Биографии Характеристики Анализ

Экономико-математические методы и моделирование. Экономико-математические методы и модели

Экономико-математические методы основаны на использовании корреляционного и регрессионного анализа, позволяющего устанавливать тесноту связи и вид зависимости среднего значения какой-либо величины от некоторой другой или от нескольких величин. В нашем случае - это установление зависимости развития спроса от влияния наиболее главных факторов. в практике прогнозирования товарно-групповой структуры спроса чаще всего применяются трендовые и регрессионные модели:

Трендовые модели прогнозирования спроса представляют собой уравнения, формализующие устойчивые процессы его развития. Они применяются для прогнозирования наиболее стабильных закономерностей по крупным товарным подотраслям (например, соотношение спроса на продовольственные и непродовольственные товары). Основной параметр трендовых моделей -время, то есть по существу речь также идет об экстраполяции на прогнозируемый период тенденций и закономерностей базисного периода.

Регрессионные (факторные) модели отражают количественную связь одного показателя с другим или с группой других (множественная регрессия). В качестве переменных выступают факторы, определяющие динамику спроса. Математическую основу построения моделей составляют важнейшие положения теории вероятности, математической статистики и высшей математики. Процесс построения подобных моделей состоит из нескольких последовательных этапов.

Первым и важнейшим этапом моделирования развития товарно-групповой структуры спроса населения является отбор факторов. Они должны отражать объективные процессы изучаемого явления, быть количественно измеримыми и независимыми друг от друга.

На втором этапе рассчитывается сила влияния или теснота связи между факторами и спросом в базисном периоде. Она определяется с помощью коэффициентов корреляции и критериев согласия.

На третьем этапе выявляется математическая форма связи или вид зависимости спроса от факторов, подбираются функции, наиболее точно описывается процесс развития спроса.

Четвертый этап: расчет параметров уравнения. Параметры уравнений выражают степень и направление воздействия каждого фактора на спрос и рассчитываются методом наименьших квадратов.

Пятый этап: оценка прогностической ценности модели на основе ретроспективных расчетов.

Экономико-математические методы эффективно используется при краткосрочном прогнозировании. Так как объективная реальность нашей экономики состоит в том, что довольно трудно выявить и определить количественно более менее стабильные факторы, влияющие на прогнозируемый процесс. Поэтому составление среднесрочных и, тем более, долгосрочных прогнозов представляется довольно затруднительным в современных условиях. И как правило, преобладает прогнозирование на краткосрочные периоды. Экономико-математическое моделирование является основой экономической прогностики. Оно позволяет на строго количественной основе выявить характер связей между отдельными элементами рынка и теми факторами, которые влияют на его развитие. Что особенно важно - математические модели дают возможность наблюдать, как станут развиваться события при тех или иных начальных допущениях


При экономико-математическом моделировании спроса может также использоваться группа методов - экспоненциальное сглаживание и прогнозирование, основанные на использовании уже сделанных прогнозов тенденций развития спроса и самых последних данных о продаже товаров.

Математические методы помогают вскрыть количественные явления и взаимосвязи. Но они лишь продолжение экономического анализа, конечный результат в первую очередь зависит от выбора базисного периода, отбора факторов, от того, правильно ли определена степень устойчивости явления.

Графические методы связаны геометрическим изображением функциональной зависимости при помощи линий на плоскости. С помощью координатной сетки строятся графики зависимости, например, уровня издержек от объема произведенной и реализованной продукции, а также графики, на которых можно изображать корреляционные связи между показателями (диаграммы сравнения, кривые распределения, диаграммы временных рядов, статистические картограммы).

Пример: построение сетевого графика при строительстве и монтаже предприятий. Составляется таблица работ и ресурсов, где в технологической последовательности указываются их характеристика, объем, исполнитель, сменность, потребность в материалах. Продолжительность выполнения задания и другая информация. Исходя из данных показателей, подготавливают сетевой график. Оптимизация графика осуществляется посредством сокращения критического пути, т.е. минимизации сроков выполнения работ при заданных уровнях ресурсов, минимизации уровня потребления ресурсов при фиксированных сроках выполнения работ.

Метод корреляционно-регрессивного анализа используют для определения тесноты связи между показателями, не находящимися в функциональной зависимости. Теснота связи измеряется корреляционным отношением (для криволинейной зависимости). Для прямолинейной зависимости исчисляется коэффициент корреляции. Метод применяют при решении задач на «запуск-выпуск».

Пример: определить зависимость выпуска изделий в среднем от их запуска, составив соответствующее управление регрессии.

Метод линейного программирования сводится к нахождению крайних значений (максимума и минимума) некоторых функций переменных величин. Основано на решение системы линейных уравнений, когда зависимость между явлениями строго функциональна.

Пример: задачи рациональности использования времени работы производственного оборудования.

Методы динамического программирования применяют при решении оптимизационных задач, в которых целевая функция и ограничения характеризуют нелинейными зависимостями.

Пример: заполнить транспортное средство грузоподъемностью Х грузом, состоящим из определенных предметов так, чтобы стоимость всего груза оказалась максимальной.

Математическая теория игр исследует оптимальные стратегии в ситуациях игрового характера. Решение требует определенности в формулировке условий: установления количества игроков, возможных выигрышей, определения стратегии.

Пример: максимизировать среднюю величину дохода от реализации выпущенной продукции, учитывая капризы погоды.

Математическая теория массового обслуживания.

Пример: обеспечение рабочих необходимым инструментом.

Матричный метод основан на линейной и векторно-матричной алгебре, применяется для изучения сложных и высокоразмерных структур на отраслевом уровне, ан уровне предприятий.

Пример: выявить распределение между цехами продукции, идущей на внутреннее потребление, и общие объемы выпускаемой продукции, если заданы параметры прямых затрат и конечного продукта.

Рассмотрим особенности методики экономического анализа применительно к изучению спроса на товар.

Прогнозирование спроса может осуществляться различными методами, в частности можно выделить три основные группы: методы экономико-математического моделирования (экстрополяционные методы), нормативные методы, методы экспертных оценок.

Методы простой (формальной) экстраполяции заключаются в перенесении на будущий период прошлых и настоящих тенденций в развитии товарно-групповой структуры спроса на базе анализа динамического ряда.

Для экстраполяции информацию о динамике рынка представляют в той или иной форме - графической, статистической, математической, логической. В любом случае считают, что экономическим процессам присуща «инерция» или обязательное продолжение направления их течения в ближайшем будущем. Экстраполяции требуют от исследователя рынка крайней осмотрительности. Мало изучить прошлые тенденции рынка - необходимо принять в расчет новые условия и факторы, которые не были характерны для прошлого, но возможно появятся в будущем. Одновременно необходимо избавляться от учета факторов и обстоятельств, которые потеряли свою актуальность и уже не оказывают влияния на ход развития событий на данном рынке.

Данный метод достаточно прост и доступен, однако использование его целесообразно только на такой период, в котором маловероятно изменение тенденций, то есть на краткосрочный, и для укрупненных товарных групп.

К методам простой экстраполяции относятся и расчеты эластичности спроса в зависимости от изменения какого-либо фактора.

1. Экономико-математические методы, применяемые в анализе хозяйственной деятельности

Список использованных источников

1. Экономико-математические методы, применяемые в анализе хозяйственной деятельности

Одним из направлений совершенствования анализа хозяйственной деятельности является внедрение экономико-математических методов и современных ЭВМ. Их применение повышает эффективность экономического анализа за счет расширения изучаемых факторов, обоснования принимаемых управленческих решений, выбора оптимального варианта использования хозяйственных ресурсов, выявления и мобилизации резервов повышения эффективности производства.

Математические методы опираются на методологию экономико-математического моделирования и научно обоснованную классификацию задач анализа хозяйственной деятельности. В зависимости от целей экономического анализа различают следующие экономико-математические модели: в детерминированных моделях - логарифмирование, долевое участие, дифференцирование; в стохастических моделях - корреляционно-регрессивный метод, линейное программирование, теорию массового обслуживания, теорию графов и др.

Стохастический анализ - это метод решения широкого класса задач статистического оценивания. Он предполагает изучение массовых эмпирических данных путем построения моделей изменения показателей за счет факторов, не находящихся в прямых связях, в прямой взаимозависимости и взаимообусловленности. Стохастическая связь существует между случайными величинами и проявляется в том, что при изменении одной из них меняется закон распределения другой.

В экономическом анализе выделяются следующие наиболее типичные задачи стохастического анализа:

Изучение наличия и тесноты связи между функцией и факторами, а также между факторами;

Ранжирование и классификация факторов экономических явлений;

Выявление аналитической формы связи между изучаемыми явлениями;

Сглаживание динамики изменения уровня показателей;

Выявление параметров закономерных периодических колебаний уровня показателей;

Изучение размерности (сложности, многогранности) экономических явлений;

Количественное изменение информативных показателей;

Количественное изменение влияния факторов на изменение анализируемых показателей (экономическая интерпретация полученных уравнений).

