Биографии Характеристики Анализ

Урок действия с дробями. Урок: Необыкновенные игры с обыкновенными дробями

>>Геометрия: Третий признак равенства треугольников. Полные уроки

ТЕМА УРОКА: Третий признак равенства треугольников.

Цели урока:

  • Образовательные – повторение, обобщение и проверка знаний по теме: “Признаки равенства треугольников”; выработка основных навыков.
  • Развивающие – развить внимание учащихся, усидчивость, настойчивость, логическое мышление, математическую речь.
  • Воспитательные - посредством урока воспитывать внимательное отношение друг к другу, прививать умение слушать товарищей, взаимовыручке, самостоятельность.

Задачи урока:

  • Формировать навыки в построении треугольников с помощью масштабной линейки, транспортира и чертежного треугольника.
  • Проверить умение учащихся решать задачи.

План урока:

  1. Из истории математики.
  2. Признаки равенства треугольников.
  3. Актуализация опорных знаний.
  4. Прямоугольные треугольники.

Из истории математики.
Прямоугольный треугольник занимает почётное место в вавилонской геометрии, упоминание о нём часто встречается в папирусе Ахмеса.

Термин гипотенуза происходит от греческого hypoteinsa, означающего тянущаяся под чем либо, стягивающая. Слово берёт начало от образа древнеегипетских арф, на которых струны натягивались на концы двух взаимно перпендикулярных подставок.

Термин катет происходит от греческого слова «катетос », которое означало отвес, перпендикуляр. В средние века словом катет означали высоту прямоугольного треугольника, в то время, как другие его стороны называли гипотенузой, соответственно основанием. В XVII веке слово катет начинает применяться в современном смысле и широко распространяется, начиная с XVIII века.

Евклид употребляет выражения:

«стороны, заключающие прямой угол», - для катетов;

«сторона, стягивающая прямой угол», - для гипотенузы.

Для начала нам необходимо освежить в памяти предыдущие признаки равенства треугольников. И так начнем с первого.

1-ый признак равенства треугольников.

Предмети > Математика > Математика 7 класс

Среди огромного количества многоугольников, которые по сути являются замкнутой непересекающейся ломаной линией, треугольник - это фигура с наименьшим количеством углов. Другими словами, это простейший многоугольник. Но, несмотря на всю свою простоту, эта фигура таит в себе много загадок и интересных открытий, которые освещаются особым разделом математики - геометрией. Эту дисциплину в школах начинают преподавать с седьмого класса, и теме «Треугольник» здесь уделяется особое внимание. Дети не только узнают правила о самой фигуре, но и сравнивают их, изучая 1, 2 и 3 признак равенства треугольников.

Первое знакомство

Один из первых правил, с которым знакомятся школьники, звучит примерно так: сумма величин всех углов треугольника равняется 180 градусам. Чтобы это подтвердить, достаточно при помощи транспортира измерить каждую из вершин и сложить все получившиеся значения. Исходя из этого, при двух известных величинах легко определить третью. Например : В треугольнике один из углов равен 70°, а другой - 85°, какова величина третьего угла?

180 - 85 - 70 = 25.

Ответ: 25°.

Задачи могут быть и более сложными, если указано лишь одно значение угла, а про вторую величину сказано лишь, на сколько или во сколько раз она больше или меньше.

В треугольнике для определения тех или иных его особенностей могут быть проведены особые линии, каждая из которых имеет свое название:

  • высота - перпендикулярная прямая, проведенная из вершины к противоположной стороне;
  • все три высоты, проведенные одновременно, в центре фигуры пересекаются, образуя ортоцентр, который в зависимости от вида треугольника может находиться как внутри, так и снаружи;
  • медиана - линия, соединяющая вершину с серединой противолежащей стороны;
  • пересечение медиан является точкой его тяжести, находится внутри фигуры;
  • биссектриса - линия, проходящая от вершины до точки пересечения с противолежащей стороной, точка пересечения трех биссектрис является центром вписанной окружности.

Простые истины о треугольниках

Треугольники, как, собственно, и все фигуры, имеют свои особенности и свойства. Как уже говорилось, эта фигура является простейшим многоугольником, но со своими характерными признаками:

  • против самой длинной стороны всегда лежит угол с большей величиной, и наоборот;
  • против равных сторон лежат равные углы, пример тому - равнобедренный треугольник;
  • сумма внутренних углов всегда равна 180°, что уже было продемонстрировано на примере;
  • при продлении одной стороны треугольника за его пределы образуется внешний угол, который всегда будет равен сумме углов, с ним не смежных;
  • любая из сторон всегда меньше суммы двух других сторон, но больше их разницы.

