίων της επίλυσής της. Φυσικά, είναι απαραίτητο να έχετε τις δεξιότητες για να εκτελέσετε μετασχηματισμοί ταυτότηταςκαι υπολογιστών.

Η κατάσταση είναι διαφορετική με τριγωνομετρικές εξισώσεις.Δεν είναι καθόλου δύσκολο να τεκμηριωθεί το γεγονός ότι η εξίσωση είναι τριγωνομετρική. Προκύπτουν δυσκολίες κατά τον καθορισμό της αλληλουχίας των ενεργειών που θα οδηγούσαν στη σωστή απάντηση.

Με εμφάνισηεξίσωση μερικές φορές είναι δύσκολο να προσδιοριστεί ο τύπος της. Και χωρίς να γνωρίζουμε τον τύπο της εξίσωσης, είναι σχεδόν αδύνατο να επιλέξετε το σωστό από πολλές δεκάδες τριγωνομετρικούς τύπους.

Για να λύσετε μια τριγωνομετρική εξίσωση, πρέπει να δοκιμάσετε:

1. Φέρτε όλες τις συναρτήσεις που περιλαμβάνονται στην εξίσωση στις «ίδιες γωνίες».
2. Φέρτε την εξίσωση σε «πανομοιότυπες συναρτήσεις».
3. παραμετροποιήστε την αριστερή πλευρά της εξίσωσης κ.λπ.

Ας σκεφτούμε βασικές μέθοδοι λύσης τριγωνομετρικές εξισώσεις.

I. Αναγωγή στις απλούστερες τριγωνομετρικές εξισώσεις

Διάγραμμα λύσης

Βήμα 1.Να εκφράσετε μια τριγωνομετρική συνάρτηση ως προς γνωστές συνιστώσες.

Βήμα 2.Βρείτε το όρισμα συνάρτησης χρησιμοποιώντας τους τύπους:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

sin x = a; x = (-1) n arcsin a + πn, n Є Z.

tan x = a; x = αρκτάνη a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Βήμα 3.Βρείτε την άγνωστη μεταβλητή.

Παράδειγμα.

2 cos(3x – π/4) = -√2.

Λύση.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Απάντηση: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Αντικατάσταση μεταβλητής

Διάγραμμα λύσης

Βήμα 1.Μειώστε την εξίσωση σε αλγεβρική μορφήσε σχέση με μια από τις τριγωνομετρικές συναρτήσεις.

Βήμα 2.Σημειώστε τη συνάρτηση που προκύπτει με τη μεταβλητή t (αν χρειάζεται, εισάγετε περιορισμούς στο t).

Βήμα 3.Καταγράψτε και λύστε την αλγεβρική εξίσωση που προκύπτει.

Βήμα 4.Κάντε μια αντίστροφη αντικατάσταση.

Βήμα 5.Να λύσετε την απλούστερη τριγωνομετρική εξίσωση.

Παράδειγμα.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

Λύση.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

2) Έστω sin (x/2) = t, όπου |t| ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 ή e = -3/2, δεν ικανοποιεί τη συνθήκη |t| ≤ 1.

4) sin(x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Απάντηση: x = π + 4πn, n Є Z.

III. Μέθοδος μείωσης σειράς εξίσωσης

Διάγραμμα λύσης

Βήμα 1.Αντικαθιστώ δεδομένη εξίσωσηγραμμικό, χρησιμοποιώντας τους τύπους για τη μείωση του βαθμού:

αμαρτία 2 x = 1/2 · (1 – cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

Βήμα 2.Λύστε την εξίσωση που προκύπτει χρησιμοποιώντας τις μεθόδους I και II.

Παράδειγμα.

cos 2x + cos 2 x = 5/4.

Λύση.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Απάντηση: x = ±π/6 + πn, n Є Z.

IV. Ομογενείς εξισώσεις

Διάγραμμα λύσης

Βήμα 1.Μειώστε αυτήν την εξίσωση στη φόρμα

α) a sin x + b cos x = 0 ( ομοιογενής εξίσωσηπρώτου βαθμού)

ή στη θέα

β) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (ομοιογενής εξίσωση δεύτερου βαθμού).

