Биографии Характеристики Анализ

Функция ошибки нейронной сети. Обучение сети - обратное распространение

Алгоритм обратного распространения ошибки является одним из методов обучения многослойных нейронных сетей прямого распространения, называемых также многослойными персептронами. Многослойные персептроны успешно применяются для решения многих сложных задач.

Обучение алгоритмом обратного распространения ошибки предполагает два прохода по всем слоям сети: прямого и обратного. При прямом проходе входной вектор подается на входной слой нейронной сети, после чего распространяется по сети от слоя к слою. В результате генерируется набор выходных сигналов, который и является фактической реакцией сети на данный входной образ. Во время прямого прохода все синаптические веса сети фиксированы. Во время обратного прохода все синаптические веса настраиваются в соответствии с правилом коррекции ошибок, а именно: фактический выход сети вычитается из желаемого, в результате чего формируется сигнал ошибки. Этот сигнал впоследствии распространяется по сети в направлении, обратном направлению синаптических связей. Отсюда и название – алгоритм обратного распространения ошибки . Синаптические веса настраиваются с целью максимального приближения выходного сигнала сети к желаемому.

Рассмотрим работу алгоритма подробней. Допустим необходимо обучить следующую нейронную сеть, применив алгоритм обратного распространения ошибки:

На приведенном рисунке использованы следующие условные обозначения:

В качестве активационной функции в многослойных персептронах, как правило, используется сигмоидальная активационная функция, в частности логистическая:

где – параметр наклона сигмоидальной функции. Изменяя этот параметр, можно построить функции с различной крутизной. Оговоримся, что для всех последующих рассуждений будет использоваться именно логистическая функция активации, представленная только, что формулой выше.

Сигмоид сужает диапазон изменения так, что значение лежит между нулем и единицей. Многослойные нейронные сети обладают большей представляющей мощностью, чем однослойные, только в случае присутствия нелинейности. Сжимающая функция обеспечивает требуемую нелинейность. В действительности имеется множество функций, которые могли бы быть использованы. Для алгоритма обратного распространения ошибки требуется лишь, чтобы функция была всюду дифференцируема. Сигмоид удовлетворяет этому требованию. Его дополнительное преимущество состоит в автоматическом контроле усиления. Для слабых сигналов (т.е. когда близко к нулю) кривая вход-выход имеет сильный наклон, дающий большое усиление. Когда величина сигнала становится больше, усиление падает. Таким образом, большие сигналы воспринимаются сетью без насыщения, а слабые сигналы проходят по сети без чрезмерного ослабления.

Целью обучения сети алгоритмом обратного распространения ошибки является такая подстройка ее весов, чтобы приложение некоторого множества входов приводило к требуемому множеству выходов. Для краткости эти множества входов и выходов будут называться векторами. При обучении предполагается, что для каждого входного вектора существует парный ему целевой вектор, задающий требуемый выход. Вместе они называются обучающей парой. Сеть обучается на многих парах.

Следующий:

  1. Инициализировать синаптические веса маленькими случайными значениями.
  2. Выбрать очередную обучающую пару из обучающего множества; подать входной вектор на вход сети.
  3. Вычислить выход сети.
  4. Вычислить разность между выходом сети и требуемым выходом (целевым вектором обучающей пары).
  5. Подкорректировать веса сети для минимизации ошибки (как см. ниже).
  6. Повторять шаги с 2 по 5 для каждого вектора обучающего множества до тех пор, пока ошибка на всем множестве не достигнет приемлемого уровня.

Операции, выполняемые шагами 2 и 3, сходны с теми, которые выполняются при функционировании уже обученной сети, т.е. подается входной вектор и вычисляется получающийся выход. Вычисления выполняются послойно. На рис. 1 сначала вычисляются выходы нейронов слоя (слой входной, а значит никаких вычислений в нем не происходит), затем они используются в качестве входов слоя , вычисляются выходы нейронов слоя , которые и образуют выходной вектор сети . Шаги 2 и 3 образуют так называемый «проход вперед», так как сигнал распространяется по сети от входа к выходу.