Стохастическое моделирование и анализ связей между изученными показателями начинаются с корреляционного анализа. Корреляция состоит в том, что средняя величина одного из признаков изменяется в зависимости от значения другого. Признак, от которого зависит другой признак, принято называть факторным. Зависимый признак именуют результативным. В каждом конкретном случае для установления факторного и результативного признаков в неодинаковых совокупностях необходим анализ природы связи. Так, при анализе различных признаков в одной совокупности заработная плата рабочих в связи с их производственным стажем выступает как результативный признак, а в связи с показателями жизненного уровня или культурными потребностями - как факторный. Часто зависимости рассматривают не от одного факторного признака, а от нескольких. Для этого применяется совокупность методов и приемов выявления и количественной оценки взаимосвязей и взаимозависимостей между признаками.

При исследовании массовых общественно-экономических явлений между факторными признаками проявляется корреляционная связь, при которой на величину результативного признака влияет, помимо факторного, множество других признаков, действующих в разных направлениях одновременно или последовательно. Часто корреляционную связь называют неполной статистической или частичной в отличие от функциональной, которая выражается в том, что при определенном значении переменной (независимая переменная - аргумент) другая (зависимая переменная - функция) принимает строгое значение.

Корреляционную связь можно выявить только в виде общей тенденции при массовом сопоставлении фактов. Каждому значению факторного признака будет соответствовать не одно значение результативного признака, а их совокупность. В этом случае для вскрытия связи необходимо найти среднее значение результативного признака для каждого значения факторного.

Если зависимость прямолинейная:

Значения коэффициентов а и b находится из системы уравнений, полученных по способу наименьших квадратов по формуле:

N - число наблюдений.

В случае прямолинейной формы связи между изучаемыми показателями коэффициент корреляции рассчитывается по формуле:

Если коэффициент корреляции возвести в квадрат, то получим коэффициент детерминации.

Дисконтирование - это процесс пересчета будущей стоимости капитала, денежных потоков или чистого дохода в настоящую. Ставка, по которой производится дисконтирование, называется ставкой дисконтирования (ставкой дисконта). Основная посылка, лежащая в основе понятия дисконтированного потока реальных денег, состоит в том, что деньги имеют временную цену, то есть сумма денег, имеющаяся в наличии сегодня, обладает большей ценностью, чем такая же сумма в будущем. Эта разница может быть выражена как процентная ставка, характеризующая относительные изменения за определенный период (обычно равный году).

Многие задачи, с которыми приходится сталкиваться экономисту в повседневной практике при анализе хозяйственной деятельности предприятий, многовариантны. Так как не все варианты одинаково хороши, среди множества возможных приходится отыскивать оптимальный. Значительная часть подобных задач на протяжении долгого времени решалась исходя из здравого смысла и опыта. При этом не было никакой уверенности, что найденный вариант является наилучшим.

В современных условиях даже незначительные ошибки могут привести к огромным потерям. В связи с этим возникла необходимость привлечения к анализу и синтезу экономических систем оптимизационных экономико-математических методов и ЭВМ, что создает основу для принятия научно обоснованных решений. Такие методы объединяются в одну группу под общим названием "оптимизационные методы принятия решений в экономике". Чтобы решить экономическую задачу математическими методами, прежде всего, необходимо построить адекватную ей математическую модель, то есть формализовать цель и условия задачи в виде математических функций, уравнений и (или) неравенств.

В общем случае математическая модель оптимизационной задачи имеет вид:

max (min): Z = Z(x),

при ограничениях

f i (x) Rb i , i = ,

где R - отношения равенства, меньше или больше.

Если целевая функция и функции, входящие в систему ограничений, линейны относительно входящих в задачу неизвестных, такая задача называется задачей линейного программирования. Если же целевая функция или система ограничений не линейна, такая задача называется задачей нелинейного программирования.

В основном, на практике, задачи нелинейного программирования путем линеаризации сводятся к задаче линейного программирования. Особый практический интерес среди задач нелинейного программирования представляют задачи динамического программирования, которые из-за своей многоэтапности нельзя линеаризовать. Поэтому мы рассмотрим только эти два вида оптимизационных моделей, для которых сегодня имеется хорошее математическое и программное обеспечение.

Метод динамического программирования представляет собой особый математический прием оптимизации нелинейных задач математического программирования, который специально приспособлен к многошаговым процессам. Многошаговым обычно считают процесс, развивающийся во времени и распадающийся на ряд "шагов", или "этапов". При этом метод динамического программирования используется и для решения задач, в которых время не фигурирует. Некоторые процессы распадаются на шаги естественным образом (например, процесс планирования хозяйственной деятельности предприятия на отрезок времени, состоящий из нескольких лет). Многие процессы можно расчленить на этапы искусственно.

Суть метода динамического программирования состоит в том, что вместо поиска оптимального решения сразу для всей сложной задачи предпочитают находить оптимальные решения для нескольких более простых задач аналогичного содержания, на которые расчленяется исходная задача.

Метод динамического программирования также характеризуется тем, что выбор оптимального решения на каждом шаге должен производиться с учетом последствий в будущем. Это означает, что, оптимизируя процесс на каждом отдельном шаге, ни в коем случае нельзя забывать обо всех последующих шагах. Таким образом, динамическое программирование - это дальновидное планирование с учетом перспективы.

Принцип выбора решения в динамическом программировании является определяющим и носит название принципа оптимальности Беллмана. Сформулируем его следующим образом: оптимальная стратегия обладает тем свойством, что, каковы бы ни были первоначальное состояние и решение, принятое в начальный момент, последующие решения должны вести к улучшению ситуации относительно состояния, являющегося результатом первоначального решения.

Таким образом, при решении оптимизационной задачи методом динамического программирования необходимо на каждом шаге учитывать последствия, к которым приведет в будущем решение, принимаемое в данный момент. Исключением является последний шаг, которым заканчивается процесс. Здесь можно принимать такое решение, чтобы обеспечить максимальный эффект. Спланировав оптимальным образом последний шаг, можно "пристраивать" к нему предпоследний так, чтобы результат этих двух шагов был оптимальным, и т.д. Именно таким образом - от конца к началу - можно развернуть процедуру принятия решений. Оптимальное решение, найденное при условии, что предыдущий шаг закончился определенным образом, называют условно-оптимальным решением.

Статистическая теория игр является составной частью общей теории игр, которая представляет собой раздел современной прикладной математики, изучающий методы обоснования оптимальных решений в конфликтных ситуациях. В теории статистических игр различают такие понятия, как исходная стратегическая игра и собственно статистическая игра. В этой теории первого игрока называют "природой", под которой понимают совокупность обстоятельств, в условиях которой приходится принимать решения второму игроку - "статистику". В стратегической игре оба игрока действуют активно, предполагая, что противник - "разумный" игрок. Для стратегической игры характерна полная неопределенность в выборе стратегии каждым игроком, то есть игроки ничего не знают о стратегиях друг друга. В стратегической игре оба игрока действуют на основе детерминированной информации, определенной матрицей потерь.

В собственно статистической игре природа не является активно действующим игроком в том смысле, что она "не разумна" и не пытается противодействовать максимальному выигрышу второго игрока. Статистик (второй игрок) в статистической игре стремится выиграть игру у воображаемого противника - природы. Если в стратегической игре игроки действуют в условиях полной неопределенности, то для статистической игры характерна частичная неопределенность. Дело в том, что природа развивается и "действует" в соответствии со своими объективно существующими законами. У статистика есть возможность постепенно изучать эти законы, например, на основе статистического эксперимента.

Теория массового обслуживания - прикладная область теории случайных процессов. Предметом ее исследования являются вероятностные модели реальных систем обслуживания, где в случайные (или не в случайные) моменты времени возникают заявки на обслуживание и имеются устройства (каналы) выполнения заявок. Теория массового обслуживания исследует математические методы количественной оценки процессов массового обслуживания, качества функционирования систем, где случайными могут быть как моменты появления требований (заявок), так и затраты времени на их исполнение.

Система массового обслуживания находит применение в решении следующих задач: например, тогда, когда в массовом порядке поступают заявки (требования) на обслуживание с последующим их удовлетворением. На практике это могут быть поступление сырья, материалов, полуфабрикатов, изделий на склад и их выдача со склада; обработка широкой номенклатуры деталей на одном и том же технологическом оборудовании; организация наладки и ремонта оборудования; транспортные операции; планирование резервных и страховых запасов ресурсов; определение оптимальной численности отделов и служб предприятия; обработка плановой и отчетной документации и др.

Балансовая модель - это система уравнений, характеризующих наличие ресурсов (продуктов) в натуральном или денежном выражении и направления их использования. При этом наличие ресурсов (продуктов) и потребность в них количественно совпадают. В основу решения таких моделей положены методы линейной векторно-матричной алгебры. Поэтому балансовые методы и модели называют матричными методами анализа. Наглядность изображений различных экономических процессов в матричных моделях и элементарные способы разрешения систем уравнений позволяют применять их в различных производственно-хозяйственных ситуациях.

Математическая теория нечетких множеств, разработанная в 60-е годы XX столетия, сегодня все шире применяется в финансовом анализе деятельности предприятия, включающем анализ и прогноз финансового положения предприятия, анализ изменений оборотного фонда, потоков свободных денежных средств, экономического риска, оценки влияния затрат на прибыль, расчета стоимости капитала. В основе данной теории лежат понятия "нечеткое множество" и "функции принадлежности".