Βήμα 2.Διαιρέστε και τις δύο πλευρές της εξίσωσης με

α) cos x ≠ 0;

β) cos 2 x ≠ 0;

και πάρτε την εξίσωση για το tan x:

α) a tan x + b = 0;

β) a tan 2 x + b arctan x + c = 0.

Βήμα 3.Λύστε την εξίσωση χρησιμοποιώντας γνωστές μεθόδους.

Παράδειγμα.

5sin 2 x + 3sin x cos x – 4 = 0.

Λύση.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x – 4 = 0.

3) Έστω tg x = t, τότε

t 2 + 3t – 4 = 0;

t = 1 ή t = -4, που σημαίνει

tg x = 1 ή tg x = -4.

Από την πρώτη εξίσωση x = π/4 + πn, n Є Z; από τη δεύτερη εξίσωση x = -arctg 4 + πk, k Є Z.

Απάντηση: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Μέθοδος μετασχηματισμού εξίσωσης με χρήση τριγωνομετρικών τύπων

Διάγραμμα λύσης

Βήμα 1.Χρησιμοποιώντας όλα τα είδη τριγωνομετρικούς τύπους, ανάγουμε αυτήν την εξίσωση σε μια εξίσωση που επιλύεται με τις μεθόδους I, II, III, IV.

Βήμα 2.Λύστε την εξίσωση που προκύπτει χρησιμοποιώντας γνωστές μεθόδους.

Παράδειγμα.

αμαρτία x + αμαρτία 2x + αμαρτία 3x = 0.

Λύση.

1) (αμαρτία x + αμαρτία 3x) + αμαρτία 2x = 0;

2sin 2x cos x + sin 2x = 0.

2) αμαρτία 2x (2cos x + 1) = 0;

sin 2x = 0 ή 2cos x + 1 = 0;

Από την πρώτη εξίσωση 2x = π/2 + πn, n Є Z; από το δεύτερο εξισώσεις cos x = -1/2.

Έχουμε x = π/4 + πn/2, n Є Z; από τη δεύτερη εξίσωση x = ±(π – π/3) + 2πk, k Є Z.

Ως αποτέλεσμα, x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Απάντηση: x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Η ικανότητα και η ικανότητα επίλυσης τριγωνομετρικών εξισώσεων είναι πολύ σημαντικό, η ανάπτυξή τους απαιτεί σημαντική προσπάθεια, τόσο από την πλευρά του μαθητή όσο και από την πλευρά του δασκάλου.

Πολλά προβλήματα στερεομετρίας, φυσικής κ.λπ. σχετίζονται με την επίλυση τριγωνομετρικών εξισώσεων Η διαδικασία επίλυσης τέτοιων προβλημάτων ενσωματώνει πολλές από τις γνώσεις και τις δεξιότητες που αποκτώνται με τη μελέτη των στοιχείων της τριγωνομετρίας.

Οι τριγωνομετρικές εξισώσεις παίρνουν σημαντικό μέροςστη διαδικασία διδασκαλίας των μαθηματικών και γενικότερα στην ανάπτυξη της προσωπικότητας.

Έχετε ακόμα ερωτήσεις; Δεν ξέρετε πώς να λύσετε τριγωνομετρικές εξισώσεις;
Για να λάβετε βοήθεια από έναν δάσκαλο -.
Το πρώτο μάθημα είναι δωρεάν!

blog.site, κατά την πλήρη ή μερική αντιγραφή υλικού, απαιτείται σύνδεσμος στην αρχική πηγή.

Το μάθημα βίντεο «Get an A» περιλαμβάνει όλα τα θέματα που είναι απαραίτητα για επιτυχία περνώντας από την Ενιαία Κρατική Εξέτασηστα μαθηματικά για 60-65 μονάδες. Εντελώς όλα τα προβλήματα 1-13 Προφίλ Ενιαία Κρατική Εξέτασημαθηματικά. Κατάλληλο και για επιτυχία στη Βασική Ενιαία Κρατική Εξέταση στα μαθηματικά. Αν θέλετε να περάσετε τις εξετάσεις του Ενιαίου Κράτους με 90-100 μόρια, πρέπει να λύσετε το μέρος 1 σε 30 λεπτά και χωρίς λάθη!