Виды треугольников

Следующий этап знакомства заключается в определении группы, к которой относится представленный треугольник. Принадлежность к тому или иному виду зависит от величин углов треугольника.

  • Равнобедренный - с двумя равными сторонами, которые называют боковыми, третья в этом случае выступает основанием фигуры. Углы у основания такого треугольника одинаковы, а медиана, проведенная из вершины, является биссектрисой и высотой.
  • Правильный, или равносторонний треугольник, - это тот, у которого все его стороны равны.
  • Прямоугольный: один из его углов равен 90°. В этом случае сторона, противолежащая этому углу, называется гипотенузой, а две другие - катетами.
  • Остроугольный треугольник - все углы меньше 90°.
  • Тупоугольный - один из углов больше 90°.

Равенство и подобие треугольников

В процессе обучения не только рассматривают отдельно взятую фигуру, но и сравнивают два треугольника. И эта, казалось бы, простая тема имеет массу правил и теорем, по которым можно доказать что рассматриваемые фигуры - равные треугольники. Признаки равенства треугольников имеют такое определение: треугольники равны, если их соответствующие стороны и углы одинаковы. При таком равенстве, если наложить эти две фигуры друг на друга, все их линии сойдутся. Также фигуры могут быть подобными, в частности, это касается практически одинаковых фигур, отличающихся лишь величиной. Для того чтобы сделать такое заключение о представленных треугольниках, необходимо соблюдение одного из следующих условий:

  • два угла одной фигуры равны двум углам другой;
  • две стороны одного пропорциональны двум сторонам второго треугольника, а величины углов, образованных сторонами, равны;
  • три стороны второй фигуры такие же, как и у первой.

Конечно, для бесспорного равенства, которое не вызовет ни малейшего сомнения, необходимо иметь одинаковые значения всех элементов обеих фигур, однако с использованием теорем задача значительно упрощается, и для доказательства равенства треугольников допускается наличие лишь нескольких условий.

Первый признак равенства треугольников

Задачи по этой теме решаются на основе доказательства теоремы, которая звучит так: "Если две стороны треугольника и угол, который они образуют, равны двум сторонам и углу другого треугольника, то и фигуры тоже равны между собой".

Как же звучит доказательство теоремы про первый признак равенства треугольников? Всем известно, что два отрезка равны, если они одной длины, или окружности равны, если имеют одинаковый радиус. А в случае с треугольниками есть несколько признаков, имея которые, можно предположить, что фигуры идентичны, что очень удобно использовать при решении разных геометрических задач.

Как звучит теорема «Первый признак равенства треугольников», описано выше, а вот ее доказательство:

  • Допустим, треугольники АВС и А 1 В 1 С 1 имеют одинаковые стороны АВ и А 1 В 1 и, соответственно, ВС и В 1 С 1 , а углы, которые образуются этими сторонами, имеют одну и ту же величину, то есть равны. Тогда, наложив △ ABC на △ А 1 В 1 С 1, получим совпадение всех линий и вершин. Отсюда вытекает, что эти треугольники абсолютно идентичны, а значит, равны между собой.

Теорему «Первый признак равенства треугольников» называют еще «По двум сторонам и углу». Собственно, в этом и заключается ее суть.

Теорема о втором признаке

Второй признак равенства доказывается аналогично, доказательство основывается на том, что при наложении фигур друг на друга они полностью совпадают по всем вершинам и сторонам. А звучит теорема так: "Если одна сторона и два угла, в образовании которых она участвует, соответствуют стороне и двум углам второго треугольника, то эти фигуры идентичны, то есть равны".

Третий признак и доказательство

Если как 2, так и 1 признак равенства треугольников касался как сторон, так и углов фигуры, то 3-й относится лишь к сторонам. Итак, теорема имеет следующую формулировку: "Если все стороны одного треугольника равны трем сторонам второго треугольника, то фигуры идентичны".

Чтобы доказать эту теорему, нужно более детально углубиться в само определение равенства. По сути, что означает выражение «треугольники равны»? Идентичность говорит о том, что если наложить одну фигуру на другую, все их элементы совпадут, это может быть только в том случае, когда их стороны и углы будут равны. В то же время угол, противолежащий одной из сторон, которая такая же, как у другого треугольника, будет равен соответствующей вершине второй фигуры. Следует отметить, что в этом месте доказательство легко перевести на 1 признак равенства треугольников. В случае если такая последовательность не наблюдается, равенство треугольников просто невозможно, за исключением тех случаев, когда фигура является зеркальным отражением первой.

Прямоугольные треугольники

В строении таких треугольников всегда есть вершины с величиной угла 90°. Поэтому справедливы следующие утверждения:

  • треугольники с прямым углом равны, если катеты одного идентичны катетам второго;
  • фигуры равны, если равны их гипотенузы и один из катетов;
  • такие треугольники равны, если их катеты и острый угол идентичны.

