Биографии Характеристики Анализ

Сравнение обыкновенных и десятичных дробей. Сравнение конечных и бесконечных десятичных дробей: правила, примеры, решения

РАЗДЕЛ 7 ДЕСЯТИЧНЫЕ ДРОБИ И ДЕЙСТВИЯ С НИМИ

В разделе узнаете:

что такое десятичная дробь и каково его строение;

как сравнивать десятичные дроби;

какие правила сложения и вычитания десятичных дробей;

как найти произведение и частное двух десятичных дробей;

что такое округление числа и как округлять числа;

как применить изученный материал на практике

§ 29. ЧТО ТАКОЕ ДЕСЯТИЧНАЯ ДРОБЬ. СРАВНЕНИЕ ДЕСЯТИЧНЫХ ДРОБЕЙ

Посмотрите на рисунок 220. Вы видите, что длина отрезка АВ равна 7 мм, а длина отрезка DC - 18 мм. Чтобы подать длины этих отрезков в сантиметрах, надо использовать дроби:

Вы знаете много других примеров, когда используются дроби со знаменателями 10,100, 1000 и тому подобное. Так,

Такие дроби называют десятичными. Для их записи используют более удобную форму, которую подсказывает линейка с вашего принадлежностей. Обратимся к рассматриваемому примеру.

Вы знаете, что длину отрезка DC (рис. 220) можно выразить смешанным числом

Если после целой части этого числа поставить запятую, а после нее - числитель дробной части, то получим более компактный запись: 1,8 см. Для отрезка АВ тогда получим: 0,7 см. Действительно, дробь является правильным, он меньше единицы, поэтому его целая часть равна 0. Числа 1,8 и 0,7 - примеры десятичных дробей.

Десятичная дробь 1,8 читают так: «одна целая восемь десятых» , а дробь 0,7 - «ноль целых семь десятых».

Как записать дроби в виде десятичных дробей? Для этого надо знать строение записи десятичной дроби.

В записи десятичной дроби всегда является целая и дробная части. их разделяет запятая. В целой части классы и разряды такие же, как у натуральных чисел. Вы знаете, что это - классы единиц, тысяч, миллионов и т. д., а в каждом из них по 3 разряды - единиц, десятков и сотен. В дробной части десятичной дроби классы не выделяют, а разрядов может быть сколько угодно, их названия соответствуют названиям знаменателей дробей - десятые, сотые, тысячные, десятитысячные, стотысячные, миллионные, десятимільйонні тому подобное. Разряд десятых является старейшим в дробной части десятичной дроби.

В таблице 40 вы видите названия разрядов десятичной дроби и число «сто двадцать три целых и четыре тысячи пятьсот шесть стотысячных» или

Название дробной части «стотысячных» в обыкновенной дроби определяет ее знаменатель, а в десятичной - последний разряд его дробной части. Вы видите, что в числителе дробной части числа цифр на одну меньше, чем нулей в знаменателе. Если не учесть этого, то в записи дробной части получим ошибку - вместо 4506 стотысячных запишем 4506 десятитысячных, но

Поэтому в записи данного числа десятичной дробью надо поставить 0 после запятой (в разряде десятых): 123,04506.

Обратите внимание:

в десятичной дроби после запятой должно стоять столько цифр, сколько нулей в знаменателе соответствующей обыкновенной дроби.

Можем теперь записать дроби

в виде десятичных.

Десятичные дроби можно сравнивать так же, как и натуральные числа. Если в записи десятичных дробей много цифр, то пользуются специальными правилами. Рассмотрим примеры.

Задача. Сравните дроби: 1) 96,234 и 830,123; 2) 3,574 и 3,547.

Решения. 1, Целая часть первого дроби - двухцифровое число 96, а целая часть дроби второго - трицифрове число 830, поэтому:

96,234 < 830,123.

2. В записях дробей 3,574 и 3,547 и целые части равны. Поэтому сравниваем поразрядно их дробные части Для этого запишем данные дроби друг под другом:

Каждый из дробей имеет 5 десятых. Но в первом дроби 7 сотых, а во втором - лишь 4 сотые. Поэтому первая дробь больше второй: 3,574 > 3,547.

Правила сравнения десятичных Дробей.

1. Из двух десятичных дробей больше то, у которого целая часть больше.

2. Если целые части десятичных дробей равны, то сравнивают их дробные части поразрядно, начиная со старшего разряда.

Как и обыкновенные дроби, десятичные дроби можно разместить на координатном луче. На рисунке 221 вы видите, что точки А, В и С имеют координаты: А(0,2), Б(0,9), С(1,6).