Μάθημα προετοιμασίας για την Ενιαία Κρατική Εξέταση για τις τάξεις 10-11, καθώς και για εκπαιδευτικούς. Όλα όσα χρειάζεστε για να λύσετε το Μέρος 1 της Ενιαίας Κρατικής Εξέτασης στα μαθηματικά (τα πρώτα 12 προβλήματα) και το πρόβλημα 13 (τριγωνομετρία). Και αυτά είναι περισσότερα από 70 μόρια στην Ενιαία Κρατική Εξέταση και ούτε ένας μαθητής 100 βαθμών ούτε ένας φοιτητής ανθρωπιστικών επιστημών μπορεί να τα κάνει χωρίς αυτά.

Όλη η απαραίτητη θεωρία. Γρήγοροι τρόποιλύσεις, παγίδες και μυστικά της Ενιαίας Κρατικής Εξέτασης. Όλες οι τρέχουσες εργασίες του μέρους 1 από την τράπεζα εργασιών FIPI έχουν αναλυθεί. Το μάθημα συμμορφώνεται πλήρως με τις απαιτήσεις της Ενιαίας Κρατικής Εξέτασης 2018.

Το μάθημα περιέχει 5 μεγάλα θέματα, 2,5 ώρες το καθένα. Κάθε θέμα δίνεται από την αρχή, απλά και ξεκάθαρα.

Εκατοντάδες εργασίες Ενιαίας Κρατικής Εξέτασης. Προβλήματα λέξεωνκαι η θεωρία πιθανοτήτων. Απλοί και εύκολοι στην απομνημόνευση αλγόριθμοι για την επίλυση προβλημάτων. Γεωμετρία. Θεωρία, υλικό αναφοράς, ανάλυση όλων των τύπων εργασιών Ενιαίας Κρατικής Εξέτασης. Στερεομετρία. Δύσκολες λύσεις, χρήσιμα cheat sheets, ανάπτυξη χωρική φαντασία. Τριγωνομετρία από το μηδέν στο πρόβλημα 13. Κατανόηση αντί να στριμώχνω. Σαφείς εξηγήσεις περίπλοκων εννοιών. Αλγεβρα. Ρίζες, δυνάμεις και λογάριθμοι, συνάρτηση και παράγωγος. Βάση λύσης σύνθετες εργασίες 2 μέρη της Ενιαίας Κρατικής Εξέτασης.

Η διατήρηση του απορρήτου σας είναι σημαντική για εμάς. Για το λόγο αυτό, έχουμε αναπτύξει μια Πολιτική Απορρήτου που περιγράφει τον τρόπο με τον οποίο χρησιμοποιούμε και αποθηκεύουμε τις πληροφορίες σας. Διαβάστε τις πρακτικές απορρήτου μας και ενημερώστε μας εάν έχετε ερωτήσεις.

Συλλογή και χρήση προσωπικών πληροφοριών

Οι προσωπικές πληροφορίες αναφέρονται σε δεδομένα που μπορούν να χρησιμοποιηθούν για την αναγνώριση ή επικοινωνία με ένα συγκεκριμένο άτομο.

Ενδέχεται να σας ζητηθεί να δώσετε τα προσωπικά σας στοιχεία ανά πάσα στιγμή όταν επικοινωνήσετε μαζί μας.

Ακολουθούν ορισμένα παραδείγματα των τύπων προσωπικών πληροφοριών που ενδέχεται να συλλέγουμε και πώς μπορούμε να χρησιμοποιήσουμε αυτές τις πληροφορίες.

Ποιες προσωπικές πληροφορίες συλλέγουμε:

  • Όταν υποβάλλετε μια αίτηση στον ιστότοπο, ενδέχεται να συλλέξουμε διάφορες πληροφορίες, όπως το όνομά σας, τον αριθμό τηλεφώνου, τη διεύθυνσή σας ΗΛΕΚΤΡΟΝΙΚΗ ΔΙΕΥΘΥΝΣΗκαι τα λοιπά.