Шаги 4 и 5 составляют «обратный проход», здесь вычисляемый сигнал ошибки распространяется обратно по сети и используется для подстройки весов.

Рассмотрим подробней 5 шаг – корректировка весов сети. Здесь следует выделить два нижеописанных случая.

Случай 1. Корректировка синаптических весов выходного слоя

Например, для модели нейронной сети на рис. 1, это будут веса имеющие следующие обозначения: и . Определимся, что индексом будем обозначать нейрон, из которого выходит синаптический вес, а – нейрон в который входит:

Введем величину , которая равна разности между требуемым и реальным выходами, умноженной на производную логистической функции активации (формулу логистической функции активации см. выше):

Тогда, веса выходного слоя после коррекции будут равны:

Приведем пример вычислений для синаптического веса :

Случай 2. Корректировка синаптических весов скрытого слоя

Для модели нейронной сети на рис. 1, это будут веса соответствующие слоям и . Определимся, что индексом будем обозначать нейрон из которого выходит синаптический вес, а – нейрон в который входит (обратите внимание на появление новой переменной ).

Прудников Иван Алексеевич
МИРЭА(МТУ)

Тема нейронных сетей была уже ни раз освещена во многих журналах, однако сегодня я бы хотел познакомить читателей с алгоритмом обучения многослойной нейронной сети методом обратного распространения ошибки и привести реализацию данного метода.

Сразу хочу оговориться, что не являюсь экспертом в области нейронных сетей, поэтому жду от читателей конструктивной критики, замечаний и дополнений.

Теоретическая часть

Данный материал предполагает знакомство с основами нейронных сетей, однако я считаю возможным ввести читателя в курс темы без излишних мытарств по теории нейронных сетей. Итак, для тех, кто впервые слышит словосочетание «нейронная сеть», предлагаю воспринимать нейронную сеть в качестве взвешенного направленного графа, узлы (нейроны) которого расположены слоями. Кроме того, узел одного слоя имеет связи со всеми узлами предыдущего слоя. В нашем случае у такого графа будут иметься входной и выходной слои, узлы которых выполняют роль входов и выходов соответственно. Каждый узел (нейрон) обладает активационной функцией - функцией, ответственной за вычисление сигнала на выходе узла (нейрона). Также существует понятие смещения, представляющего из себя узел, на выходе которого всегда появляется единица. В данной статье мы будем рассматривать процесс обучения нейронной сети, предполагающий наличие «учителя», то есть процесс обучения, при котором обучение происходит путем предоставления сети последовательности обучающих примеров с правильными откликами.
Как и в случае с большинством нейронных сетей, наша цель состоит в обучении сети таким образом, чтобы достичь баланса между способностью сети давать верный отклик на входные данные, использовавшиеся в процессе обучения (запоминания), и способностью выдавать правильные результаты в ответ на входные данные, схожие, но неидентичные тем, что были использованы при обучении (принцип обобщения). Обучение сети методом обратного распространения ошибки включает в себя три этапа: подачу на вход данных, с последующим распространением данных в направлении выходов, вычисление и обратное распространение соответствующей ошибки и корректировку весов. После обучения предполагается лишь подача на вход сети данных и распространение их в направлении выходов. При этом, если обучение сети может являться довольно длительным процессом, то непосредственное вычисление результатов обученной сетью происходит очень быстро. Кроме того, существуют многочисленные вариации метода обратного распространения ошибки, разработанные с целью увеличения скорости протекания процесса обучения.
Также стоит отметить, что однослойная нейронная сеть существенно ограничена в том, обучению каким шаблонам входных данных она подлежит, в то время, как многослойная сеть (с одним или более скрытым слоем) не имеет такого недостатка. Далее будет дано описание стандартной нейронной сети с обратным распространением ошибки.

Архитектура

На рисунке 1 показана многослойная нейронная сеть с одним слоем скрытых нейронов (элементы Z).