Этот признак относится к Для доказательства теоремы применяют приложение фигур друг к другу, в результате которого треугольники складывают катетами так, чтобы из двух прямых вышел со сторонами СА и СА 1 .

Практическое применение

В большинстве случаев на практике применяется первый признак равенства треугольников. На самом деле такая, казалось бы, простая тема 7 класса по геометрии и планиметрии используется и для вычисления длины, например, телефонного кабеля без замеров местности, по которой он будет проходить. При помощи этой теоремы легко сделать необходимые расчеты для определения длины острова, находящегося посреди реки, не переплывая на него. Либо укрепить забор, расположив планку в пролете так, чтобы она делила его на два равных треугольника, или же рассчитать сложные элементы работы в столярном деле, или при расчете стропильной системы крыши во время строительства.

Первый признак равенства треугольников имеет широкое применение в реальной «взрослой» жизни. Хотя в школьные годы именно эта тема для многих кажется скучной и совершенно ненужной.

1) по двум сторонам и углу между ними

Доказательство:

Пусть у треугольников АВС и А 1 В 1 С 1 угол A равен углу А 1 , АВ равно А 1 В 1, АС равно А 1 С 1 . Докажем, что треугольники равны.

Наложим треугольник ABC (либо симметричный ему) на треугольник A 1 B 1 C 1 так, чтобы угол A совместился с углом A 1 . Так как АВ=А 1 В 1 , а АС=А 1 С 1 , то B совпадёт с В 1 , а C совпадёт с С 1. Значит, треугольник А 1 В 1 С 1 совпадает с треугольником АВС, а следовательно, равен треугольнику АВС.

Теорема доказана.

2) по стороне и прилежащим к ней углам

Доказательство:

ПустьАВС и А 1 В 1 С 1 - два треугольника, у которых АВ равно А 1 В 1, угол А равен углу А 1 , и угол В равен углу В 1 . Докажем, что они равны.

Наложим треугольник ABC (либо симметричный ему) на треугольник A 1 B 1 C 1 так, чтобы AB совпало с A 1 B 1. Так как ∠ВАС =∠В 1 А 1 С 1 и ∠АВС=∠А 1 В 1 С 1 , то луч АС совпадёт с А 1 С 1 , а ВС совпадёт с В 1 С 1 . Отсюда следует, что вершина C совпадёт с С 1. Значит, треугольник А 1 В 1 С 1 совпадает с треугольником АВС, а следовательно, равен треугольнику АВС.

Теорема доказана.

3) по трём сторонам

Доказательство :

Рассмотрим треугольники ABC и A l B l C 1, у которых АВ=А 1 В 1 , BC = B l C 1 СА=С 1 А 1. Докажем, что ΔАВС =ΔA 1 B 1 C 1 .

Приложим треугольник ABC (либо симметричный ему) к треугольнику A 1 B 1 C 1 так, чтобы вершина А совместилась с вершиной A 1 , вершина В — с вершиной В 1 , а вершины С и С 1 , оказались по разные стороны от прямой А 1 В 1 . Рассмотрим 3 случая:

1) Луч С 1 С про-ходит внутри угла А 1 С 1 В 1 . Так как по условию теоремы стороны АС и A 1 C 1 , ВС и В 1 С 1 равны, то треугольники A 1 C 1 C и В 1 С 1 С — равнобедренные . По теореме о свойстве углов равнобедренного треугольника ∠1 = ∠2, ∠3 = ∠4, поэтому ∠ACB=∠A 1 C 1 B 1 .

2) Луч С 1 С совпадает с одной из сторон этого угла. A лежит на CC 1 . AC=A 1 C 1 , BC=B 1 C 1 , C 1 BC - равнобедренный , ∠ACB=∠A 1 C 1 B 1 .

3) Луч C 1 C проходит вне угла А 1 С 1 В 1 . AC=A 1 C 1 , BC=B 1 C 1 , значит, ∠1 = ∠2, ∠1+∠3 = ∠2+∠4, ∠ACB=∠A 1 C 1 B 1 .

Итак, AC=A 1 C 1 , BC=B 1 C 1 , ∠C=∠C 1 . Следовательно, треугольники ABC и A 1 B 1 C 1 равны по
первому признаку равенства треугольников.

Теорема доказана.

2. Деление отрезка на n равных частей.

Провести луч через A, отложить на нём n равных отрезков. Через B и A n провести прямую и к ней параллельные через точки A 1 - A n -1. Отметим их точки пересечения с AB. Получим n отрезков, которые равны по теореме Фалеса.

Теорема Фалеса. Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.