Πώς χρησιμοποιούμε τα προσωπικά σας στοιχεία:

  • Συλλέγεται από εμάς προσωπικές πληροφορίεςμας επιτρέπει να επικοινωνήσουμε μαζί σας και να σας ενημερώσουμε για μοναδικές προσφορές, προσφορές και άλλες εκδηλώσεις και επερχόμενες εκδηλώσεις.
  • Από καιρό σε καιρό, ενδέχεται να χρησιμοποιήσουμε τα προσωπικά σας στοιχεία για να στείλουμε σημαντικές ειδοποιήσεις και επικοινωνίες.
  • Ενδέχεται επίσης να χρησιμοποιήσουμε προσωπικές πληροφορίες για εσωτερικούς σκοπούς, όπως διεξαγωγή ελέγχων, ανάλυση δεδομένων και διάφορες έρευνες, προκειμένου να βελτιώσουμε τις υπηρεσίες που παρέχουμε και να σας παρέχουμε συστάσεις σχετικά με τις υπηρεσίες μας.
  • Εάν συμμετέχετε σε κλήρωση, διαγωνισμό ή παρόμοια προσφορά, ενδέχεται να χρησιμοποιήσουμε τις πληροφορίες που παρέχετε για τη διαχείριση τέτοιων προγραμμάτων.

Αποκάλυψη πληροφοριών σε τρίτους

Δεν αποκαλύπτουμε τις πληροφορίες που λαμβάνουμε από εσάς σε τρίτους.

Εξαιρέσεις:

  • Εάν είναι απαραίτητο, σύμφωνα με το νόμο, δικαστική διαδικασία, σε νομικές διαδικασίες και/ή βάσει δημόσιων ερευνών ή αιτημάτων από κυβερνητικές υπηρεσίεςστο έδαφος της Ρωσικής Ομοσπονδίας - αποκαλύψτε τα προσωπικά σας στοιχεία. Ενδέχεται επίσης να αποκαλύψουμε πληροφορίες σχετικά με εσάς εάν κρίνουμε ότι αυτή η αποκάλυψη είναι απαραίτητη ή κατάλληλη για λόγους ασφάλειας, επιβολής του νόμου ή άλλους σκοπούς δημόσιας σημασίας.
  • Σε περίπτωση αναδιοργάνωσης, συγχώνευσης ή πώλησης, ενδέχεται να μεταφέρουμε τις προσωπικές πληροφορίες που συλλέγουμε στον κατάλληλο διάδοχο τρίτο.

Προστασία προσωπικών πληροφοριών

Λαμβάνουμε προφυλάξεις - συμπεριλαμβανομένων διοικητικών, τεχνικών και φυσικών - για την προστασία των προσωπικών σας δεδομένων από απώλεια, κλοπή και κακή χρήση, καθώς και από μη εξουσιοδοτημένη πρόσβαση, αποκάλυψη, τροποποίηση και καταστροφή.

Σεβασμός του απορρήτου σας σε εταιρικό επίπεδο

Για να διασφαλίσουμε ότι τα προσωπικά σας στοιχεία είναι ασφαλή, κοινοποιούμε τα πρότυπα απορρήτου και ασφάλειας στους υπαλλήλους μας και εφαρμόζουμε αυστηρά τις πρακτικές απορρήτου.

Ένα μάθημα για την ολοκληρωμένη εφαρμογή της γνώσης.

Στόχοι μαθήματος.

  1. Σκεφτείτε διάφορες μεθόδουςεπίλυση τριγωνομετρικών εξισώσεων.
  2. Ανάπτυξη δημιουργικότηταμαθητές με επίλυση εξισώσεων.
  3. Ενθάρρυνση των μαθητών για αυτοέλεγχο, αμοιβαίο έλεγχο και αυτοανάλυση των εκπαιδευτικών τους δραστηριοτήτων.