В общем случае решение задач такого типа довольно громоздко, так как имеет место большой объем информации. Практическое использование теории нечетких множеств позволяет развивать традиционные методы финансово-хозяйственной деятельности, адаптировать их к новым потребностям учета неопределенности в будущем основных показателей деятельности предприятий.

Задача 1

По приведенным данным о численности персонала промышленного предприятия рассчитать коэффициент оборота по приему и выбытию рабочих и коэффициент текучести. Сделать выводы.

Решение:

Определим:

1) коэффициент по приему (К пр):

Прошлый год: Кпр = 610 / (2490 + 3500) = 0,102

Отчетный год: Кпр. = 650 / (2539 + 4200) = 0,096

В отчетном году коэффициент внешнего оборота по принятию уменьшился на 0,006 (0,096 - 0,102).

2) коэффициент по увольнению (выбытию) работников (К ув):

Прошлый год: Квыб. = 690 / (2490 + 3500) = 0,115

Отчетный год: Квыб. = 725 / (2539 + 4200) = 0,108

В отчетном году коэффициент внешнего оборота по выбытию также снизился на 0,007 (0,108 - 0,115).

3) коэффициент текучести кадров (К тек):

Прошлый год: Ктек. = (110 + 30) / (2490 + 3500) = 0,023

Отчетный год: Ктек. = (192 + 25) / (2539 + 4200) = 0,032

В отчетном году коэффициент текучести кадров также вырос на 0,009 (0,032 - 0,023), что является отрицательной тенденцией в движении кадров.

4) коэффициент общего оборота рабочей силы (К об):

Прошлый год: Коб = (610 + 690) / (2490 + 3500) = 0,217

Отчетный год: Коб. = (650 + 725) / (2539 + 4200) = 0,204

Коэффициент общего оборота рабочей силы снизился на 0,013 (0,204 - 0,217).

Задача 2

Составить исходную модель объема продукции. Определить тип факторной модели. Рассчитать влияние факторов на изменение объема продукции всеми известными приемами.

Решение:

Результативный показатель - фондоотдача.

Исходная математическая модель:

ФО = ВП / ОФ.

Тип модели - кратный. Общее количество используемых для расчета результативных показателей - 3, т. к. рассчитывается влияние 2-х факторов (2 + 1 = 3). Количество условных результативных показателей - 1, т. к. оно равно количеству факторов минус 1.

Для данной модели применимы следующие приемы: цепной подстановки, индексный и интегральный.

1. Рассчитаем уровень влияния факторов изменения результативного показателя способом цепной подстановки.

Алгоритм решения:

ФО пл = ВП пл /ОФ пл = 20433 / 2593 = 7,88 руб.

ФО усл1 = ВП ф /ОФ пл =20193 / 2593 = 7,786 руб.

ФО ф = ВП ф /ОФ ф =20193 / 2577 = 7,836 руб.

Расчет факторов, повлиявших на изменение фондоотдачи, оформим в таблице.

№ фак-торов

Название факторов

Расчет уровня влияния факторов

Уровень влияния факторов изменения общей суммы прибыли

Измените фондоотдачи за счет изменения объема продукции

7,786-7,88 =-0,094

Измените фондоотдачи за счет изменения основных фондов

7,836-7,786 = 0,05

ИТОГО (балансовая увязка)

2. Рассчитаем уровень влияния факторов изменения результативного показателя интегральным способом.

ВП = ВП ф - ВП пл = 20193 - 20433 = -240;

ОФ = ОФ ф - ОФ пл = 2577 - 2593 = -16.

ФО пл = 20433 / 2593 = 7,88 руб.

ФО ф = 20193 / 2577 = 7,836 руб.

ФО вп = = 15 ln|0,99| = -0,09284

ФО оф = ?ФО общ - ?ФО вп = (7,836-7,88) - (-0,09284) = 0,04884

3. Рассчитаем уровень влияния факторов изменения результативного показателя индексным способом.

I ФО = I ВП I ОФ.

I ФО = (ВП ф / ОФ ф) : (ВП пл / ОФ пл) = 7,836/7,88 = 0,99

I ВП = (ВП ф / ОФ пл) : (ВП пл / ОФ пл) = 7,786 /7,88 = 0,988

I ОФ = (ВП ф / ОФ ф) : (ВП ф / ОФ пл) = 7,836/7,786 = 1,006

I ФО = I ВП I ОФ = 0,988 1,006 = 0,99.

Если из числителя вышеприведенных формул вычесть знаменатель, то получим абсолютные приросты фондоотдачи в целом и за счет каждого фактора в отдельности, т. е. те же результаты, что и способом цепной подстановки.

Задача 3

Определить каким будет средний уровень урожайности, если количество внесенных удобрений составит 20 ц. Определить тесноту связи между показателем "у" и фактором "х".

Дано: Уравнение регрессии

где у - среднее изменение урожайности, ц /га

х - количество внесенных удобрений, ц.

Коэффициент детерминации - 0,92.

Решение:

Средний уровень урожайности равен 62 ц /га.

Регрессионный анализ своей целью имеет вывод, определение (идентификацию) уравнения регрессии, включая статистическую оценку его параметров. Уравнение регрессии позволяет найти значение зависимой переменной, если величина независимой или независимых переменных известна.

Коэффициент корреляции вычисляется по формуле:

Доказано, что коэффициент корреляции находится в интервале от минус единицы до плюс единицы (-1 < R x, y <1). Коэффициент корреляции в квадрате () называется коэффициентом детерминации. Коэффициент корреляции R для данной выборки равен 0,9592 (). Чем он ближе к единице, тем теснее связь между признаками. В данном случае связь очень тесная, почти абсолютная корреляция. Коэффициент детерминации R 2 равен 0,92. Это означает, что уравнение регрессии определяется на 92 % дисперсией результативного признака, а на долю сторонних факторов приходится 8 %.

Коэффициент детерминации показывает долю разброса, учитываемого регрессией, в общем разбросе результативного признака. Этот показатель, равный отношению факторной вариации к полной вариации признака, позволяет судить о том, насколько "удачно" выбран вид функции. Чем больше R 2 , тем больше изменение факторного признака объясняет изменение результативного признака и тем, следовательно, лучше уравнение регрессии, лучше выбор функции.

Список использованных источников

Анализ хозяйственной деятельности предприятия: Учеб. пособие/ Под общ. ред. Л. Л. Ермолович. - Мн.: Интерпрессервис; Экоперспектива, 2001. - 576 с.

Савицкая Г. В. Анализ хозяйственной деятельности предприятия, 7-е изд., испр. - Мн.: Новое знание, 2002. - 704 с.

Савицкая Г. В. Теория анализа хозяйственной деятельности. - М.: Инфра-М, 2007.

Савицкая Г. В. Экономический анализ: Учеб. - 10-е изд., испр. - М.: Новое знание, 2004. - 640 с.

Скамай Л. Г., Трубочкина М. И. Экономический анализ деятельности предприятия. - М.: Инфра-М, 2007.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТОРГОВО - ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ

ТУЛЬСКИЙ ФИЛИАЛ

(ТФ ГОУ ВПО РГТЭУ)

Реферат по математике на тему:

«Экономико-математические модели»

Выполнили:

Студентки 2 курса

«Финансы и кредит»

дневное отделение

Максимова Кристина

Витка Наталья

Проверил:

Доктор технических наук,

профессор С.В. Юдин _____________

Введение

1.Экономико-математическое моделирование

1.1 Основные понятия и типы моделей. Их классификация

1.2 Экономико-математические методы

Разработка и применение экономико-математических моделей

2.1 Этапы экономико-математического моделирования

2.2 Применение стохастических моделей в экономике

Заключение

Список литературы

Введение

Актуальность. Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в. Однако, методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин "модель" широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. Рассмотрим только такие "модели", которые являются инструментами получения знаний.

Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Экономико-математическое моделирование является неотъемлемой частью любого исследования в области экономики. Бурное развитие математического анализа, исследования операций, теории вероятностей и математической статистики способствовало формированию различного рода моделей экономики.

Целью математического моделирования экономических систем является использование методов математики для наиболее эффективного решения задач, возникающих в сфере экономики, с использование, как правило, современной вычислительной техники.

Почему можно говорить об эффективности применения методов моделирования в этой области? Во-первых, экономические объекты различного уровня (начиная с уровня простого предприятия и кончая макроуровнем - экономикой страны или даже мировой экономикой) можно рассматривать с позиций системного подхода. Во-вторых, такие характеристики поведения экономических систем как:

-изменчивость (динамичность);

-противоречивость поведения;

-тенденция к ухудшению характеристик;

-подверженность воздействию окружающей среды

предопределяют выбор метода их исследования.

Проникновение математики в экономическую науку связано с преодолением значительных трудностей. В этом отчасти была "повинна" математика, развивающаяся на протяжении нескольких веков в основном в связи с потребностями физики и техники. Но главные причины лежат все же в природе экономических процессов, в специфике экономической науки.

Сложность экономики иногда рассматривалась как обоснование невозможности ее моделирования, изучения средствами математики. Но такая точка зрения в принципе неверна. Моделировать можно объект любой природы и любой сложности. И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь моделирование может дать результаты, которые нельзя получить другими способами исследования.

Цель данной работы - раскрыть понятие экономико-математических моделей и изучить их классификацию и методы, на которых они базируются, а также рассмотреть их применение в экономике.