Нейроны, представляющие собой выходы сети (обозначены Y), и скрытые нейроны могут иметь смещение(как показано на изображении). Смещение, соответствующий выходу Y k обозначен w ok , скрытому элементу Z j - V oj . Эти смещения служат в качестве весов на связях, исходящих от нейронов, на выходе которых всегда появляется 1 (на рисунке 1 они показаны, но обычно явно не отображаются, подразумеваясь). Кроме того, на рисунке 1 стрелками показано перемещение информации в ходе фазы распространения данных от входов к выходам. В процессе обучения сигналы распространяются в обратном направлении.

Описание алгоритма

Алгоритм, представленный далее, применим к нейронной сети с одним скрытым слоем, что является допустимой и адекватной ситуацией для большинства приложений. Как уже было сказано ранее, обучение сети включает в себя три стадии: подача на входы сети обучающих данных, обратное распространение ошибки и корректировка весов. В ходе первого этапа каждый входной нейрон X i получает сигнал и широковещательно транслирует его каждому из скрытых нейронов Z 1 ,Z 2 ...,Z p . Каждый скрытый нейрон затем вычисляет результат его активационной функции (сетевой функции) и рассылает свой сигнал Z j всем выходным нейронам. Каждый выходной нейрон Y k , в свою очередь, вычисляет результат своей активационной функции Y k , который представляет собой ничто иное, как выходной сигнал данного нейрона для соответствующих входных данных. В процессе обучения, каждый нейрон на выходе сети сравнивает вычисленное значение Y k с предоставленным учителем t k (целевым значением), определяя соответствующее значение ошибки для данного входного шаблона. На основании этой ошибки вычисляется σ k (k = 1,2,...m). σ k используется при распространении ошибки от Y k до всех элементов сети предыдущего слоя (скрытых нейронов, связанных с Y k), а также позже при изменении весов связей между выходными нейронами и скрытыми. Аналогичным образом вычисляется σj (j = 1,2,...p) для каждого скрытого нейрона Z j . Несмотря на то, что распространять ошибку до входного слоя необходимости нет, σj используется для изменения весов связей между нейронами скрытого слоя и входными нейронами. После того как все σ были определены, происходит одновременная корректировка весов всех связей.

Обозначения:

В алгоритме обучения сети используются следующие обозначения:

X Входной вектор обучающих данных X = (X 1 , X 2 ,...,X i ,...,X n).
t Вектор целевых выходных значений, предоставляемых учителем t = (t 1 , t 2 ,...,t k ,...,t m)
σ k Составляющая корректировки весов связей w jk , соответствующая ошибке выходного нейрона Y k ; также, информация об ошибке нейрона Y k , которая распространяется тем нейронам скрытого слоя, которые связаны с Y k .
σ j Составляющая корректировки весов связей v ij , соответствующая распространяемой от выходного слоя к скрытому нейрону Z j информации об ошибке.
a Скорость обучения.
X i Нейрон на входе с индексом i. Для входных нейронов входной и выходной сигналы одинаковы - X i .
v oj Смещение скрытого нейрона j.
Z j Скрытый нейрон j; Суммарное значение подаваемое на вход скрытого элемента Z j обозначается Z_in j: Z_in j = v oj +∑x i *v ij
Сигнал на выходе Z j (результат применения к Z_in j активационной функции) обозначается Z j: Z j = f (Z_in j)
w ok Смещение нейрона на выходе.
Y k Нейрон на выходе под индексом k; Суммарное значение подаваемое на вход выходного элемента Y k обозначается Y_in k: Y_in k = w ok + ∑ Z j *w jk . Сигнал на выходе Y k (результат применения к Y_in k активационной функции) обозначается Y k:

Функция активации

Функция активация в алгоритме обратного распространения ошибки должна обладать несколькими важными характеристиками: непрерывностью, дифференцируемостью и являться монотонно неубывающей. Более того, ради эффективности вычислений, желательно, чтобы ее производная легко находилась. Зачастую, активационная функция также является функцией с насыщением. Одной из наиболее часто используемых активационных функций является бинарная сигмоидальная функция с областью значений в (0, 1) и определенная как:

Другой широко распространенной активационной функцией является биполярный сигмоид с областью значений (-1, 1) и определенный как:


Алгоритм обучения

Алгоритм обучения выглядит следующим образом:

Инициализация весов (веса всех связей инициализируются случайными небольшими значениями).