Εξοπλισμός: οθόνη, προβολέας, υλικό αναφοράς.

Κατά τη διάρκεια των μαθημάτων

Εισαγωγική συνομιλία.

Η κύρια μέθοδος για την επίλυση τριγωνομετρικών εξισώσεων είναι η αναγωγή τους στην απλούστερη μορφή τους. Σε αυτή την περίπτωση, χρησιμοποιούνται οι συνήθεις μέθοδοι, για παράδειγμα, παραγοντοποίηση, καθώς και τεχνικές που χρησιμοποιούνται μόνο για την επίλυση τριγωνομετρικών εξισώσεων. Υπάρχουν πολλές από αυτές τις τεχνικές, για παράδειγμα, διάφορες τριγωνομετρικές αντικαταστάσεις, μετασχηματισμοί γωνίας, μετασχηματισμοί τριγωνομετρικών συναρτήσεων. Η αδιάκριτη εφαρμογή οποιωνδήποτε τριγωνομετρικών μετασχηματισμών συνήθως δεν απλοποιεί την εξίσωση, αλλά την περιπλέκει καταστροφικά. Για γυμναστική μέσα γενικό περίγραμμασχέδιο για την επίλυση της εξίσωσης, περιγράψτε έναν τρόπο για να μειώσετε την εξίσωση στην απλούστερη, πρέπει πρώτα να αναλύσετε τις γωνίες - τα επιχειρήματα των τριγωνομετρικών συναρτήσεων που περιλαμβάνονται στην εξίσωση.

Σήμερα θα μιλήσουμε για μεθόδους επίλυσης τριγωνομετρικών εξισώσεων. Η σωστά επιλεγμένη μέθοδος μπορεί συχνά να απλοποιήσει σημαντικά τη λύση, επομένως όλες οι μέθοδοι που μελετήσαμε θα πρέπει πάντα να διατηρούνται στη ζώνη προσοχής μας για να λύνουμε τριγωνομετρικές εξισώσεις με την καταλληλότερη μέθοδο.

II. (Χρησιμοποιώντας έναν προβολέα, επαναλαμβάνουμε τις μεθόδους επίλυσης εξισώσεων.)

1. Μέθοδος αναγωγής τριγωνομετρικής εξίσωσης σε αλγεβρική.

Όλα πρέπει να εκφράζονται τριγωνομετρικές συναρτήσειςμέσω ενός, με το ίδιο επιχείρημα. Αυτό μπορεί να γίνει χρησιμοποιώντας τη βασική τριγωνομετρική ταυτότητα και τις συνέπειές της. Λαμβάνουμε μια εξίσωση με μία τριγωνομετρική συνάρτηση. Λαμβάνοντας το ως νέο άγνωστο, παίρνουμε μια αλγεβρική εξίσωση. Βρίσκουμε τις ρίζες του και επιστρέφουμε στο παλιό άγνωστο, λύνοντας τις απλούστερες τριγωνομετρικές εξισώσεις.

2. Μέθοδος παραγοντοποίησης.

Για την αλλαγή γωνιών, συχνά είναι χρήσιμοι τύποι αναγωγής, αθροίσματος και διαφοράς ορισμάτων, καθώς και τύποι για τη μετατροπή του αθροίσματος (διαφοράς) τριγωνομετρικών συναρτήσεων σε γινόμενο και αντίστροφα.

αμαρτία x + αμαρτία 3x = αμαρτία 2x + αμαρτία4x

3. Μέθοδος εισαγωγής πρόσθετης γωνίας.

4. Μέθοδος χρήσης καθολικής αντικατάστασης.

Οι εξισώσεις της μορφής F(sinx, cosx, tanx) = 0 ανάγονται σε αλγεβρικές χρησιμοποιώντας μια καθολική τριγωνομετρική αντικατάσταση

Εκφράζοντας ημίτονο, συνημίτονο και εφαπτομένη ως προς την εφαπτομένη μισή γωνία. Αυτή η τεχνική μπορεί να οδηγήσει στην εξίσωση υψηλή τάξη. Η λύση της οποίας είναι δύσκολη.