Задачи данной работы: систематизация, накопление и закрепление знаний об экономико-математических моделях.

1.Экономико-математическое моделирование

1.1 Основные понятия и типы моделей. Их классификация

В процессе исследования объекта часто бывает нецелесообразно или даже невозможно иметь дело непосредственно с этим объектом. Удобнее бывает заменить его другим объектом, подобным данному в тех аспектах, которые важны в данном исследовании. В общем виде модель можно определить как условный образ реального объекта (процессов), который создается для более глубокого изучения действительности. Метод исследования, базирующийся на разработке и использовании моделей, называется моделированием . Необходимость моделирования обусловлена сложностью, а порой и невозможностью прямого изучения реального объекта (процессов). Значительно доступнее создавать и изучать прообразы реальных объектов (процессов), т.е. модели. Можно сказать, что теоретическое знание о чем-либо, как правило, представляет собой совокупность различных моделей. Эти модели отражают существенные свойства реального объекта (процессов), хотя на самом деле действительность значительно содержательнее и богаче.

Модель - это мысленно представляемая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает новую информацию об этом объекте.

На сегодняшний день общепризнанной единой классификации моделей не существует. Однако из множества моделей можно выделить словесные, графические, физические, экономико-математические и некоторые другие типы моделей.

Экономико-математические модели - это модели экономических объектов или процессов, при описании которых используются математические средства. Цели их создания разнообразны: они строятся для анализа тех или иных предпосылок и положений экономической теории, логического обоснования экономических закономерностей, обработки и приведения в систему эмпирических данных. В практическом плане экономико-математические модели используются как инструмент прогноза, планирования, управления и совершенствования различных сторон экономической деятельности общества.

Экономико-математические модели отражают наиболее существенные свойства реального объекта или процесса с помощью системы уравнений. Единой классификации экономико-математических моделей не существует, хотя можно выделить наиболее значимые их группы в зависимости от признака классификации.

По целевому назначению модели делятся на:

·Теоретико-аналитические (используются в исследовании общих свойств и закономерностей экономических процессов);

·Прикладные (применяются в решении конкретных экономических задач, таких как задачи экономического анализа, прогнозирования, управления).

По учету фактора времени модели подразделяются на:

·Динамические (описывают экономическую систему в развитии);

·Статистические (экономическая система описана в статистике, применительно к одному определенному моменту времени; это как бы снимок, срез, фрагмент динамической системы в какой-то момент времени).

По длительности рассматриваемого периода времени различают модели:

·Краткосрочного прогнозирования или планирования (до года);

·Среднесрочного прогнозирования или планирования (до 5 лет);

·Долгосрочного прогнозирования или планирования (более 5 лет).

По цели создания и применения различают модели:

·Балансовые;

·Эконометрические;

·Оптимизационные;

·Сетевые;

·Систем массового обслуживания;

·Имитационные (экспертные).

В балансовых моделях отражается требование соответствия наличия ресурсов и их использования.

Оптимизационные модели позволяют найти из множества возможных (альтернативных) вариантов наилучший вариант производства, распределения или потребления. Ограниченные ресурсы при этом будут использованы наилучшим образом для достижения поставленной цели.

Сетевые модели наиболее широко используются в управлении проектами. Сетевая модель отображает комплекс работ (операций) и событий, и их взаимосвязь во времени. Обычно сетевая модель предназначена для выполнения работ в такой последовательности, чтобы сроки выполнения проекта были минимальными. В этом случае ставится задача нахождения критического пути. Однако существуют и такие сетевые модели, которые ориентированы не на критерий времени, а, например, на минимизацию стоимости работ.

Модели систем массового обслуживания создаются для минимизации затрат времени на ожидание в очереди и времени простоев каналов обслуживания.

Имитационная модель, наряду с машинными решениями, содержит блоки, где решения принимаются человеком (экспертом). Вместо непосредственного участия человека в принятии решений может выступать база знаний. В этом случае персональный компьютер, специализированное программное обеспечение, база данных и база знаний образуют экспертную систему. Экспертная система предназначена для решения одной или ряда задач методом имитации действий человека, эксперта в данной области.

По учету фактора неопределенности модели подразделяются на:

·Детерминированные (с однозначно определенными результатами);

·Стохастические (вероятностные; с различными, вероятностными результатами).

По типу математического аппарата различают модели:

·Линейного программирования (оптимальный план достигается в крайней точке области изменения переменных величин системы ограничений);

·Нелинейного программирования (оптимальных значений целевой функции может быть несколько);

·Корреляционно-регрессионные;

·Матричные;

·Сетевые;

·Теории игр;

·Теории массового обслуживания и т.д.

С развитием экономико-математических исследований проблема классификации применяемых моделей усложняется. Наряду с появлением новых типов моделей и новых признаков их классификации, осуществляется процесс интеграции моделей разных типов в более сложные модельные конструкции.

моделирование математический стохастический

1.2 Экономико-математические методы

Как и всякое моделирование, экономико-математическое моделирование основывается на принципе аналогии, т.е. возможности изучения объекта посредством построения и рассмотрения другого, подобного ему, но более простого и доступного объекта, его модели.

Практическими задачами экономико-математического моделирования являются, во-первых, анализ экономических объектов, во-вторых, экономическое прогнозирование, предвидение развития хозяйственных процессов и поведения отдельных показателей, в-третьих, выработка управленческих решений на всех уровнях управления.

Суть экономико-математического моделирования заключается в описании социально-экономических систем и процессов в виде экономико-математических моделей, которые следует понимать как продукт процесса экономико-математического моделирования, а экономико-математические методы - как инструмент.

Рассмотрим вопросы классификации экономико-математических методов. Эти методы представляют собой комплекс экономико-математических дисциплин, являющихся сплавом экономики, математики и кибернетики. Поэтому классификация экономико-математических методов сводится к классификации научных дисциплин, входящих в их состав.

С известной долей условности классификацию этих методов можно представить следующим образом.

·Экономическая кибернетика: системный анализ экономики, теория экономической информации и теория управляющих систем.

·Математическая статистика: экономические приложения данной дисциплины - выборочный метод, дисперсионный анализ, корреляционный анализ, регрессионный анализ, многомерный статистический анализ, теория индексов и др.

·Математическая экономия и изучающая те же вопросы с количественной стороны эконометрия: теория экономического роста, теория производственных функций, межотраслевые балансы, национальные счета, анализ спроса и потребления, региональный и пространственный анализ, глобальное моделирование.

·Методы принятия оптимальных решений, в том числе исследование операций в экономике. Это наиболее объемный раздел, включающий в себя следующие дисциплины и методы: оптимальное (математическое) программирование, сетевые методы планирования и управления, теорию и методы управления запасами, теорию массового обслуживания, теорию игр, теорию и методы принятия решений.

В оптимальное программирование в свою очередь входят линейное и нелинейное программирование, динамическое программирование, дискретное (целочисленное) программирование, стохастическое программирование и др.

·Методы и дисциплины, специфичные отдельно как для централизованно планируемой экономики, так и для рыночной (конкурентной) экономики. К первым можно отнести теорию оптимального ценообразования функционирования экономики, оптимальное планирование, теорию оптимального ценообразования, модели материально-технического снабжения и др. Ко вторым - методы, позволяющие разработать модели свободной конкуренции, модели капиталистического цикла, модели монополии, модели теории фирмы и т.д. Многие из методов, разработанных для централизованно планируемой экономики, могут быть оказаться полезными и при экономико-математическом моделировании в условиях рыночной экономики.

·Методы экспериментального изучения экономических явлений. К ним относят, как правило, математические методы анализа и планирования экономических экспериментов, методы машинной имитации (имитационное моделирование), деловые игры. Сюда можно отнести также и методы экспертных оценок, разработанные для оценки явлений, не поддающихся непосредственному измерению.

В экономико-математических методах применяются различные разделы математики, математической статистики, математической логики. Большую роль в решении экономико-математических задач играют вычислительная математика, теория алгоритмов и другие дисциплины. Использование математического аппарата принесло ощутимые результаты при решении задач анализа процессов расширенного производства, определения оптимальных темпов роста капиталовложений, оптимального размещения, специализации и концентрации производства, задач выбора оптимальных способов производства, определения оптимальной последовательности запуска в производство, задачи подготовки производства методами сетевого планирования и многих других.

Для решения стандартных проблем характерны четкость цели, возможность заранее выработать процедуры и правила ведения расчетов.

Существуют следующие предпосылки использования методов экономико-математического моделирования, важнейшими из которых являются высокий уровень знания экономической теории, экономических процессов и явлений, методологии их качественного анализа, а также высокий уровень математической подготовки, владение экономико-математическими методами.

Прежде чем приступить к разработке моделей, необходимо тщательно проанализировать ситуацию, выявить цели и взаимосвязи, проблемы, требующие решения, и исходные данные для их решения, вести систему обозначений и только тогда описать ситуацию в виде математических соотношений.