До тех пор пока условие прекращения работы алгоритма неверно, выполняются шаги 2 - 9.

Для каждой пары { данные, целевое значение } выполняются шаги 3 - 8.

Распространение данных от входов к выходам:

Шаг 3.
Каждый входной нейрон (X i , i = 1,2,...,n) отправляет полученный сигнал X i всем нейронам в следующем слое (скрытом).

Каждый скрытый нейрон (Z j , j = 1,2,...,p) суммирует взвешенные входящие сигналы: z_in j = v oj + ∑ x i *v ij и применяет активационную функцию: z j = f (z_in j) После чего посылает результат всем элементам следующего слоя (выходного).

Каждый выходной нейрон (Y k , k = 1,2,...m) суммирует взвешенные входящие сигналы: Y_in k = w ok + ∑ Z j *w jk и применяет активационную функцию, вычисляя выходной сигнал: Y k = f (Y_in k).

Обратное распространение ошибки:

Каждый выходной нейрон (Y k , k = 1,2,...m) получает целевое значение - то выходное значение, которое является правильным для данного входного сигнала, и вычисляет ошибку: σ k = (t k - y k)*f " (y_in k), так же вычисляет величину, на которую изменится вес связи w jk: Δw jk = a * σ k * z j . Помимо этого, вычисляет величину корректировки смещения: Δw ok = a*σ k и посылает σ k нейронам в предыдущем слое.

Каждый скрытый нейрон (z j , j = 1,2,...p) суммирует входящие ошибки (от нейронов в последующем слое) σ_in j = ∑ σ k * w jk и вычисляет величину ошибки, умножая полученное значение на производную активационной функции: σ j = σ_in j * f " (z_in j), так же вычисляет величину, на которую изменится вес связи vij: Δv ij = a * σ j * x i . Помимо этого, вычисляет величину корректировки смещения: v oj = a * σ j

Шаг 8. Изменение весов.

Каждый выходной нейрон (y k , k = 1,2,...,m) изменяет веса своих связей с элементом смещения и скрытыми нейронами: w jk (new) = w jk (old) + Δw jk
Каждый скрытый нейрон (z j , j = 1,2,...p) изменяет веса своих связей с элементом смещения и выходными нейронами: v ij (new) = v ij (old) + Δv ij

Проверка условия прекращения работы алгоритма.
Условием прекращения работы алгоритма может быть как достижение суммарной квадратичной ошибкой результата на выходе сети предустановленного заранее минимума в ходе процесса обучения, так и выполнения определенного количества итераций алгоритма. В основе алгоритма лежит метод под названием градиентный спуск. В зависимости от знака, градиент функции (в данном случае значение функции - это ошибка, а параметры - это веса связей в сети) дает направление, в котором значения функции возрастают (или убывают) наиболее стремительно.

Для обучения многослойной сети в 1986 г. Руммельхартом и Хинтоном (Rummelhart D.E., Hinton G.E., Williams R.J., 1986) был предложен алгоритм обратного распостранения ошибок (error back propagation). Многочисленные публикации о промышленных применениях многослойных сетей с этим алгоритмом обучения подтвердили его принципиальную работоспособность на практике.

В начале возникает резонный вопрос - а почему для обучения многослойного персептрона нельзя применить уже известное -правило Розенблатта (см. Лекцию 4)? Ответ состоит в том, что для применения метода Розенблатта необходимо знать не только текущие выходы нейронов y, но и требуемыеправильные значенияY . В случае многослойной сети эти правильные значения имеются только для нейроноввыходного слоя. Требуемые значения выходов для нейронов скрытых слоев неизвестны, что и ограничивает применение-правила.

Основная идея обратного распространения состоит в том, как получить оценку ошибки для нейронов скрытых слоев. Заметим, что известные ошибки, делаемые нейронами выходного слоя, возникают вследствиенеизвестных пока ошибок нейронов скрытых слоев. Чем больше значение синаптической связи между нейроном скрытого слоя и выходным нейроном, тем сильнее ошибка первого влияет на ошибку второго. Следовательно, оценку ошибки элементов скрытых слоев можно получить, как взвешенную сумму ошибок последующих слоев. При обучении информация распространяется от низших слоев иерархии к высшим, а оценки ошибок, делаемые сетью - в обратном напаравлении, что и отражено в названии метода.