Узнайте больше

Десятичные дроби связаны с десятичной позиционной системой счисления. Однако их появление имеет более давнюю историю и связана с именем выдающегося математика и астронома ал-Каши (полное имя - Джемшид ибн-Масудал-Каши). В работе «Ключ к арифметике» (XV вв.) он впервые сформулировал правила действий с десятичными дробями, привел примеры выполнения действий с ними. Ничего не зная об открытии ал-Каши, вторично «открыл» десятичные дроби примерно через 150 лет фламандский математик и инженер Симон Стевін. В труде «Децималь» (1585 p .) С. Стевін изложил теорию десятичных дробей. Он всячески пропагандировал их, подчеркивая удобство десятичных дробей для практических вычислений.

Отделять целую часть от дробной десятичной дроби предлагали по-разному. Так, ал-Каши целую и дробную части писал разными чернилами или ставил между ними вертикальную черту. С. Стевін для отделения целой части от дробной ставил ноль в кружочке. Принятую в наше время запятую предложил известный немецкий астроном Иоганн Кеплер (1571 - 1630).

РЕШИТЕ ЗАДАЧИ

1173. Запишите в сантиметрах длину отрезка АВ, если:

1)АВ = 5мм; 2)АВ = 8мм; 3)АВ = 9мм; 4)АВ = 2мм.

1174. Прочитайте дроби:

1)12,5; 3)3,54; 5)19,345; 7)1,1254;

2)5,6; 4)12,03; 6)15,103; 8)12,1065.

Назовите: а) целую часть дроби; б) дробную часть дроби; в) разряды дроби.

1175. Приведите пример десятичной дроби, в которой после запятой стоит:

1) одна цифра; 2) две цифры; 3) три цифры.

1176. Сколько знаков после запятой имеет десятичная дробь, если знаменатель соответствующего обыкновенной дроби равна:

1)10; 2)100; 3)1000; 4) 10000?

1177. У которого из дробей больше целая часть:

1) 12,5 или 115,2; 4) 789,154 или 78,4569;

2) 5,25 или 35,26; 5) 1258,00265 или 125,0333;

3) 185,25 или 56,325; 6) 1269,569 или 16,12?

1178. В числе 1256897 отделите запятой последнюю цифру и прочитайте число, которое получили. Затем последовательно переставьте запятую на одну цифру влево и называйте дроби, которые вы получили.

1179. Прочитайте дроби и запишите их в виде десятичной дроби:

1180 Прочитайте дроби и запишите их в виде десятичной дроби:

1181. Запишите обычным дробью:

1) 2,5; 4)0,5; 7)315,89; 10)45,089;

2)125,5; 5)12,12; 8)0,15; 11)258,063;

3)0,9; 6)25,36; 9) 458;,025; 12)0,026.

1182. Запишите обычным дробью:

1)4,6; 2)34,45; 3)0,05; 4)185,342.

1183. Запишите десятичной дробью:

1) 8 целых 3 десятых; 5) 145 целых 14 сотых;

2) 12 целых 5 десятых; 6) 125 целых 19 сотых;

3) 0 целых 5 десятых; 7) 0 целых 12 сотых;

4) 12 целых 34 сотых; 8) 0 целых 3 сотые.

1184. Запишите десятичной дробью:

1) нуль целых восемь тысячных;

2) двадцать целых четыре сотых;

3) тринадцать целых пять сотых;

4) сто сорок пять целых две сотых.

1185. Запишите долю в виде обыкновенной дроби, а затем в виде десятичной дроби:

1)33:100; 3)567:1000; 5)8:1000;

2)5:10; 4)56:1000; 6)5:100.

1186. Запишите в виде смешанного числа, а затем в виде десятичной дроби:

1)188:100; 3)1567:1000; 5)12548:1000;

2)25:10; 4)1326:1000; 6)15485:100.

1187. Запишите в виде смешанного числа, а затем в виде десятичной дроби:

1)1165:100; 3)2546:1000; 5)26548:1000;

2) 69: 10; 4) 1269: 1000; 6) 3569: 100.

1188. Выразите в гривнях:

1) 35 к.; 2) 6 к.; 3)12 грн 35 коп.; 4)123к.

1189. Выразите в гривнях:

1) 58 к.; 2) 2 к.; 3)56 грн 55 коп.; 4)175к.

1190. Запиши в гривнях и копейках:

1)10,34 грн; 2) 12,03 грн; 3) 0,52 грн; 4) 126,05 грн.

1191. Выразите в метрах и ответ запишите десятичной дробью: 1) 5 м 7 дм; 2) 15 м 58 см; 3) 5 м 2 мм; 4) 12 м 4 дм 3 см 2 мм.