2. Разработка и применение экономико-математических моделей

2.1 Этапы экономико-математического моделирования

Процесс экономико-математического моделирования - это описание экономических и социальных систем и процессов в виде экономико-математических моделей. Эта разновидность моделирования обладает рядом существенных особенностей, связанных как с объектом моделирования, так и с применяемыми аппаратом и средствами моделирования. Поэтому целесообразно более детально проанализировать последовательность и содержание этапов экономико-математического моделирования, выделив следующие шесть этапов:

.Постановка экономической проблемы и ее качественный анализ;

2.Построение математической модели;

.Математический анализ модели;

.Подготовка исходной информации;

.Численное решение;

.

Рассмотрим каждый из этапов более подробно.

1.Постановка экономической проблемы и ее качественный анализ . Главное здесь - четко сформулировать сущность проблемы, принимаемые допущения и те вопросы, на которые требуется получить ответы. Этот этап включает выделение важнейших черт и свойств моделируемого объекта и абстрагирование от второстепенных; изучение структуры объекта и основных зависимостей, связывающих его элементы; формулирование гипотез (хотя бы предварительных), объясняющих поведение и развитие объекта.

2.Построение математической модели . Это - этап формализации экономической проблемы, выражения ее в виде конкретных математических зависимостей и отношений (функций, уравнений, неравенств и т.д.). Обычно сначала определяется основная конструкция (тип) математической модели, а затем уточняются детали этой конструкции (конкретный перечень переменных и параметров, форма связей). Таком образом, построение модели подразделяется в свою очередь на несколько стадий.

Неправильно полагать, что чем больше фактов учитывает модель, тем она лучше «работает» и дает лучшие результаты. То же можно сказать о таких характеристиках сложности модели, как используемые формы математических зависимостей (линейные и нелинейные), учет факторов случайности т неопределенности и т.д.

Излишняя сложность и громоздкость модели затрудняют процесс исследования. Нужно учитывать не только реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом.

Одна из важный особенностей математических моделей - потенциальная возможность их использования для решения разнокачественных проблем. Поэтому, даже сталкиваясь с новой экономической задачей, не нужно стремиться «изобретать» модель; сначала необходимо попытаться применить для решения этой задачи уже известные модели.

.Математический анализ модели. Целью этого этапа является выяснение общих свойств модели. Здесь применяются чисто математические приемы исследования. Наиболее важный момент - доказательство существования решений в сформулированной модели. Если удается доказать, что математическая задача не имеет решения, то необходимость в последующей работе по первоначальному варианту модели отпадает и следует скорректировать либо постановку экономической задачи, либо способы ее математической формализации. При аналитическом исследовании модели выясняются такие вопросы, как, например, единственно ли решение, какие переменные (неищвестные) могут входить в решение, каковы будут соотношения между ними, в каких пределах и в зависимости исходных условий они изменяются, каковы тенденции их изменения и т.д. Аналитической исследование модели по сравнению с эмпирическим (численным) имеет то преимущество, что получаемые выводы сохраняют свою силу при различных конкретных значениях внешних и внутренних параметров модели.

4.Подготовка исходной информации. Моделирование предъявляет жесткие требования к системе информации. В то же время реальные возможности получения информации ограничивают выбор моделей, предназначаемых для практического использования. При этом принимается во внимание не только принципиальная возможность подготовки информации (за определенные сроки), но и затраты на подготовку соответствующих информационных массивов.

Эти затраты не должны превышать эффект от использования дополнительной информации.

В процессе подготовки информации широко используются методы теории вероятностей, теоретической и математической статистики. При системном экономико-математическом моделировании исходная информация, используемая в одних моделях, является результатом функционирования других моделей.

5.Численное решение. Этот этап включает разработку алгоритмов для численного решения задачи, составление программ на ЭВМ и непосредственное проведение расчетов. Трудности этого этапа обусловлены, прежде всего, большой размерностью экономических задач, необходимостью обработки значительных массивов информации.

Исследование, проводимое численными методами, может существенно дополнить результаты аналитического исследования, а для многих моделей оно является единственно осуществимым. Класс экономических задач, которые можно решать численными методами, значительно шире, чем класс задач, доступных аналитическому исследованию.

6.Анализ численных результатов и их применение. На этом заключительном этапе цикла встает вопрос о правильности и полноте результатов моделирования, о степени практической применимости последних.

Математические методы проверки могут выявить некорректные построения модели и тем самым сужать класс потенциально правильных моделей. Неформальный анализ теоретических выводов и численных результатов, получаемых посредством модели, сопоставление их с имеющимися знаниями и фактами действительности также позволяют обнаруживать недостатки постановки экономической задачи, сконструированной математической модели, ее информационного и математического обеспечения.

2.2 Применение стохастических моделей в экономике

Основу эффективности банковского менеджмента составляет планомерный контроль за оптимальностью, сбалансированностью и устойчивостью функционирования в разрезе всех элементов, формирующих ресурсный потенциал и определяющих перспективы динамического развития кредитного учреждения. Его методы и инструменты требуют модернизации с учетом изменяющихся экономических условий. В то же время необходимость совершенствования механизма реализации новых банковских технологий обуславливает целесообразность научного поиска.

Используемые в существующих методиках интегральные коэффициенты финансовой устойчивости (КФУ) коммерческих банков зачастую характеризуют сбалансированность их состояния, но не позволяют дать полную характеристику тенденции развития. Следует учитывать, что результат (КФУ) зависит от многих случайных причин (эндогенного и экзогенного характера), которые не могут быть заранее полностью учтены.

В связи с этим оправданно рассматривать возможные результаты исследования устойчивого состояния банков в качестве случайных величин, имеющих одинаковое распределение вероятностей, поскольку исследования проводятся по одной и той же методике с использованием одинакового подхода. Кроме того, они взаимно независимы, т.е. результат каждого отдельного коэффициента не зависит от значений остальных.

Приняв во внимание, что в одном испытании случайная величина принимает одно и только одно возможное значение, заключаем, что события x 1 , x 2 , …, x n образуют полную группу, следовательно, сумма их вероятностей будет равна 1: p 1 +p 2 +…+p n =1 .

Дискретная случайная величина X - коэффициент финансовой устойчивости банка «А»,Y - банка «В», Z - банка «С» за заданный период. В целях получения результата, дающего основание сделать вывод об устойчивости развития банков, оценка была осуществлена на базе 12-летнего ретроспективного периода (табл.1).

Таблица 1

Порядковый номер годаБанк «А»Банк «В»Банк «С» 11,3141,2011,09820,8150,9050,81131,0430,9940,83941,2111,0051,01351,1101,0901,00961,0981,1541,01771,1121,1151,02981,3111,3281,06591,2451,1911,145101,5701,2041,296111,3001,1261,084121,1431,1511,028Min0,8150,9050,811Max1,5701,3281,296Шаг0,07550,04230,0485

Для каждой выборке по определенному банку значения разбиты на N интервалов, определены минимальное и максимальное значение. Процедура определения оптимального числа групп основана на применении формулы Стерджесса:

N =1+3,322 * ln N;

N =1+3,322 * ln12=9,525≈10,

Где n - число групп;

N - число совокупности.

h=(КФУ max - КФУ min ) / 10.

Таблица 2

Границы интервалов значений дискретных случайных величин X, Y, Z (коэффициентов финансовой устойчивости) и частоты появлений данных значений в обозначенных границах

Номер интервалаГраницы интерваловЧастота появлений (n )XYZXYZ 10,815-0,8910,905-0,9470,811-0,86011220,891-0,9660,947-0,9900,860-0,90800030,966-1,0420,990-1,0320,908-0,95702041,042-1,1171,032-1,0740,957-1,00540051,117-1,1931,074-1,1171,005-1,05412561,193-1,2681,117-1,1591,054-1,10223371,268-1,3441,159-1,2011,102-1,15131181,344-1,4191,201-1,2431,151-1,19902091,419-1,4951,243-1,2861,199-1,248000101,495-1,5701,286-1,3281,248-1,296111

Исходя из найденного шага интервала, были рассчитаны границы интервалов путем прибавления к минимальному значению найденного шага. Полученное значение - это граница первого интервала (левая граница - LG). Для нахождения второго значения (правой границы PG) к найденной первой границе снова прибавляет я шаг и т.д. Граница последнего интервала совпадает с максимальным значением:

LG 1 =КФУ min ;

PG 1 =КФУ min +h;

LG 2 =PG 1;

PG 2 =LG 2 +h;

PG 10 =КФУ max .

Данные по частоте попадания коэффициентов финансовой устойчивости (дискретных случайных величин X, Y, Z) сгруппированы в интервалы, и определена вероятность попадания их значений в заданные границы. При этом левое значение границы входит в интервал, а правое - нет (табл.3).

Таблица 3

Распределение дискретных случайных величин X, Y, Z

ПоказательЗначения показателяБанк «А»X 0,8530,9291,0041,0791,1551,2311,3061,3821,4571,532P(X) 0,083000,3330,0830,1670,250000,083Банк «В»Y 0,9260,9691,0111,0531,0961,1381,1801,2221,2651,307P(Y) 0,08300,16700,1670,2500,0830,16700,083Банк «С»Z 0,8350,8840,9330,9811,0301,0781,1271,1751,2241,272P(Z) 0,1670000,4170,2500,083000,083

По частоте появлений значений n найдены их вероятности (частота появления делится на 12, исходя из числа единиц совокупности), а также в качестве значений дискретных случайных величин были использованы середины интервалов. Законы их распределения:

P i = n i /12;

X i = (LG i +PG i )/2.