Перейдем к подробному рассмотрению этого алгоритма. Для упрощения обозначений ограничимся ситуацией, когда сеть имеет только один скрытый слой. Матрицу весовых коэффициентов от входов к скрытому слою обозначим W, а матрицу весов, соединяющих скрытый и выходной слой - как V. Для индексов примем следующие обозначения: входы будем нумеровать только индексом i, элементы скрытого слоя - индексом j, а выходы, соответственно, индексом k.

Пусть сеть обучается на выборке (X,Y),=1..p. Активности нейронов будем обозначать малыми буквами y с соотвествующим индексом, а суммарные взвешенные входы нейронов - малыми буквами x.

Общая структура алгоритма аналогична рассмотренной в Лекции 4, с усложнением формул подстройки весов.

Таблица 6.1. Алгоритм обратного распространения ошибки.

Начальные значения весов всех нейронов всех слоев V(t=0) и W(t=0) полагаются случайными числами.

Сети предъявляется входной образ X, в результате формируется выходной образ yY. При этом нейроны последовательно от слоя к слою функционируют по следующим формулам:

скрытый слой

выходной слой

Здесь f(x) - сигмоидальная функция, определяемая по формуле (6.1)

Функционал квадратичной ошибки сети для данного входного образа имеет вид:

Данный функционал подлежит минимизации. Классический градиентный метод оптимизации состоит в итерационном уточнении аргумента согласно формуле:

Функция ошибки в явном виде не содержит зависимости от веса V jk , поэтому воспользуемся формулами неявного дифференцирования сложной функции:

Здесь учтено полезное свойство сигмоидальной функции f(x): ее производная выражается только через само значение функции, f’(x)=f(1-f). Таким образом, все необходимые величины для подстройки весов выходного слоя V получены.

На этом шаге выполняется подстройка весов скрытого слоя. Градиентный метод по-прежнему дает:

Вычисления производных выполняются по тем же формулам, за исключением некоторого усложнения формулы для ошибки  j .

При вычислении  j здесь и был применен принцип обратного распространения ошибки: частные производные берутся только по переменнымпоследующего слоя. По полученным формулам модифицируются веса нейронов скрытого слоя. Если в нейронной сети имеется несколько скрытых слоев, процедура обратного распространения применяется последовательно для каждого из них, начиная со слоя, предшествующего выходному, и далее до слоя, следующего за входным. При этом формулы сохраняют свой вид с заменой элементов выходного слоя на элементы соотвествующего скрытого слоя.

Шаги 1-3 повторяются для всех обучающих векторов. Обучение завершается по достижении малой полной ошибки или максимально допустимого числа итераций, как и в методе обучения Розенблатта.

Как видно из описания шагов 2-3, обучение сводится к решению задачи оптимизации функционала ошибки градиентным методом. Вся “соль” обратного распространения ошибки состоит в том, что для ее оценки для нейронов скрытых слоев можно принять взвешенную сумму ошибок последующего слоя.

Параметр h имеет смысл темпа обучения и выбирается достаточно малым для сходимости метода. О сходимости необходимо сделать несколько дополнительных замечаний. Во-первых, практика показывает что сходимость метода обратного распространения весьма медленная. Невысокий тепм сходимости является “генетической болезнью” всех градиентных методов, так как локальное направление градиента отнюдь не совпадает с направлением к минимуму. Во-вторых, подстройка весов выполняется независимо для каждой пары образов обучающей выборки. При этом улучшение функционирования на некоторой заданной паре может, вообще говоря, приводить к ухудшению работы на предыдущих образах. В этом смысле, нет достоверных (кроме весьма обширной практики применения метода) гарантий сходимости.

Исследования показывают, что для представления произвольного функционального отображения, задаваемого обучающей выборкой, достаточно всего два слоя нейронов. Однако на практике, в случае сложных функций, использование более чем одного скрытого слоя может давать экономию полного числа нейронов.