1192. Выразите в километрах и ответ запишите десятичной дробью: 1) 3 км 175 м; 2) 45 км 47 м; 3) 15 км 2 м.

1193. Запишите в метрах и сантиметрах:

1) 12,55 м; 2) 2,06 м; 3) 0,25 м; 4) 0,08 м.

1194. Наибольшая глубина Черного моря составляет 2,211 км. Выразите глубину моря в метрах.

1195. Сравните дроби:

1) 15,5 и 16,5; 5) 4,2 и 4,3; 9) 1,4 и 1,52;

2) 12,4 и 12,5; 6) 14,5 и 15,5; 10) 4,568 и 4,569;

3)45,8 и 45,59; 7) 43,04 и 43,1; 11)78,45178,458;

4) 0,4 и 0,6; 8) 1,23 и 1,364; 12) 2,25 и 2,243.

1196. Сравните дроби:

1)78,5 и 79,5; 3) 78,3 и 78,89; 5) 25,03 и 25,3;

2) 22,3 и 22,7; 4) 0,3 и 0,8; 6) 23,569 и 23,568.

1197. Запишите в порядке возрастания десятичные дроби:

1) 15,3; 6,9; 18,1; 9,3; 12,45; 36,85; 56,45; 36,2;

2) 21,35; 21,46; 21,22; 21,56; 21,59; 21,78; 21,23; 21,55.

1198. Запишите в порядке убывания десятичные дроби:

15,6; 15,9; 15,5; 15,4; 15,45; 15,95; 15,2; 15,35.

1199. Выразите в квадратных метрах и запиши десятичной дробью:

1) 5 дм2; 2) 15 см2; 3)5дм212см2.

1200 . Комната имеет форму прямоугольника. Ее длина составляет 90 дм, а ширина - 40 дм. Найдите площадь комнаты. Ответ запишите в квадратных метрах.

1201 . Сравните дроби:

1)0,04 и 0,06; 5) 1,003 и 1,03; 9) 120,058 и 120,051;

2) 402,0022 и 40,003; 6) 1,05 и 1,005; 10) 78,05 и 78,58;

3) 104,05 и 105,05; 7) 4,0502 и 4,0503; 11) 2,205 и 2,253;

4) 40,04 и 40,01; 8)60,4007і60,04007; 12)20,12 и 25,012.

1202. Сравните дроби:

1)0,03 и 0,3; 4) 6,4012 и 6,404;

2) 5,03 и 5,003; 5) 450,025 и 450,2054;

1203. Запишите пять десятичных дробей, которые на координатном луче находятся между дробями:

1)6,2 и 6,3; 2) 9,2 и 9,3; 3) 5,8 и 5,9; 4) 0,4 и 0,5.

1204. Запишите пять десятичных дробей, которые на координатном луче находятся между дробями: 1) 3,1 и 3,2; 2) 7,4 и 7,5.

1205. Между какими двумя соседними натуральными числами размещается десятичная дробь:

1)3,5; 2)12,45; 3)125,254; 4)125,012?

1206. Запишите пять десятичных дробей, для которых выполняется неравенство:

1)3,41 <х< 5,25; 3) 1,59 < х < 9,43;

2) 15,25 < х < 20,35; 4) 2,18 < х < 2,19.

1207. Запишите пять десятичных дробей, для которых выполняется неравенство:

1) 3 < х < 4; 2) 3,2 < х < 3,3; 3)5,22 <х< 5,23.

1208. Запишите наибольшую десятичную дробь:

1) с двумя цифрами после запятой, меньше 2;

2) с одной цифрой после запятой, меньшую 3;

3) с тремя цифрами после запятой, меньше 4;

4) с четырьмя цифрами после запятой, меньше 1.

1209. Запишите наименьшую десятичную дробь:

1) с двумя цифрами после запятой, который больше 2;

2) с тремя цифрами после запятой, который больше 4.

1210. Запишите все цифры, которые можно поставить вместо звездочки, чтобы получить верное неравенство:

1) 0, *3 >0,13; 3) 3,75 > 3, *7; 5) 2,15 < 2,1 *;

2) 8,5* < 8,57; 4) 9,3* < 9,34; 6)9,*4>9,24.

1211. Какую цифру можно поставить вместо звездочки, чтобы получить верное неравенство:

1)0,*3 >0,1*; 2) 8,5* <8,*7; 3)3,7*>3,*7?

1212. Запишите все десятичные дроби, целая часть которых равна 6, а дробная часть содержит три десятичные знаки, записанные цифрами 7 и 8. Запишите эти дроби в порядке их убывания.