На основании распределения можно судить о вероятности неустойчивого развития каждого банка:

P(X<1) = P(X=0,853) = 0,083

P(Y<1) = P(Y=0,926) = 0,083

P(Z<1) = P(Z=0,835) = 0,167.

Так с вероятностью 0,083 банк «А» может достигнуть значения коэффициента финансовой устойчивости, равное 0,853. Другими словами, вероятность того, что его расходы превысят доходы, составляет 8,3 %. По банку «В» вероятность падения коэффициента ниже единицы также составила 0,083, однако с учетом динамичного развития организации это снижение все же окажется незначительным - до 0,926. Наконец, высока вероятность (16,7%), что деятельность банка «С», при прочих равных условиях, охарактеризуется значением финансовой устойчивости, равным 0,835.

В то же время по таблицам распределений можно увидеть вероятность устойчивого развития банков, т.е. сумму вероятностей, где варианты коэффициентов имеют значение, большее 1:

P(X>1) = 1 - P(X<1) = 1 - 0,083 = 0,917

P(Y>1) = 1 - P(Y<1) = 1 - 0,083 = 0,917

P(Z>1) = 1 - P(Z<1) = 1 - 0,167 = 0,833.

Можно наблюдать, что наименее устойчивое развитие ожидается в банке «С».

В целом закон распределения задает случайную величину, однако чаще целесообразнее пользоваться числами, которые описывают случайную величину суммарно. Их называют числовыми характеристиками случайной величины, к ним относится математическое ожидание. Математическое ожидание приближенно равно среднему значению случайной величины и оно тем больше приближается к среднему значению, чем больше было проведено испытаний.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех возможных величин на ее вероятности:

M(X) = x 1 p 1 +x 2 p 2 +…+x n p n

Результаты расчетов значений математических ожиданий случайных величин представлены в табл.4.

Таблица 4

Числовые характеристики дискретных случайных величин X, Y, Z

БанкМатематическое ожиданиеДисперсияСреднее квадратическое отклонение «А»M(X) = 1,187D(X) =0,027σ(x) = 0,164«В»M(Y) = 1,124D(Y) = 0,010σ(y) = 0,101«С»M(Z) = 1,037D(Z) = 0,012σ(z) = 0,112

Полученные математические ожидания позволяют оценить средние значения ожидаемых вероятных значений коэффициента финансовой устойчивости в будущем.

Так по расчетам можно судить, что математическое ожидание устойчивого развития банка «А» составляет 1,187. Математическое ожидание банков «В» и «С» составляет 1,124 и 1,037 соответственно, что отражает предполагаемую доходность их работы.

Однако, зная лишь математическое ожидание, показывающее «центр» предполагаемых возможных значений случайной величины - КФУ, еще нельзя судить ни о его возможных уровнях, ни о степени их рассеянности вокруг полученного математического ожидания.

Другими словами, математическое ожидание в силу своей природы полностью устойчивости развития банка не характеризует. По этой причине возникает необходимость вычисления других числовых характеристик: дисперсии и среднеквадратического отклонения. Которые позволяют оценить степень рассеянности возможных значений коэффициента финансовой устойчивости. Математические ожидания и средние квадратические отклонения позволяют оценить интервал, в котором будут находиться возможные значения коэффициентов финансовой устойчивости кредитных организаций.

При сравнительно высоком характерном значении математического ожидания устойчивости по банку «А» среднее квадратическое отклонение составило 0,164, что говорит о том, что устойчивость банка может либо повыситься на эту величину, либо снизиться. При отрицательном изменении устойчивости (что все же маловероятно, учитывая полученную вероятность убыточной деятельности, равную 0,083) коэффициент финансовой устойчивости банка останется положительным - 1, 023 (см. табл. 3)

Деятельность банка «В» при математическом ожидании в 1,124, характеризуется меньшим размахом значений коэффициента. Так, даже при неблагоприятном стечении обстоятельств банк останется устойчивым, поскольку среднее квадратическое отклонение от прогнозируемого значения составило 0, 101, что позволит ему остаться в положительной зоне доходности. Следовательно, можно сделать вывод об устойчивости развития данного банка.

Банк «С», напротив, при невысоком математическом ожидании своей надежности (1, 037) столкнется при прочих равных условиях с недопустимым для него отклонением, равным 0,112. При неблагоприятной ситуации, а также учитывая высокий процент вероятности убыточной деятельности (16,7%), данная кредитная организация, скорее всего, снизит свою финансовую устойчивость до 0,925.

Важно заметить, что, сделав выводы об устойчивости развития банков, нельзя заранее уверенно предвидеть, какое из возможных значений примет коэффициент финансовой устойчивости в итоге испытания; это зависит от многих причин, учесть которые невозможно. С этой позиции о каждой случайной величине мы располагаем весьма скромными сведениями. В связи с чем вряд ли можно установить закономерности поведения и суммы достаточно большого числа случайных величин.

Однако оказывается, что при некоторых сравнительно широких условиях суммарное поведение достаточно большого числа случайных величин почти утрачивает случайный характер и становится закономерным.

Оценивая устойчивость развития банков, остается оценить вероятность того, что отклонение случайной величины от ее математического ожидания не превышает по абсолютной величине положительного числа ε. Дать интересующую нас оценку позволяет неравенство П.Л. Чебышева. Вероятность того, что отклонение случайной величины X от ее математического ожидания по абсолютной величине меньше положительного числа ε не меньше, чем :

или в случае обратной вероятности:

Учитывая риск, связанный с потерей устойчивости, проведем оценку вероятности отклонения дискретной случайной величины от математического ожидания в меньшую сторону и, считая равновероятностными отклонения от центрального значения как в меньшую, так и в большую стороны, перепишем неравенство еще раз:

Далее, исходя из поставленной задачи необходимо оценить вероятность того, что будущее значение коэффициента финансовой устойчивости не окажется ниже 1 от предлагаемого математического ожидания (для банка «А» значение ε примем равное 0,187, для банка «В» - 0,124, для «С» - 0.037) и произведем расчет данной вероятности:

банк «А»:

банк «С»:

Согласно неравенству П.Л. Чебышева, наиболее устойчивым в своем развитии является банк «В», поскольку вероятность отклонения ожидаемых значений случайной величины от ее математического ожидания невысокая (0,325), при этом она сравнительно меньше, чем по другим банкам. На втором месте по сравнительной устойчивости развития располагается банк «А», где коэффициент этого отклонения несколько выше, чем в первом случае (0,386). В третьем банке вероятность того, что значение коэффициента финансовой устойчивости отклониться в левую сторону от математического ожидания больше чем на 0, 037, является практически достоверным событием. Тем более, если учесть, что вероятность не может быть больше 1, превышающие значения, согласно доказательству Л.П. Чебышева, необходимо принимать за 1. Другими словами, факт того, что развитие банка может перейти в неустойчивую зону, характеризующуюся коэффициентом финансовой устойчивости меньше 1, является достоверным событием.

Таким образом, характеризуя финансовое развитие коммерческих банков, можно сделать следующие выводы: математическое ожидание дискретной случайной величины (среднее ожидаемое значение коэффициента финансовой устойчивости) банка «А» равно 1,187. Среднее квадратическое отклонение этой дискретной величины составляет 0,164, что объективно характеризует небольшой разброс значений коэффициента от среднего числа. Однако степень неустойчивости этого ряда подтверждается достаточно высокой вероятностью отрицательного отклонения коэффициента финансовой устойчивости от 1, равной 0,386.

Анализ деятельности второго банка показал, что математическое ожидание КФУ равно 1,124 при среднем квадратическом отклонении 0,101. Таким образом, деятельность кредитной организации характеризуется небольшим разбросом значений коэффициента финансовой устойчивости, т.е. является более концентрированной и стабильной, что подтверждается сравнительно низкой вероятностью (0,325) перехода банка в зону убыточности.

Устойчивость банка «С» характеризуется невысоким значением математического ожидания (1,037) и также небольшим разбросом значений (среднеквадратическое отклонение равно 0,112). Неравенство Л.П. Чебышева доказывает тот факт, что вероятность получения отрицательного значения коэффициента финансовой устойчивости равна 1, т.е. ожидание положительной динамики его развития при прочих равных условиях будет выглядеть весьма необоснованным. Таким образом, предложенная модель, базирующаяся на определении существующего распределения дискретных случайных величин (значений коэффициентов финансовой устойчивости коммерческих банков) и подтверждаемая оценкой их равновероятностного положительного или отрицательного отклонения от полученного математического ожидания, позволяет определить ее текущий и перспективный уровень.

Заключение

Применение математики в экономической науке, дало толчок в развитии как самой экономической науке, так и прикладной математике, в части методов экономико-математической модели. Пословица говорит: «Семь раз отмерь - Один раз отрежь». Использование моделей есть время, силы, материальные средства. Кроме того, расчёты по моделям противостоят волевым решениям, поскольку позволяют заранее оценить последствия каждого решения, отбросить недопустимые варианты и рекомендовать наиболее удачные. Экономико-математическое моделирование основывается на принципе аналогии, т.е. возможности изучения объекта посредством построения и рассмотрения другого, подобного ему, но более простого и доступного объекта, его модели.

Практическими задачами экономико-математического моделирования являются, во-первых, анализ экономических объектов; во-вторых, экономическое прогнозирование, предвидение развития хозяйственных процессов и поведения отдельных показателей; в-третьих, выработка управленческих решений на всех уровнях управления.

В работе было выяснено, что экономико-математические модели можно разделить по признакам:

·целевого назначения;

·учета фактора времени;

·длительности рассматриваемого периода;

·цели создания и применения;

·учета фактора неопределенности;

·типа математического аппарата;

Описание экономических процессов и явлений в виде экономико-математических моделей базируется на использовании одного из экономико-математических методов, которые применяются на всех уровнях управления.

·постановка экономической проблемы и ее качественный анализ;

·построение математической модели;

·математический анализ модели;

·подготовка исходной информации;

·численное решение;

·анализ численных результатов и их применение.

В работе была представлена статья кандидата экономических наук, доцента кафедры финансов и кредита С.В. Бойко, в которой отмечается, что перед отечественными кредитными организациями, подверженными влиянию внешней среды, стоит задача поиска управленческих инструментов, предполагающих реализацию рациональных антикризисных мер, направленных на стабилизацию темпов роста базовых показателей их деятельности. В этой связи повышается важность адекватного определения финансовой устойчивости с помощью различных методик и моделей, одной из разновидностей которых являются стохастические (вероятностные) модели, позволяющие не только выявить предполагаемые факторы роста или снижения устойчивости, но и сформировать комплекс превентивных мероприятий по ее сохранению.

Потенциальная возможность математического моделирования любых экономических объектов и процессов не означает, разумеется, ее успешной осуществимости при данном уровне экономических и математических знаний, имеющейся конкретной информации и вычислительной технике. И хотя нельзя указать абсолютные границы математической формализуемости экономических проблем, всегда будут существовать еще неформализованные проблемы, а также ситуации, где математическое моделирование недостаточно эффективно.

Список литературы

1)Красс М.С. Математика для экономических специальностей: Учебник. -4-е изд., испр. - М.: Дело, 2003.

)Иванилов Ю.П., Лотов А.В. Математические модели в экономике. - М.: Наука, 2007.

)Ашманов С.А. Введение в математическую экономику. - М.: Наука, 1984.

)Гатаулин А.М., Гаврилов Г.В., Сорокина Т.М. и др. Математическое моделирование экономических процессов. - М.: Агропромиздат, 1990.

)Под ред. Федосеева В.В. Экономико-математические методы и прикладные модели:Учебное пособие для ВУЗов. - М.: ЮНИТИ, 2001.

)Савицкая Г.В. Экономический анализ: Учебник. - 10-е изд., испр. - М.:Новое знание, 2004.

)Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 2002

)Исследование операций. Задачи, принципы, методология: учеб. пособие для вузов / Е.С. Вентцель. - 4-е изд., стереотип. - М. :Дрофа, 2006. - 206, с. : ил.

) Математика в экономике: учебное пособие/ С.В.Юдин. - М.: Изд-во РГТЭУ,2009.-228 с.

)Кочетыгов А.А. Теория вероятностей и математическая статистика: Учеб. Пособие/ Тул. Гос. Ун-т. Тула, 1998. 200с.

)Бойко С.В, Вероятностные модели в оценке финансовой устойчивости кредитных организаций /С.В. Бойко// Финансы и кредит. - 2011. N 39. -


При построении экономических моделей выявляются существенные факторы и отбрасываются детали несущественные для решения поставленной задачи.

К экономическим моделям могут относится модели:

  • экономического роста
  • потребительского выбора
  • равновесия на финансовом и товарном рынке и многие другие.

Модель — это логическое или математическое описание компонентов и функций, отражающих существенные свойства моделируемого объекта или процесса.

Модель используется как условный образ, сконструированный для упрощения исследования объекта или процесса.

Природа моделей может быть различна. Модели подразделяются на: вещественные, знаковые, словесное и табличное описание и др.

Экономико-математическая модель

В управлении хозяйственными процессами наибольшее значение имеют прежде всего экономико-математические модели , часто объединяемые в системы моделей.

Экономико-математическая модель (ЭММ) — это математическое описание экономического объекта или процесса с целью их исследования и управления ими. Это математическая запись решаемой экономической задачи.

Основные типы моделей
  • Экстраполяционные модели
  • Факторные эконометрические модели
  • Оптимизационные модели
  • Балансовые модели, модель МежОтраслевогоБаланса (МОБ)
  • Экспертные оценки
  • Теория игр
  • Сетевые модели
  • Модели систем массового обслуживания

Экономико-математические модели и методы, применяемые в экономическом анализе

R a = ЧП / ВА + ОА ,

В обобщенном виде смешанная модель может быть представлена такой формулой:

Итак, вначале следует построить экономико-математическую модель, описывающую влияние отдельных факторов на обобщающие экономические показатели деятельности организации. Большое распространение в анализе хозяйственной деятельности получили многофакторные мультипликативные модели , так как они позволяют изучить влияние значительного количества факторов на обобщающие показатели и тем самым достичь большей глубины и точности анализа.

После этого нужно выбрать способ решения этой модели. Традиционные способы : способ цепных подстановок, способы абсолютных и относительных разниц, балансовый способ, индексный метод, а также методы корреляционно-регрессионного, кластерного, дисперсионного анализа, и др. Наряду с этими способами и методами в экономическом анализе используются и специфически математические способы и методы.

Интегральный метод экономического анализа

Одним из таких способов (методов) является интегральный. Он находит применение при определении влияния отдельных факторов с использованием мультипликативных, кратных, и смешанных (кратно-аддитивных) моделей.

В условиях применения интегрального метода имеется возможность получения более обоснованных результатов исчисления влияния отдельных факторов, чем при использовании метода цепных подстановок и его вариантов. Метод цепных подстановок и его варианты, а также индексный метод имеют существенные недостатки: 1) результаты расчетов влияния факторов зависят от принятой последовательности замены базисных величин отдельных факторов на фактические; 2) дополнительный прирост обобщающего показателя, вызванный взаимодействием факторов, в виде неразложимого остатка присоединяется к сумме влияния последнего фактора. При использовании же интегрального метода этот прирост делится поровну между всеми факторами.

Интегральный метод устанавливает общий подход к решению моделей различных видов, причем независимо от числа элементов, которые входят в данную модель, а также независимо от формы связи между этими элементами.

Интегральный метод факторного экономического анализа имеет в своей основе суммирование приращений функции, определенной как частная производная, умноженная на приращение аргумента на бесконечно малых промежутках.

В процессе применения интегрального метода необходимо соблюдение нескольких условий. Во-первых, должно соблюдаться условие непрерывной дифференцируемости функции, где в качестве аргумента берется какой-либо экономический показатель. Во-вторых, функция между начальной и конечной точками элементарного периода должна изменяться по прямой Г е . Наконец, в третьих, должно иметь место постоянство соотношения скоростей изменения величин факторов

d y / d x = const

При использовании интегрального метода исчисление определенного интеграла по заданной подынтегральной функции и заданному интервалу интегрирования осуществляется по имеющейся стандартной программе с применением современных средств вычислительной техники.

Если мы осуществляем решение мультипликативной модели, то для расчета влияния отдельных факторов на обобщающий экономический показатель можно использовать следующие формулы:

ΔZ(x) = y 0 * Δ x + 1/2 Δ x * Δ y

Z(y)= x 0 * Δ y +1/2 Δ x * Δ y

При решении кратной модели для расчета влияния факторов воспользуемся такими формулами:

Z=x /y ;

Δ Z(x) = Δ x y Ln y1/y0

Δ Z(y)= Δ Z - Δ Z(x)

Существует два основных типа задач, решаемых при помощи интегрального метода: статический и динамический. При первом типе отсутствует информация об изменении анализируемых факторов в течение данного периода. Примерами таких задач могут служить анализ выполнения бизнес-планов либо анализ изменения экономических показателей по сравнению с предыдущим периодом. Динамический тип задач имеет место в условиях наличия информации об изменении анализируемых факторов в течение данного периода. К этому типу задач относятся вычисления, связанные с изучением временных рядов экономических показателей.

Таковы важнейшие черты интегрального метода факторного экономического анализа.

Метод логарифмирования

Кроме этого метода, в анализе находит применение также метод (способ) логарифмирования. Он используется при проведении факторного анализа, когда решаются мультипликативные модели. Сущность рассматриваемого метода заключается в том, что при его использовании имеет место логарифмически пропорциональное распределение величины совместного действия факторов между последними, то есть эта величина распределяется между факторами пропорционально доле влияния каждого отдельного фактора на сумму обобщающего показателя. При интегральном же методе упомянутая величина распределяется между факторами в одинаковой мере. Поэтому метод логарифмирования делает расчеты влияния факторов более обоснованными по сравнению с интегральным методом.

В процессе логарифмирования находят применение не абсолютные величины прироста экономических показателей, как это имеет место при интегральном методе, а относительные, то есть индексы изменения этих показателей. К примеру, обобщающий экономический показатель определяется в виде произведения трех факторов — сомножителей f = x y z .