В завершение лекции сделаем замечание относительно настройки порогов нейронов. Легко заметить, что порог нейрона может быть сделан эквивалентным дополнительному весу, соединенному с фиктивным входом, равным -1. Действительно, выбирая W 0 =, x 0 =-1 и начиная суммирование с нуля, можно рассматривать нейрон с нулевым порогом и одним дополнительным входом:

Дополнительные входы нейронов, соотвествующие порогам, изображены на Рис. 6.1 темными квадратиками. С учетом этого замечания, все изложенные в алгоритме обратного распространения формулы суммирования по входам начинаются с нулевого индекса.

Алгоритм обратного распространения ошибки (Back propagation algorithm)

Синонимы: Алгоритм BackProp, Алгоритм Back Propagation, BackProp

Loginom: Нейросеть (классификация) (обработчик), Нейросеть (регрессия) (обработчик)

Алгоритм обратного распространения ошибки - популярный алгоритм обучения плоскослоистых нейронных сетей прямого распространения (многослойных персептронов). Относится к методам обучения с учителем , поэтому требует, чтобы в обучающих примерах были заданы целевые значения. Также является одним из наиболее известных алгоритмов машинного обучения.

В основе идеи алгоритма лежит использование выходной ошибки нейронной сети:

для вычисления величин коррекции весов нейронов в её скрытых слоях, где - число выходных нейронов сети, - целевое значение, - фактическое выходное значение. Алгоритм является итеративным и использует принцип обучения «по шагам» (обучение в режиме on-line), когда веса нейронов сети корректируются после подачи на её вход одного обучающего примера.

На каждой итерации происходит два прохода сети – прямой и обратный. На прямом входной вектор распространяется от входов сети к её выходам и формирует некоторый выходной вектор, соответствующий текущему (фактическому) состоянию весов. Затем вычисляется ошибка нейронной сети, как разность между фактическим и целевым значениями. На обратном проходе эта ошибка распространяется от выхода сети к её входам, и производится коррекция весов нейронов в соответствии с правилом:

где - вес i-й связи j-го нейрона, - параметр скорости обучения, который позволяет дополнительно управлять величиной шага коррекции с целью более точной настройки на минимум ошибки и подбирается экспериментально в процессе обучения (изменяется в интервале от 0 до 1).

Учитывая, что выходная сумма j-го нейрона равна

можно показать, что

Из последнего выражения следует, что дифференциал активационной функции нейронов сети должен существовать и не быть равным нулю в любой точке, т.е. активационная функция должна быть дефференцируема на всей числовой оси. Поэтому для применения метода обратного распространения используют сигмоидальные активационные функции, такие как логистическая или гиперболический тангенс.

Таким образом, алгоритм использует так называемый стохастический градиентный спуск, «продвигаясь» в многомерном пространстве весов в направлении антиградиента с целью достичь минимума функции ошибки.

На практике, обучение продолжают не до точной настройки сети на минимум функции ошибки, а до тех пор, пока не будет достигнуто достаточно точное его приближение. Это позволит с одной стороны, уменьшить число итераций обучения, а с другой – избежать переобучения сети.

В настоящее время разработано множество модификаций алгоритма обратного распространения. Например, используется обучение не «по шагам», когда выходная ошибка вычисляется, а веса корректируются на каждом примере, а «по эпохам» в режиме off-line , когда изменение весов производится после подачи на вход сети всех примеров обучающего множества, а ошибка усредняется по всем примерам.

Обучение «по эпохам» является более устойчивым к выбросам и аномальным значениям целевой переменной за счёт усреднения ошибки по многим примерам. Но при этом повышается вероятность «застревания» алгоритма в локальных минимумах. Вероятность этого для обучения «по шагам» меньше, поскольку использование отдельных примеров создаёт «шум», который «выталкивает» алгоритм из ям градиентного рельефа.

К преимуществам алгоритма обратного распространения ошибки относятся простота реализации и устойчивость к аномалиям и выбросам в данных. К недостаткам можно отнести:

  • неопределённо долгий процесс обучения:
  • возможность «паралича сети», когда при больших значениях рабочая точка активационной функции оказывается в области насыщения сигмоиды и производная в выражении (1) становится близкой к 0, а коррекции весов практически не происходит и процесс обучения «замирает»;
  • уязвимость алгоритма к попаданию в локальные минимумы функции ошибки.

Впервые алгоритм был описан в 1974 г.

В первой части были рассмотрены: структура, топология, функции активации и обучающее множество. В этой части попробую объяснить как происходит обучение сверточной нейронной сети.

Обучение сверточной нейронной сети

На начальном этапе нейронная сеть является необученной (ненастроенной). В общем смысле под обучением понимают последовательное предъявление образа на вход нейросети, из обучающего набора, затем полученный ответ сравнивается с желаемым выходом, в нашем случае это 1 – образ представляет лицо, минус 1 – образ представляет фон (не лицо), полученная разница между ожидаемым ответом и полученным является результат функции ошибки (дельта ошибки). Затем эту дельту ошибки необходимо распространить на все связанные нейроны сети.

Таким образом обучение нейронной сети сводится к минимизации функции ошибки, путем корректировки весовых коэффициентов синаптических связей между нейронами. Под функцией ошибки понимается разность между полученным ответом и желаемым. Например, на вход был подан образ лица, предположим, что выход нейросети был 0.73, а желаемый результат 1 (т.к. образ лица), получим, что ошибка сети является разницей, то есть 0.27. Затем веса выходного слоя нейронов корректируются в соответствии с ошибкой. Для нейронов выходного слоя известны их фактические и желаемые значения выходов. Поэтому настройка весов связей для таких нейронов является относительно простой. Однако для нейронов предыдущих слоев настройка не столь очевидна. Долгое время не было известно алгоритма распространения ошибки по скрытым слоям.

Алгоритм обратного распространения ошибки

Для обучения описанной нейронной сети был использован алгоритм обратного распространения ошибки (backpropagation). Этот метод обучения многослойной нейронной сети называется обобщенным дельта-правилом. Метод был предложен в 1986 г. Румельхартом, Макклеландом и Вильямсом. Это ознаменовало возрождение интереса к нейронным сетям, который стал угасать в начале 70-х годов. Данный алгоритм является первым и основным практически применимым для обучения многослойных нейронных сетей.

Для выходного слоя корректировка весов интуитивна понятна, но для скрытых слоев долгое время не было известно алгоритма. Веса скрытого нейрона должны изменяться прямо пропорционально ошибке тех нейронов, с которыми данный нейрон связан. Вот почему обратное распространение этих ошибок через сеть позволяет корректно настраивать веса связей между всеми слоями. В этом случае величина функции ошибки уменьшается и сеть обучается.

Основные соотношения метода обратного распространения ошибки получены при следующих обозначениях:

Величина ошибки определяется по формуле 2.8 среднеквадратичная ошибка:

Неактивированное состояние каждого нейрона j для образа p записывается в виде взвешенной суммы по формуле 2.9:

Выход каждого нейрона j является значением активационной функции

Которая переводит нейрон в активированное состояние. В качестве функции активации может использоваться любая непрерывно дифференцируемая монотонная функция. Активированное состояние нейрона вычисляется по формуле 2.10:

В качестве метода минимизации ошибки используется метод градиентного спуска, суть этого метода сводится к поиску минимума (или максимума) функции за счет движения вдоль вектора градиента. Для поиска минимума движение должно быть осуществляться в направлении антиградиента. Метод градиентного спуска в соответствии с рисунком 2.7.

Градиент функции потери представляет из себя вектор частных производных, вычисляющийся по формуле 2.11:

Производную функции ошибки по конкретному образу можно записать по правилу цепочки, формула 2.12:

Ошибка нейрона обычно записывается в виде символа δ (дельта). Для выходного слоя ошибка определена в явном виде, если взять производную от формулы 2.8, то получим t минус y , то есть разницу между желаемым и полученным выходом. Но как рассчитать ошибку для скрытых слоев? Для решения этой задачи, как раз и был придуман алгоритм обратного распространения ошибки. Суть его заключается в последовательном вычислении ошибок скрытых слоев с помощью значений ошибки выходного слоя, т.е. значения ошибки распространяются по сети в обратном направлении от выхода к входу.

Ошибка δ для скрытого слоя рассчитывается по формуле 2.13:

Алгоритм распространения ошибки сводится к следующим этапам:

  • прямое распространение сигнала по сети, вычисления состояния нейронов;
  • вычисление значения ошибки δ для выходного слоя;
  • обратное распространение: последовательно от конца к началу для всех скрытых слоев вычисляем δ по формуле 2.13;
  • обновление весов сети на вычисленную ранее δ ошибки.
Алгоритм обратного распространения ошибки в многослойном персептроне продемонстрирован ниже:


До этого момента были рассмотрены случаи распространения ошибки по слоям персептрона, то есть по выходному и скрытому, но помимо них, в сверточной нейросети имеются подвыборочный и сверточный.

Расчет ошибки на подвыборочном слое

Расчет ошибки на подвыборочном слое представляется в нескольких вариантах. Первый случай, когда подвыборочный слой находится перед полносвязным, тогда он имеет нейроны и связи такого же типа, как в полносвязном слое, соответственно вычисление δ ошибки ничем не отличается от вычисления δ скрытого слоя. Второй случай, когда подвыборочный слой находится перед сверточным, вычисление δ происходит путем обратной свертки. Для понимания обратно свертки, необходимо сперва понять обычную свертку и то, что скользящее окно по карте признаков (во время прямого распространения сигнала) можно интерпретировать, как обычный скрытый слой со связями между нейронами, но главное отличие - это то, что эти связи разделяемы, то есть одна связь с конкретным значением веса может быть у нескольких пар нейронов, а не только одной. Интерпретация операции свертки в привычном многослойном виде в соответствии с рисунком 2.8.


Рисунок 2.8 - Интерпретация операции свертки в многослойный вид, где связи с одинаковым цветом имеют один и тот же вес. Синим цветом обозначена подвыборочная карта, разноцветным – синаптическое ядро, оранжевым – получившаяся свертка

Теперь, когда операция свертки представлена в привычном многослойном виде, можно интуитивно понять, что вычисление дельт происходит таким же образом, как и в скрытом слое полносвязной сети. Соответственно имея вычисленные ранее дельты сверточного слоя можно вычислить дельты подвыборочного, в соответствии с рисунком 2.9.


Рисунок 2.9 - Вычисление δ подвыборочного слоя за счет δ сверточного слоя и ядра

Обратная свертка – это тот же самый способ вычисления дельт, только немного хитрым способом, заключающийся в повороте ядра на 180 градусов и скользящем процессе сканирования сверточной карты дельт с измененными краевыми эффектами. Простыми словами, нам необходимо взять ядро сверточной карты (следующего за подвыборочным слоем) повернуть его на 180 градусов и сделать обычную свертку по вычисленным ранее дельтам сверточной карты, но так чтобы окно сканирования выходило за пределы карты. Результат операции обратной свертки в соответствии с рисунком 2.10, цикл прохода обратной свертки в соответствии с рисунком 2.11.


Рисунок 2.10 - Результат операции обратной свертки


Рисунок 2.11 - Повернутое ядро на 180 градусов сканирует сверточную карту

Расчет ошибки на сверточном слое

Обычно впередиидущий слой после сверточного это подвыборочный, соответственно наша задача вычислить дельты текущего слоя (сверточного) за счет знаний о дельтах подвыборочного слоя. На самом деле дельта ошибка не вычисляется, а копируется. При прямом распространении сигнала нейроны подвыборочного слоя формировались за счет неперекрывающегося окна сканирования по сверточному слою, в процессе которого выбирались нейроны с максимальным значением, при обратном распространении, мы возвращаем дельту ошибки тому ранее выбранному максимальному нейрону, остальные же получают нулевую дельту ошибки.

Заключение

Представив операцию свертки в привычном многослойном виде (рисунок 2.8), можно интуитивно понять, что вычисление дельт происходит таким же образом, как и в скрытом слое полносвязной сети.