1213. Запишите шесть десятичных дробей, целая часть которых равна 45, а дробная часть - состоит из четырех различных цифр: 1, 2, 3, 4. Запишите эти дроби в порядке их возрастания.

1214. Сколько можно составить десятичных дробей, целая часть которых равна 86, а дробная часть - состоит из трех различных цифр: 1,2,3?

1215. Сколько можно составить десятичных дробей, целая часть которых равна 5, а дробная является трицифровою, записанной цифрами 6 и 7? Запишите эти дроби в порядке их убывания.

1216. Зачеркните в числе 50,004007 три нуля так, чтобы образовалось:

1) наибольшее число; 2) наименьшее число.

ПРИМЕНИТЕ НА ПРАКТИКЕ

1217. Измерьте длину и ширину своей тетради в миллиметрах и запишите ответ в дециметрах.

1218. Запишите свой рост в метрах с помощью десятичной дроби.

1219. Измерьте размеры своей комнаты и вычислите ее периметр и площадь. Ответ запишите в метрах и квадратных метрах.

ЗАДАЧИ НА ПОВТОРЕНИЕ

1220. При каких значениях х дробь является неправильным?

1221. Решите уравнение:

1222. Магазин должен был продать 714 кг яблок. За первый день было продано всех яблок, а за второй - от того, что продали за первый день. Сколько яблок продали за 2 дня?

1223. Ребро куба уменьшили на 10 см и получили куб, объем которого равен 8 дм3. Найдите объем первого куба.

Цель урока:

  • создать условия для вывода правила сравнения десятичных дробей и умения его применять;
  • повторить запись обыкновенных дробей в виде десятичных, округление десятичных дробей;
  • развивать логическое мышление, способность к обобщению, исследовательские умения, речь.

Ход урока

Ребята давайте вспомним, чем мы занимались с вами на предыдущих уроках?

Ответ: изучали десятичные дроби, записывали обыкновенные дроби в виде десятичных и наоборот, округляли десятичные дроби.

А чем бы вы хотели сегодня заниматься?

(Ученики отвечают.)

А вот все-таки чем мы будем на уроке заниматься, вы узнаете через несколько минут. Откройте тетради, запишите дату. К доске пойдет ученик, который будет работать с обратной стороны доски. Я буду предлагать вам задания, которые вы выполняете устно. Ответы записываете в тетрадь в строчку через точку с запятой. Ученик у доски записывает в столбик.

Я читаю задания, которые заранее записаны на доске:

Проверим. У кого другие ответы? Вспомнить правила.

Получили: 1,075; 2,175; 3,275; 4,375; 5,475; 6,575; 7,675.

Установите закономерность и продолжите полученный ряд еще на 2 числа. Проверим.

Возьмите расшифровку и под каждым числом (отвечающий у доски ставит букву рядом с числом) поставьте соответствующую букву. Прочитайте слово.

Расшифровка:

Итак, чем мы будем заниматься на уроке?

Ответ: сравнением.

Сравнением! Хорошо, я, например, сейчас начну сравнивать свои руки, 2 учебника, 3 линейки. А вы что хотите сравнивать?

Ответ: десятичные дроби.

Какую тему урока запишем?

Я записываю тему урока на доске, а ученики в тетради: «Сравнение десятичных дробей».

Задание: сравните числа (на доске записаны)

18,625 и 5,784 15,200 и 15,200
3,0251 и 21,02 7,65 и 7,8
23,0521 и 0,0521 0,089 и 0,0081

Сначала открываем левую часть. Целые части разные. Делаем вывод о сравнении десятичных дробей с разными целыми частями. Открываем правую часть. Целые части – одинаковые числа. Как сравнить?

Предложение: записать десятичные дроби в виде обыкновенных дробей и сравнить.

Записать сравнение обыкновенных дробей. Если каждую десятичную дробь переводить в обыкновенную и сравнивать 2 дроби, то это займет много времени. Может мы выведем правило сравнения? (Ученики предлагают.) Я выписала правило сравнения десятичных дробей, которое предлагает автор. Давайте сравним.

На листе бумаги напечатаны 2 правила:

  1. Если целые части десятичных дробей различны, то та дробь больше, у которой больше целая часть.
  2. Если целые части десятичных дробей одинаковы, то больше та дробь, у которой больше первый из несовпавших разрядов после запятой.

Мы с вами сделали открытие. И это открытие – правило сравнения десятичных дробей. Оно у нас совпало с правилом, которое предложил автор учебника.

Я вот обратила внимание, что в правилах говорится какая из 2 дробей больше. А вы можете мне сказать какая из 2 десятичных дробей меньше.