Найдем влияние каждого из этих факторов на обобщающий экономический показатель. Так, влияние первого фактора может быть определено по следующей формуле:

Δf x = Δf · lg(x 1 / x 0) / lg(f 1 / f 0)

Каким же было влияние следующего фактора? Для нахождения его влияния воспользуемся следующей формулой:

Δf y = Δf · lg(y 1 / y 0) / lg(f 1 / f 0)

Наконец, для того, чтобы исчислить влияние третьего фактора, применим формулу:

Δf z = Δf · lg(z 1 / z 0)/ lg(f 1 / f 0)

Таким образом, общая сумма изменения обобщающего показателя расчленяется между отдельными факторами в соответствии с пропорциями отношений логарифмов отдельных факторных индексов к логарифму обобщающего показателя.

При применении рассматриваемого метода могут быть использованы любые виды логарифмов — как натуральные, так и десятичные.

Метод дифференциального исчисления

При проведении факторного анализа находит применение также метод дифференциального исчисления. Последний предполагает, что общее изменение функции, то есть обобщающего показателя, подразделяется на отдельные слагаемые, значение каждого из которых исчисляется как произведение определенной частной производной на приращение переменной, по которой определена эта производная. Определим влияние отдельных факторов на обобщающий показатель, используя в качестве примера функцию от двух переменных.

Задана функция Z = f(x,y) . Если эта функция является дифференцируемой, то ее изменение может быть выражено следующей формулой:

Поясним отдельные элементы этой формулы:

ΔZ = (Z 1 - Z 0) - величина изменения функции;

Δx = (x 1 - x 0) — величина изменения одного фактора;

Δ y = (y 1 - y 0) -величина изменения другого фактора;

- бесконечно малая величина более высокого порядка, чем

В данном примере влияние отдельных факторов x и y на изменение функции Z (обобщающего показателя) исчисляется следующим образом:

ΔZ x = δZ / δx · Δx; ΔZ y = δZ / δy · Δy.

Сумма влияния обоих этих факторов — это главная, линейная относительно приращения данного фактора часть приращения дифференцируемой функции, то есть обобщающего показателя.

Способ долевого участия

В условиях решения аддитивных, а также кратно-аддитивных моделей для исчисления влияния отдельных факторов на изменение обобщающего показателя используется также способ долевого участия. Его сущность состоит в том, что вначале определяется доля каждого фактора в общей сумме их изменений. Затем эта доля умножается на общую величину изменения обобщающего показателя.

Предположим, что мы определяем влияние трех факторов — а ,b и с на обобщающий показатель y . Тогда для фактора, а определение его доли и умножение ее на общую величину изменения обобщающего показателя можно осуществить по следующей формуле:

Δy a = Δa/Δa + Δb + Δc*Δy

Для фактора в рассматриваемая формула будет иметь следующий вид:

Δy b =Δb/Δa + Δb +Δc*Δy

Наконец, для фактора с имеем:

Δy c =Δc/Δa +Δb +Δc*Δy

Такова сущность способа долевого участия, используемого для целей факторного анализа.

Метод линейного программирования

См.далее:

Теория массового обслуживания

См.далее:

Теория игр

Находит применение также теория игр. Так же, как и теория массового обслуживания, теория игр представляет собой один из разделов прикладной математики. Теория игр изучает оптимальные варианты решений, возможные в ситуациях игрового характера. Сюда относятся такие ситуации, которые связаны с выбором оптимальных управленческих решений, с выбором наиболее целесообразных вариантов взаимоотношений с другими организациями, и т.п.

Для решения подобных задач в теории игр используются алгебраические методы, которые базируются на системе линейных уравнений и неравенств, итерационные методы, а также методы сведения данной задачи к определенной системе дифференциальных уравнений.

Одним из экономико-математических методов, применяемых в анализе хозяйственной деятельности организаций, является так называемый анализ чувствительности. Данный метод зачастую применяется в процессе анализа инвестиционных проектов, а также в целях прогнозирования суммы прибыли, остающейся в распоряжении данной организации.

В целях оптимального планирования и прогнозирования деятельности организации необходимо заранее предусматривать те изменения, которые в будущем могут произойти с анализируемыми экономическими показателями.

Например, следует заранее прогнозировать изменение величин тех факторов, которые влияют на размер прибыли: уровень покупных цен на приобретаемые материальные ресурсы, уровень продажных цен на продукцию данной организации, изменение спроса покупателей на эту продукцию.

Анализ чувствительности состоит в определении будущего значения обобщающего экономического показателя при условии, что величина одного или нескольких факторов, оказывающих влияние на этот показатель, изменится.

Так, например, устанавливают, на какую величину изменится прибыль в перспективе при условии изменения количества продаваемой продукции на единицу. Этим самым мы анализируем чувствительность чистой прибыли к изменению одного из факторов, влияющих на нее, то есть в данном случае фактора объема продаж. Остальные же факторы, влияющие на величину прибыли, являются при этом неизменными. Можно определить величину прибыли также и при одновременном изменении в будущем влияния нескольких факторов. Таким образом анализ чувствительности дает возможность установить силу реагирования обобщающего экономического показателя на изменение отдельных факторов, оказывающих влияние на этот показатель.

Матричный метод

Наряду с вышеизложенными экономико-математическими методами в анализе хозяйственной деятельности находят применение также . Эти методы базируются на линейной и векторно-матричной алгебре.

Метод сетевого планирования

См.далее:

Экстраполяционный анализ

Кроме рассмотренных методов, используется также экстраполяционный анализ. Он включает в себя рассмотрение изменений состояния анализируемой системы и экстраполяцию, то есть продление имеющихся характеристик этой системы на будущие периоды. В процессе осуществления этого вида анализа можно выделить такие основные этапы: первичная обработка и преобразование исходного ряда имеющихся данных; выбор типа эмпирических функций; определение основных параметров этих функций; экстраполяция; установление степени достоверности проведенного анализа.

В экономическом анализе используется также метод главных компонент. Они применяется в целях сравнительного анализа отдельных составных частей, то есть параметров проведенного анализа деятельности организации. Главные компоненты представляют собой важнейшие характеристики линейных комбинаций составных частей, то есть параметров проведенного анализа, которые имеют самые значительные величины дисперсии, а именно, наибольшие абсолютные отклонения от средних величин.

Все модели, которые человек использует в различных сферах своей деятельности, условно можно поделить на две группы: материальные и абстрактные. Первые являются объективными, их можно реально потрогать руками. Вторые же существуют только в человеческом сознании. В рамках данной статьи будут рассмотрены лишь математические методы и модели в экономике. Они применяются для анализа процессов и явлений, происходящих в этой сфере. Их использование позволяет ставить новые экономические задачи. Благодаря ним руководство принимает решения, касающиеся управления организацией, фирмой, предприятием.

Математические операций в экономике являются самым эффективным инструментом изучения проблем в данной области. В современной научной и технической деятельности они становятся немаловажной формой моделирования. А в практике планирования и управления этот способ - основной.

Экономико-математические методы и модели являются той базой, на основе которой реализуются различные программы, изначально предназначенные для решения задач планирования, анализа и управления. Вместе с техническими средствами, с базами данных они входят в состав человеко-машинной системы. Она позволяет использовать модели и знания для решения разного рода проблем (как неконструктурированных, так и слабоконструктурированных).

В зависимости от критериев, которые лежат в основе деления, экономико-математические методы и модели классифицируются следующим образом.

1. По цели они бывают:

Прикладные, то есть с их помощью решаются конкретные задачи;

Теоретико-аналитические (они применяются, когда нужно исследовать общие закономерности и признаки развития процессов, происходящих в экономике).

2. По тому, какие причинно-следственные связи они отражают:

Детерминированные;

Вероятностные (учитывают фактор возникающей неопределенности).

3.По уровню тех процессов в экономике, которые они исследуют:

Производственные и технологические;

Социально-экономические.

4. По тому способу, которым отражается фактор времени:

Динамические, по ним видны происходящие изменения;

Статические, все зависимости здесь отражают лишь один период времени или момент.

5. По уровню детализации:

Макромодели (агрегированные);

Микромодели (детализированные).

6. По форме, в которой выражаются математические зависимости:

Нелинейные;

Линейные - их очень удобно использовать для вычисления и анализа, что привело к их более широкому распространению.

Экономико-математические методы и модели имеют и свои принципы построения. К ним относятся:

1. Принцип однозначности данных. Согласно ему информация, которая используется в начале моделирования, не должна зависеть от тех параметров будущей системы, которые на данном этапе исследования еще даже неизвестны.

2. Принцип полноты первоначальных сведений. Он означает, что используемая исходная информация должна быть очень точной, так как от нее зависят полученные результаты.

3. Принцип преемственности. Он говорит о том, что те признаки объекта, которые были отражены или установлены в первых моделях, должны сохраняться и в каждой последующей.

4. Принцип эффективной реализации. Каждая модель должна использоваться на практике. В ее реализации должны помогать новейшие вычислительные средства.

Экономико-математические методы и модели всегда строятся в несколько этапов:

1) Определение проблемы, ее анализ.

2) Конструирование Это ее выражение в виде функций, схем, уравнений.

3) Анализ полученной модели с помощью математических приемов.

4) Подготовка первоначальной информации.

5) Это уже собственно разработка программ, составление алгоритмов и проведение расчетов.

6) Анализ полученных результатов, их практическое применение.

Каждый из этих этапов может иметь свою специфику в зависимости от рассматриваемой области знаний.