Доказательство. AB=CD

1. Проведём через точки A и C прямые, параллельные другой стороне угла. Получим два параллелограмма AB 2 B 1 A 1 и CD 2 D 1 C 1 . Согласно свойству параллелограмма : AB 2 = A 1 B 1 и CD 2 = C 1 D 1 .

2. ΔABB 2 =ΔCDD 2 ABB 2 CDD 2 BAB 2 DCD 2 и равны на основании второго признака равенства треугольников:
AB = CD согласно условию теоремы,
как соответственные, образовавшиеся при пересечении параллельных BB 1 и DD 1 прямой BD.

3. Аналогично каждый из углов и оказывается равным углу с вершиной в точке пересечения секущих. AB 2 = CD 2 как соответственные элементы в равных треугольниках.

4. A 1 B 1 = AB 2 = CD 2 = C 1 D 1

Разработка урока по математике, 5 класс

Учитель математики
Куртушан Марина Анатольевна

2011-2012 уч.год

Дата:_________________

Тема: Урок – повторение «Действия над обыкновенными дробями»

Цель: -обобщение и систематизация знаний по теме: «Обыкновенная дробь. Действия над обыкновенными дробями».

Задачи:
Обучающие : обобщение и систематизация знаний; развитие познавательных способностей;
развивающие : развитие интереса к предмету, математической грамотности, расширение кругозора учащихся;
воспитательные : воспитание ответственности за порученное дело, чувство коллективизма, товарищества.

Тип урока : урок –игра.

Орг.момент.

Пусть каждый и каждый час
Вам новое добудет.
Пусть добрым будет ум у Вас,
А сердце умным будет.
С.Маршак.

Здравствуйте, ребята, садитесь. 1,2,3,4… с этим мы вступаем в страну чисел. Она не имеет границ. За числами - сама жизнь. Для человека очень важно подружиться с числом и уметь с ним работать. Итак, мы с вами отправляемся в путешествие, в страну «Дробей». Все ли готовы? Всем ли удобно? Ну тогда поехали.

1 станция «Теоретическая»

  1. Дробь называется правильной, если …
  2. Чтобы сравнить две дроби с одинаковыми знаменателями, нужно…
  3. При сравнении дробей с разными знаменателями, нужно …
  4. Чтобы сложить две дроби с одинаковыми знаменателями, нужно…
  5. При вычитании дробей с разными знаменателями, надо…
  6. Как из неправильной дроби сделать смешанное число?
  7. Чтобы умножить дробь на дробь, надо…
  8. Чтобы разделить дробь на дробь, надо…


2 станция «Смекалкино»

Для решения многих задач недостаточно одних знаний. Необходима еще внимательность и смекалка. А сейчас мы с вами и проверим кто из вас самый внимательный. Внимание на доску.

3 станция «Спортивная»

Задачка на внимание, умение, терпение,
А также вычитание, деленье, умножение.

Две пары цифровых боксеров,
Однажды встретились в финале.
И ты узнать сумеешь скоро,
По сколько все очков набрали,
Какие заняли места?
Задача в общем-то проста,
Но, чтоб очки те подсчитать.
Необходимо лишь узнать,
В каком бою их умножали,
В каком делили, вычитали…
А результат вписать в кружки,
Где не проставлены очки.

Итак, внимательно посмотрите на боксеров, какие математические действия были выполнены? Решите и запишите ответы.


4 станция «Вычислялкино»
Выполнить умножение:

Выполните деление:

3. Задача.

Сторона треугольника равны Найдите периметр.

4. Задача.

Айман и Шолпан собрали 48 яблок. Количество яблок, собранных Айман, в раза больше, чем количество яблок, собранных Шолпан. Сколько яблок собрала Шолпан? Решите задачу, составив уравнение.

Подведение итогов.

1)Оценивание степени участия каждого ученика.

2)Подсчитывание жетонов.

3)Выставление оценок.

Все сегодня молодцы. Каждый получает мини-грамоту за сегодняшний урок.

При вычитании дробей с разными знаменателями, нужно… Чтобы умножить дробь на дробь, надо… Чтобы разделить дробь на дробь, надо…

2 станция Смекалкино

Сколько будет, если 2 десятка умножить на 3 десятка? 600 Тройка лошадей пробежала 30 км. По сколько км пробежала каждая лошадь? 30 км. На лесопильном заводе каждую минуту машина отпиливает кусок в 1 м. Через сколько минут она распилит бревно в 6 метров? 5 минут Мотоциклист ехал в деревню и встретил 3 машины и грузовик. Сколько всего машин ехало в поселок? 1 мотоциклист

3 станция Спортивная

4 станция Вычислялкино

Выполните действия 1

Самостоятельная работа Задача №

Домашнее задание № 916; № 921.