Выполнить в тетради № 785(1, 2) на стр. 172. Задание записано на доске. Ученики комментируют, а учитель ставит знаки.

Задание: сравните

3,4208 и 3,4028

Итак, что мы научились сегодня делать? Давайте себя проверим. Работа на листочках с копиркой.

Ученики сравнивают десятичные дроби, ставя знаки >, <, =. Когда ученики выполнят задание, то листок сверху оставляют себе, а листок снизу сдают учителю.

Самостоятельная работа.

(Проверка – ответы на обратной стороне доски.)

Сравните

148,05 и 14,805

6,44806 и 6,44863

35,601 и 35,6010

Первый, кто сделает – получает задание (выполняет с обратной стороны доски) № 786(1, 2):

Найдите закономерность и запишите следующее в последовательности число. В каких последовательностях числа расположены в порядке возрастания, в каких в порядке убывания?

Ответ:

  1. 0,1; 0,02; 0,003; 0,0004; 0,00005; (0,000006) – убывает
  2. 0,1 ; 0,11; 0,111; 0,1111; 0,11111; (0,111111) – возрастает.

После того, как последний ученик сдаст работу – проверить.

Учащиеся сравнивают свои ответы.

Те, кто все сделал правильно поставит себе отметку “5”, кто допустил 1-2 ошибки –“4”, 3 ошибки – “3”. Выяснить в каких сравнениях допущены ошибки, на какое правило.

Записать домашнее задание: № 813, № 814 (п. 4 стр. 171). Прокомментировать. Если будет время – выполнить № 786(1, 3), № 793(а).

Итог урока.

  1. Что вы ребята научились делать на уроке?
  2. Вам понравилось или не понравилось?
  3. Какие были затруднения?

Возьмите листочки и заполните их, указав степень вашего усвоения материала:

  • усвоен полностью, могу выполнять;
  • усвоен полностью, но затрудняюсь в применении;
  • усвоен частично;
  • не усвоен.

Спасибо за урок.


В этой статье мы рассмотрим тему «сравнение десятичных дробей ». Сначала обсудим общий принцип сравнения десятичных дробей. После этого разберемся, какие десятичные дроби являются равными, а какие – неравными. Дальше научимся определять, какая десятичная дробь больше, а какая меньше. Для этого изучим правила сравнения конечных, бесконечных периодических и бесконечных непериодических дробей. Всю теорию снабдим примерами с подробными решениями. В заключение остановимся на сравнении десятичных дробей с натуральными числами, обыкновенными дробями и смешанными числами.

Сразу скажем, что здесь мы будем говорить лишь о сравнении положительных десятичных дробей (смотрите положительные и отрицательные числа). Остальные случаи разобраны в статьях сравнение рациональных чисел и сравнение действительных чисел .

Навигация по странице.

Общий принцип сравнения десятичных дробей

Исходя из этого принципа сравнения, выводятся правила сравнения десятичных дробей, позволяющие обойтись без перевода сравниваемых десятичных дробей в обыкновенные дроби. Эти правила, а также примеры их применения, мы разберем в следующих пунктах.

По схожему принципу сравниваются конечные десятичные дроби или бесконечные периодические десятичные дроби с натуральными числами , обыкновенными дробями и смешанными числами : сравниваемые числа заменяются соответствующими им обыкновенными дробями, после чего сравниваются обыкновенные дроби.

Что касается сравнения бесконечных непериодических десятичных дробей , то оно обычно сводится к сравнению конечных десятичных дробей. Для этого рассматривается такое количество знаков сравниваемых бесконечных непериодических десятичных дробей, которое позволяет получить результат сравнения.

Равные и неравные десятичные дроби

Сначала введем определения равных и неравных конечных десятичных дробей .

Определение.

Две конечные десятичные дроби называются равными , если равны соответствующие им обыкновенные дроби, в противном случае эти десятичные дроби называются неравными .

На основании этого определения легко обосновать следующее утверждение: если в конце данной десятичной дроби приписать или отбросить несколько цифр 0 , то получится равная ей десятичная дробь. Например, 0,3=0,30=0,300=… , а 140,000=140,00=140,0=140 .

Действительно, дописывание или отбрасывание в конце десятичной дроби нуля справа соответствует умножению или делению на 10 числителя и знаменателя соответствующей обыкновенной дроби. А мы знаем основное свойство дроби , которое гласит, что умножение или деление числителя и знаменателя дроби на одно и то же натуральное число дает дробь, равную исходной. Этим доказано, что дописывание или отбрасывание нулей справа в дробной части десятичной дроби дает дробь, равную исходной.

Например, десятичной дроби 0,5 отвечает обыкновенная дробь 5/10 , после дописывания нуля справа получается десятичная дробь 0,50 , которой отвечает обыкновенная дробь 50/100 , а . Таким образом, 0,5=0,50 . Обратно, если в десятичной дроби 0,50 отбросить справа 0 , то мы получим дробь 0,5 , так от обыкновенной дроби 50/100 мы придем к дроби 5/10 , но . Следовательно, 0,50=0,5 .

Переходим к определению равных и неравных бесконечных периодических десятичных дробей .

Определение.

Две бесконечные периодические дроби равны , если равны отвечающие им обыкновенные дроби; если же соответствующие им обыкновенные дроби не равны, то сравниваемые периодические дроби тоже не равны .

Из данного определения следуют три вывода:

  • Если записи периодических десятичных дробей полностью совпадают, то такие бесконечные периодические десятичные дроби равны. Например, периодические десятичные дроби 0,34(2987) и 0,34(2987) равны.
  • Если периоды сравниваемых десятичных периодических дробей начинаются с одинаковой позиции, первая дробь имеет период 0 , вторая – период 9 , и значение разряда, предшествующего периоду 0 на единицу больше, чем значение разряда, предшествующего периоду 9 , то такие бесконечные периодические десятичные дроби равны. Например, периодические дроби 8,3(0) и 8,2(9) равны, также равны дроби 141,(0) и 140,(9) .
  • Две любые другие периодические дроби не являются равными. Приведем примеры неравных бесконечных периодических десятичных дробей: 9,0(4) и 7,(21) , 0,(12) и 0,(121) , 10,(0) и 9,8(9) .

Осталось разобраться с равными и неравными бесконечными непериодическими десятичными дробями . Как известно, такие десятичные дроби не могут быть переведены в обыкновенные дроби (такие десятичные дроби представляют иррациональные числа), поэтому сравнение бесконечных непериодических десятичных дробей нельзя свести к сравнению обыкновенных дробей.

Определение.

Две бесконечные непериодические десятичные дроби равны , если их записи полностью совпадают.

Но есть один нюанс: невозможно увидеть «законченную» запись бесконечных непериодических десятичных дробей, следовательно, невозможно убедиться и в полном совпадении их записей. Как же быть?

При сравнении бесконечных непериодических десятичных дробей рассматривают лишь конечное число знаков сравниваемых дробей, которое позволяет сделать необходимые выводы. Таким образом, сравнение бесконечных непериодических десятичных дробей сводится к сравнению конечных десятичных дробей.

При таком подходе можно говорить о равенстве бесконечных непериодических десятичных дробей лишь с точностью до рассматриваемого разряда. Приведем примеры. Бесконечные непериодические десятичные дроби 5,45839… и 5,45839… равны с точностью до стотысячных, так как равны конечные десятичные дроби 5,45839 и 5,45839 ; непериодические десятичные дроби 19,54… и 19,54810375… равны с точностью до сотых, так как равны дроби 19,54 и 19,54 .

Неравенство бесконечных непериодических десятичных дробей при таком подходе устанавливается вполне определенно. Например, бесконечные непериодические десятичные дроби 5,6789… и 5,67732… не равны, так как очевидны различия в их записях (не равны конечные десятичные дроби 5,6789 и 5,6773 ). Бесконечные десятичные дроби 6,49354… и 7,53789… тоже не равны.

Правила сравнения десятичных дробей, примеры, решения

После установления факта неравенства двух десятичных дробей, часто нужно узнать, какая из этих дробей больше, а какая – меньше другой. Сейчас мы разберем правила сравнения десятичных дробей, позволяющие ответить на поставленный вопрос.

Во многих случаях бывает достаточно сравнить целые части сравниваемых десятичных дробей. Справедливо следующее правило сравнения десятичных дробей : больше та десятичная дробь, целая часть которой больше, и меньше та десятичная дробь, целая часть которой меньше.

Это правило относится как к конечным десятичным дробям, так и к бесконечным. Рассмотрим решения примеров.

Пример.

Сравните десятичные дроби 9,43 и 7,983023… .

Решение.

Очевидно, данные десятичные дроби не равны. Целая часть конечной десятичной дроби 9,43 равна 9 , а целая часть бесконечной непериодической дроби 7,983023… равна 7 . Так как 9>7 (смотрите сравнение натуральных чисел), то 9,43>7,983023 .

Ответ:

9,43>7,983023 .

Пример.

Какая из десятичных дробей 49,43(14) и 1 045,45029… меньше?

Решение.

Целая часть периодической дроби 49,43(14) меньше, чем целая часть бесконечной непериодической десятичной дроби 1 045,45029… , следовательно, 49,43(14)<1 045,45029… .

Ответ:

49,43(14) .

Если целые части сравниваемых десятичных дробей равны, то для выяснения, какая из них больше, а какая - меньше, приходится сравнивать дробные части. Сравнение дробных частей десятичных дробей проводится поразрядно - от разряда десятых к более младшим.

Для начала рассмотрим пример сравнения двух конечных десятичных дробей.

Пример.

Выполните сравнение конечных десятичных дробей 0,87 и 0,8521 .

Решение.

Целые части данных десятичных дробей равны (0=0 ), поэтому переходим к сравнению дробных частей. Значения разряда десятых равны (8=8 ), а значение разряда сотых дроби 0,87 больше, чем значение разряда сотых дроби 0,8521 (7>5 ). Следовательно, 0,87>0,8521 .

Ответ:

0,87>0,8521 .

Иногда, чтобы выполнить сравнение конечных десятичных дробей с разным количеством десятичных знаков, к дроби с меньшим количеством десятичных знаков приходится дописывать некоторое количество нулей справа. Достаточно удобно уравнивать количество десятичных знаков до начала сравнения конечных десятичных дробей, дописав к одной из них некоторое количество нулей справа.

Пример.

Сравните конечные десятичные дроби 18,00405 и 18,0040532 .

Решение.

Очевидно, данные дроби неравны, так как их записи отличаются, но при этом они имеют равные целые части (18=18 ).

Перед поразрядным сравнением дробных частей данных дробей уравняем количество десятичных знаков. Для этого припишем две цифры 0 в конце дроби 18,00405 , при этом получим равную ей десятичную дробь 18,0040500 .

Значения десятичных разрядов дробей 18,0040500 и 18,0040532 равны вплоть до стотысячных, а значение разряда миллионных дроби 18,0040500 меньше значения соответствующего разряда дроби 18,0040532 (0<3 ), поэтому, 18,0040500<18,0040532 , следовательно, 18,00405<18,0040532 .

Ответ:

18,00405<18,0040532 .

При сравнении конечной десятичной дроби с бесконечной, конечная дробь заменяется равной ей бесконечной периодической дробью с периодом 0 , после чего проводится сравнение по разрядам.

Пример.

Сравните конечную десятичную дробь 5,27 с бесконечной непериодической десятичной дробью 5,270013… .

Решение.

Целые части данных десятичных дробей равны. Значения разрядов десятых и сотых данных дробей равны, и чтобы выполнить дальнейшее сравнение, конечную десятичную дробь заменяем равной ей бесконечной периодической дробью с периодом 0 вида 5,270000… . До пятого знака после запятой значения разрядов десятичных дробей 5,270000… и 5,270013… равны, а на пятом знаке имеем 0<1 . Таким образом, 5,270000…<5,270013… , откуда следует, что 5,27<5,270013… .

Ответ:

5,27<5,270013… .

Сравнение бесконечных десятичных дробей также проводится поразрядно , и заканчивается после того, как только значения какого-то разряда оказываются разными.

Пример.

Сравните бесконечные десятичные дроби 6,23(18) и 6,25181815… .

Решение.

Целые части данных дробей равны, также равны значения разряда десятых. А значение разряда сотых периодической дроби 6,23(18) меньше разряда сотых бесконечной непериодической десятичной дроби 6,25181815… , следовательно, 6,23(18)<6,25181815… .

Ответ:

6,23(18)<6,25181815… .

Пример.

Какая из бесконечных периодических десятичных дробей 3,(73) и 3,(737) больше?

Решение.

Понятно, что 3,(73)=3,73737373… и 3,(737)=3,737737737… . На четвертом знаке после запятой поразрядное сравнение заканчивается, так как там имеем 3<7 . Таким образом, 3,73737373…<3,737737737… , то есть, десятичная дробь 3,(737) больше, чем дробь 3,(73) .

Ответ:

3,(737) .

Сравнение десятичных дробей с натуральными числами, обыкновенными дробями и смешанными числами.

Получить результат сравнения десятичной дроби с натуральным числом позволяет сравнение целой части данной дроби с данным натуральным числом. При этом периодические дроби с периодами 0 или 9 нужно предварительно заменить равными им конечными десятичными дробями.

Справедливо следующее правило сравнения десятичной дроби и натурального числа : если целая часть десятичной дроби меньше данного натурального числа, то и вся дробь меньше этого натурального числа; если целая часть дроби больше или равна данному натуральному числу, то дробь больше данного натурального числа.

Рассмотрим примеры применения этого правила сравнения.

Пример.

Сравните натуральное число 7 с десятичной дробью 8,8329… .

Решение.

Так как данное натуральное число меньше, чем целая часть данной десятичной дроби, то это число меньше данной десятичной дроби.

Ответ:

7<8,8329… .

Пример.

Сравните натуральное число 7 и десятичную дробь 7,1 .

Отрезка АВ равна 6 см, то есть 60 мм. Так как 1 см = дм, то 6 см = дм. Значит, АВ - 0,6 дм. Так как 1 мм = дм, то 60 мм = дм. Значит, АВ = 0,60 дм.
Таким образом, АВ = 0,6 дм = 0,60 дм. Значит, десятичные дроби 0,6 и 0,60 выражают длину одного и того же отрезка в дециметрах. Эти дроби равны друг другу: 0,6 = 0,60.

Если в конце десятичной дроби приписать нуль или отбросить нуль, то получится дробь , равная данной.
Например,

0,87 = 0,870 = 0,8700; 141 = 141,0 = 141,00 = 141,000;
26,000 = 26,00 = 26,0 = 26; 60,00 = 60,0 = 60;
0,900 = 0,90 = 0,9.

Сравним две десятичные дроби 5,345 и 5,36. Уравняем число десятичных знаков, приписав к числу 5,36 справа нуль. Получаем дроби 5,345 и 5,360.

Запишем их в виде неправильных дробей:

У этих дробей одинаковые знаменатели. Значит, та из них больше, у которой больше числитель.
Так как 5345 < 5360, то а значит, 5,345 < 5,360, то есть 5,345 < 5,36.
Чтобы сравнить две десятичные дроби, надо сначала уравнять у них число десятичных знаков, приписав к одной из них справа нули, а потом, отбросив запятую, сравнить получившиеся натуральные числа .

Десятичные дроби можно изображать на координатном луче так же, как и обыкновенные дроби.
Например, чтобы изобразить на координатном луче десятичную дробь 0,4, сначала представим ее в виде обыкновенной дроби: 0,4 = Затем отложим от начала луча четыре десятых единичного отрезка. Получим точку A(0,4) (рис. 141).

Равные десятичные дроби изображаются на координатном луче одной и той же точкой.

Например, дроби 0,6 и 0,60 изображаются одной точкой В (см. рис. 141).

Меньшая десятичная дробь лежит на координатном луче левее большей, и большая - правее меньшей.

Например, 0,4 < 0,6 < 0,8, поэтому точка A(0,4) лежит левее точки B(0,6), а точка С(0,8) лежит правее точки B(0,6) (см. рис. 141).


Изменится ли десятичная дробь, если в конце ее приписать нуль?
А6 нулей?
Сформулируйте правило сравнения десятичных дробей.

1172. Напишите десятичную дробь:

а) с четырьмя знаками после запятой, равную 0,87;
б) с пятью знаками после запятой, равную 0,541;
в) с тремя знаками после занятой, равную 35;
г) с двумя знаками после запятой, равную 8,40000.

1173. Приписав справа нули, уравняйте число знаков после запятой в десятичных дробях:1,8; 13,54 и 0,789.

1174. Запишите короче дроби:2,5000; 3,02000; 20,010.

85,09 и 67,99; 55,7 и 55,7000; 0,5 и 0,724; 0,908 и 0,918; 7,6431 и 7,6429; 0,0025 и 0,00247.

1176. Расставьте в порядке возрастания числа:

3,456; 3,465; 8,149; 8,079; 0,453.

0,0082; 0,037; 0,0044; 0,08; 0,0091

расставьте в порядке убывания.

а) 1,41 < х < 4,75; г) 2,99 < х < 3;
б) 0,1 < х < 0,2; д) 7 < х < 7,01;
в) 2,7 < х < 2,8; е) 0,12 < х < 0,13.

1184. Сравните величины:

а) 98,52 м и 65,39 м; д) 0,605 т и 691,3 кг;
б) 149,63 кг и 150,08 кг; е) 4,572 км и 4671,3 м;
в) 3,55°С и 3,61°С; ж) 3,835 га и 383,7 а;
г) 6,781 ч и 6,718 ч; з) 7,521 л и 7538 см3.

Можно ли сравнить 3,5 кг и 8,12 м? Приведите несколько примеров величин, которые нельзя сравнивать.

1185. Вычислите устно:

1186. Восстановите цепочку вычислений

1187. Можно ли сказать, сколько цифр после запятой в записи десятичной дроби, если ее название заканчивается словом:

а) сотых; б) десятитысячных; в) десятых; г) миллионных?

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки