Биографии Характеристики Анализ

Классические и статистические определения вероятности. Классическая и статистическая вероятность

Случайность наступления событий связана с невозможностью предсказать заранее исход того или иного испытания. Однако, если рассматривать, например, испытание: многократное бросание монеты, ω 1 , ω 2 , … , ω n , то получается, что приблизительно в половине исходов (n / 2) обнаруживается определённая закономерность, которая соответствует понятию вероятности.

Под вероятностью события А понимается некоторая числовая характеристика возможности наступления события А . Обозначим эту числовую характеристику р (А ). Существуют несколько подходов к определению вероятности. Основными из них являются статистический, классический и геометрический.

Пусть произведено n испытаний и при этом некоторое событие А наступило n A раз. Число n A называется абсолютной частотой (или просто частотой) события А , а отношение называется относительной частотой наступления события А. Относительная частота любого события характеризуется следующими свойствами:

Основанием для применения методов теории вероятностей к изучению реальных процессов является объективное существование случайных событий, обладающих свойством устойчивости частот. Многочисленные испытания изучаемого события А показывают, что при больших n относительная частота (А ) остаётся примерно постоянной.

Статистическое определение вероятности заключается в том, что за вероятность события А принимается постоянная величина р(А), вокруг которой колеблются значения относительных частот (А ) при неограниченном возрастании числа испытаний n .

Замечание 1 . Отметим, что пределы изменения вероятности случайного события от нуля до единицы выбраны Б. Паскалем для удобства ее вычисления и применения. В переписке с П. Ферма Паскаль указывал, что в качестве указанного промежутка можно было выбрать любой промежуток, например от нуля до ста и другие промежутки. В приведенных ниже задачах в данном пособии вероятности иногда указываются в процентах, т.е. от нуля до ста. В этом случае приведенные в задачах проценты необходимо переводить в доли, т.е. делить на 100.

Пример 1. Проведено 10 серий бросаний монеты, по 1000 бросаний в каждой. Величина (А ) в каждой из серий равна 0,501; 0,485; 0,509; 0,536; 0,485; 0,488; 0,500; 0,497; 0,494; 0,484. Эти частоты группируются около р (А ) = 0,5.

Этот пример подтверждает, что относительная частота (А ) примерно равна р (А ), т.е.

Классическое определение вероятности предполагает, что все эле­ментарные исходы равновозможны . О равновозможности исходов опы­та заключают в силу соображений симметрии (как в случае монеты или игрального кубика). Задачи, в которых можно исходить из соображений симметрии, на практике встречаются редко. Во многих случаях трудно указать основания, позволяющие считать, что все элементарные исходы равновозможны. В связи с этим появилась необходимость введения еще одного определения вероятности, называемого статистическим . Чтобы дать это определение, предварительно вводят понятие относительной частоты события.

Относительной частотой события , или частотой , называется от­ношение числа опытов, в которых появилось это событие, к числу всех произведенных опытов. Обозначим частоту события через , тогда по определению

(1.4.1)
где - число опытов, в которых появилось событие и - число всех произведенных опытов.

Частота события обладает следующими свойствами.

Наблюдения позволили установить, что относительная частота об­ладает свойствами статистической устойчивости: в различных сериях многочленных испытаний (в каждом из которых может появиться или не появиться это событие) она принимает значения, достаточно близкие к некоторой постоянной. Эту постоянную, являющуюся объективной числовой характеристикой явления, считают вероятностью данного со­бытия.

Вероятностью события называется число, около которого группи­руются значения,частоты данного события в различных сериях большо­го числа испытаний.

Это определение вероятности называется статистическим .

В случае статистического определения вероятность обладает сле­дующими свойствами:
1) вероятность достоверного события равна еди­нице;
2) вероятность невозможного события равна нулю;
3) вероятность случайного события заключена между нулем и единицей;
4) вероятность суммы двух несовместных событий равна сумме вероятностей этих со­бытий.

Пример 1. Из 500 взятых наудачу деталей оказалось 8 бракован­ных. Найти частоту бракованных деталей.

Решение. Так как в данном случае = 8, = 500, то в соответствии с формулой (1.4.1) находим

Пример 2 . Игральный кубик подброшен 60 раз, при этом шестерка появилась 10 раз. Какова частота появления шестерки ?

Решение. Из условия задачи следует, что = 60, = 10, поэтому

Пример 3. Среди 1000 новорожденных оказалось 515 мальчиков.Чему равна частота рождения мальчиков?
Решение. Поскольку в данном случае , , то .

Пример 4. В результате 20 выстрелов по мишени получено 15 попаданий. Какова частота попаданий?

Решение. Так как = 20, = 15, то

Пример 5. При стрельбе по мишени частота попаданий = 0,75. Найти число попаданий при 40 выстрелах.

Решение. Из формулы (1.4.1) следует, что . Так как = 0,75, = 40, то . Таким образом, было получено 30 попаданий.

Пример 6. www.. Из высе­янных семян взошло 970. Сколько семян было высеяно?

Решение. Из формулы (1.4.1) следует, что . Поскольку , , то . Итак, было высеяно 1000 семян.

Пример 7. На отрезке натурального ряда от 1 до 20 найти частоту простых чисел.

Решение. На указанном отрезке натурального ряда чисел находятся следующие простые числа: 2, 3, 5, 7, 11, 13, 17, 19; всего их 8. Так как = 20, = 8, то искомая частота

.

Пример 8. Проведены три серии многократных подбрасываний симметричной монеты, подсчитаны числа появлений герба: 1) = 4040, =2048, 2) = 12000, = 6019; 3) = 24000, = 12012. Найти частоту появления герба в каждой серии испытаний.

Решение . В соответствии с формулой (1.4.1) находим:

Замечание. Эти примеры свидетельствуют о том, что при многократ­ных испытаниях частота события незначительно отличается от его вероятности. Вероятность появления герба при подбрасывании монеты р = 1/2 = 0,5 , так как в этом случае n = 2, m = 1.

Пример 9. Среди 300 деталей, изготовленных на автоматическом станке, оказалось 15, не отвечающих стандарту. Найти частоту появле­ния нестандартных деталей.

Решение. В данном случае n = 300, m = 15, поэтому

Пример 10. Контролер, проверяя качество 400 изделий установил, что 20 из них относятся ко второму сорту, а остальные - к первому. Най­ти частоту изделий первого сорта, частоту изделий второго сорта.

Решение. Прежде всего, найдем число изделий первого сорта: 400 - 20 = 380. Поскольку n = 400, = 380, то частота изделий перво­го сорта

Аналогично находим частоту изделий второго сорта:

Задачи

  1. Отдел технического контроля обнаружил 10 нестандартных изде­лий в партии из 1000 изделий. Найдите частоту изготовления бракован­ных изделий.
  2. Для выяснения качества семян было отобрано и высеяно в лабо­раторных условиях 100 штук. 95 семян дали нормальный всход. Какова частота нормального всхода семян?
  3. Найдите частоту появления простых чисел в следующих отрезках натурального ряда: а) от 21 до 40; б) от 41 до 50; в) от 51 до 70.
  4. Найдите частоту появления цифры при 100 подбрасываниях сим­метричной монеты. (Опыт проводите самостоятельно).
  5. Найдите частоту появления шестерки при 90 подбрасываниях иг­рального кубика.
  6. Путем опроса всех студентов Вашего курса определите частоту дней рождения, попадающих на каждый месяц года.
  7. Найдите частоту пятибуквенных слов в любом газетном тексте.

Ответы

  1. 0,01. 2. 0,95; 0,05. 3. а) 0,2; б) 0,3; в) 0,2.

Вопросы

  1. Что такое частота события?
  2. Чему равна частота достоверного события?
  3. Чему равна частота невозможного события?
  4. В каких пределах заключена частота случайного события?
  5. Чему равна частота суммы двух несовместных событий?
  6. Какое определение вероятности называют статистическим?
  7. Какими свойствами обладает статистическая вероятность?

Метки . Смотреть .

Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определённое число, которое тем больше, чем более возможно событие. Такое число мы назовём вероятностью события. Таким образом, вероятность события есть численная мера степени объективной возможности этого события.

Первым по времени определением вероятности следует считать классическое, которое возникло из анализа азартных игр и применялось вначале интуитивно.

Классический способ определения вероятности основан на понятии равновозможных и несовместных событий, которые являются исходами данного опыта и образуют полную группу несовместных событий.

Наиболее простым примером равновозможных и несовместных событий, образующих полную группу, является появление того или иного шара из урны, содержащей несколько одинаковых по размеру, весу и другим осязаемым признакам шаров, отличающихся лишь цветом, тщательно перемешанных перед выниманием.

Поэтому об испытании, исходы которого образуют полную группу несовместных и равновозможных событий, говорят, что оно сводится к схеме урн, или схеме случаев , или укладывается в классическую схему.

Равновозможные и несовместные события, составляющие полную группу, будем называть просто случаями или шансами. При этом в каждом опыте наряду со случаями могут происходить и более сложные события.

Пример : При подбрасывании игральной кости наряду со случаями А i - выпадение i- очков на верхней грани можно рассматривать такие события, как В - выпадение чётного числа очков, С - выпадение числа очков, кратных трём …

По отношению к каждому событию, которое может произойти при осуществлении эксперимента, случаи делятся на благоприятствующие , при которых это событие происходит, и неблагоприятствующие, при которых событие не происходит. В предыдущем примере, событию В благоприятствуют случаи А 2 , А 4 , А 6 ; событию С - случаи А 3 , А 6 .

Классической вероятностью появления некоторого события называется отношение числа случаев, благоприятствующих появлению этого события, к общему числу случаев равновозможных, несовместных, составляющих полную группу в данном опыте:

где Р(А) - вероятность появления события А; m - число случаев, благоприятствующих событию А; n - общее число случаев.

Примеры:

1) (смотри пример выше) Р(В) = , Р(С) = .

2) В урне находятся 9 красных и 6 синих шаров. Найти вероятность того, что вынутые наугад один, два шара окажутся красными.

А - вынутый наугад шар красный:

m = 9, n = 9 + 6 = 15, P(A) =

B - вынутые наугад два шара красные:

Из классического определения вероятности вытекают следующие свойства (показать самостоятельно):


1) Вероятность невозможного события равна 0;

2) Вероятность достоверного события равна 1;

3) Вероятность любого события заключена между 0 и 1;

4) Вероятность события, противоположного событию А,

Классическое определение вероятности предполагает, что число исходов испытания конечно. На практике же весьма часто встречаются испытания, число возможных случаев которых бесконечно. Кроме того, слабая сторона классического определения состоит в том, что очень часто невозможно представить результат испытания в виде совокупности элементарных событий. Ещё труднее указать основания, позволяющие считать элементарные исходы испытания равновозможными. Обычно о равновозможности элементарных исходов испытания заключают из соображений симметрии. Однако такие задачи на практике встречаются весьма редко. По этим причинам наряду с классическим определением вероятности пользуются и другими определениями вероятности.

Статистической вероятностью события А называется относительная частота появления этого события в произведённых испытаниях:

где - вероятность появления события А;

Относительная частота появления события А;

Число испытаний, в которых появилось событие А;

Общее число испытаний.

В отличие от классической вероятности статистическая вероятность является характеристикой опытной, экспериментальной.

Пример : Для контроля качества изделий из партии наугад выбрано 100 изделий, среди которых 3 изделия оказались бракованными. Определить вероятность брака.

.

Статистический способ определения вероятности применим лишь к тем событиям, которые обладают следующими свойствами:

Рассматриваемые события должны быть исходами только тех испытаний, которые могут быть воспроизведены неограниченное число раз при одном и том же комплексе условий.

События должны обладать статистической устойчивостью (или устойчи- востью относительных частот). Это означает, что в различных сериях испытаний относительная частота события изменяется незначительно.

Число испытаний, в результате которых появляется событие А, должно быть достаточно велико.

Легко проверить, что свойства вероятности, вытекающие из классического определения, сохраняются и при статистическом определении вероятности.

Для практической деятельности необходимо уметь сравнивать события по степени возможности их наступления. Рассмотрим классический случай. В урне находится 10 шаров, 8 из них белого цвета, 2 черного. Очевидно, что событие «из урны будет извлечен шар белого цвета» и событие «из урны будет извлечен шар черного цвета» обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная количественная мера.

Количественной мерой возможности наступления события является вероятность . Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое.

Классическое определение вероятности связано с понятием благоприятствующего исхода. Остановимся на этом подробнее.

Пусть исходы некоторого испытания образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Такие исходы называют элементарными исходами , или случаями . При этом говорят, что испытание сводится к схеме случаев или «схеме урн », т.к. любую вероятностную задачу для подобного испытания можно заменить эквивалентной задачей с урнами и шарами разных цветов.

Исход называется благоприятствующим событию А , если появление этого случая влечет за собой появление события А .

Согласно классическому определению вероятность события А равна отношению числа исходов, благоприятствующих этому событию, к общему числу исходов , т.е.

, (1.1)

где Р(А) – вероятность события А ; m – число случаев благоприятствующих событию А ; n – общее число случаев.

Пример 1.1. При бросании игральной кости возможны шесть исходов – выпадение 1, 2, 3, 4, 5, 6 очков. Какова вероятность появления четного числа очков?

Решение. Все n = 6 исходов образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Событию А – «появление четного числа очков» – благоприятствуют 3 исхода (случая) – выпадение 2, 4 или 6 очков. По классической формуле вероятности события получаем

Р(А) = = .

Исходя из классического определения вероятности события, отметим ее свойства:

1. Вероятность любого события заключена между нулем и единицей, т.е.

0 ≤ Р (А ) ≤ 1.

2. Вероятность достоверного события равна единице.

3. Вероятность невозможного события равна нулю.

Как было сказано ранее, классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

Например, если допустить, что монета сплющена, то очевидно, что события «появление герба» и «появление решки» нельзя считать равновозможными. Поэтому формула для определения вероятности по классической схеме в данном случае неприменима.

Однако существует другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определениевероятности.

Статистической вероятностью события А называется относительная частота (частость) появления этого события в n произведенных испытаниях, т.е.

, (1.2)

где Р * (А) – статистическая вероятность события А ; w(A) – относительная частота события А ; m – число испытаний, в которых появилось событие А ; n – общее число испытаний.

В отличие от математической вероятности Р(А) , рассматриваемой в классическом определении, статистическая вероятность Р * (А) является характеристикой опытной , экспериментальной . Иначе говоря, статистической вероятностью события А называется число, относительно которого стабилизируется (устанавливается) относительная частота w(А) при неограниченном увеличении числа испытаний, проводимых при одном и том же комплексе условий.

Например, когда про стрелка говорят, что он попадает в цель с вероятностью 0,95, то это означает, что из сотни выстрелов, произведенных им при определенных условиях (одна и та же цель на том же расстоянии, та же винтовка и т.д.), в среднем бывает примерно 95 удачных. Естественно, не в каждой сотне будет 95 удачных выстрелов, иногда их будет меньше, иногда больше, но в среднем при многократном повторении стрельбы в тех же условиях этот процент попаданий будет оставаться неизменным. Цифра 0,95, служащая показателем мастерства стрелка, обычно очень устойчива , т.е. процент попаданий в большинстве стрельб будет для данного стрелка почти один и тот же, лишь в редких случаях отклоняясь сколько-нибудь значительно от своего среднего значения.

Еще одним недостатком классического определения вероятности (1.1 ), ограничивающим его применение, является то, что оно предполагает конечное число возможных исходов испытания. В некоторых случаях этот недостаток можно преодолеть, используя геометрическое определение вероятности, т.е. находя вероятность попадания точки в некоторую область (отрезок, часть плоскости и т.п.).

Пусть плоская фигура g составляет часть плоской фигуры G (рис. 1.1). На фигуру G наудачу бросается точка. Это означает, что все точки области G «равноправны» в отношении попадания на нее брошенной случайной точки. Полагая, что вероятность события А – попадания брошенной точки на фигуру g – пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G , ни от формы g , найдем

Рис. 1.1 Рис 1.2

Пример 1.2. Два студента условились встретиться в определенном месте между 10 и 11 часами дня. Пришедший первым ждет второго в течение 15 минут, после чего уходит. Найти вероятность того, что встреча состоится, если каждый студент наудачу выбирает момент своего прихода между 10 и 11 часами.

Решение. Обозначим моменты прихода в определенное место первого и второго студентов соответственно через x и y . В прямоугольной системе координат Oxy возьмем за начало отсчета 10 часов, а за единицу измерения – 1 час. По условию 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Этим неравенствам удовлетворяют координаты любой точки, принадлежащей квадрату OKLM со стороной, равной 1 (рис. 1.2). Событие А – встреча двух студентов – произойдет, если разность между x и не y превзойдет 1/4 часа (по абсолютной величине), т.е. |y x | ≤ 0,25.

Решение этого неравенства есть полоса x – 0,25 ≤ y x + 0,25, которая внутри квадрата G представляет заштрихованную область g . По формуле (1.3)

Как было сказано выше, классическое определение вероятности предполагает, что все элементарные исходы равновозможны. О равновозможности исходов опыта заключают в силу соображений симметрии. Задачи, в которых можно исходить из соображений симметрии, на практике встречаются редко. Во многих случаях трудно указать основания, позволяющие считать, что все элементарные исходы равновозможны. В связи в этим появилась необходимость введения еще одного определения вероятности, называемого статистическим. Предварительно введем понятие относительной частоты.

Относительной частотой события , или частотой, называется отношение числа опытов, в которых появилось это событие, к числу всех произведенных опытов. Обозначим частоту события А через W(A), тогда

где n – общее число опытов; m – число опытов, в которых появилось событие А .

При небольшом числе опытов частота события носит в значительной мере случайный характер и может заметно меняться от одной группы опытов к другой. Например, при каких-то десяти бросаниях монеты вполне возможно, что герб появится 2 раза (частота 0,2), при других десяти бросаниях мы вполне можем получить 8 гербов (частота 0,8). Однако при увеличении числа опытов частота события все более теряет свой случайный характер; случайные обстоятельства, свойственные каждому отдельному опыту, в массе взаимно погашаются, и частота проявляет тенденцию стабилизироваться, приближаясь с незначительными колебаниями к некоторой средней постоянной величине. Эту постоянную, являющуюся объективной числовой характеристикой явления, считают вероятностью данного события.

Статистическое определение вероятности: вероятностью события называют число, около которого группируются значения частоты данного события в различных сериях большого числа испытаний.

Свойство устойчивости частот, многократно проверенное экспериментально и подтверждающееся опытом человечества, есть одна из наиболее характерных закономерностей, наблюдаемых в случайных явлениях. Между частотой события и его вероятностью существует глубокая связь, которую можно выразить так: когда мы оцениваем степень возможности какого-либо события, мы связываем эту оценку с большей или меньшей частотой появления аналогичных событий на практике.

Геометрическая вероятность

Классическое определение вероятности предполагает, что число элементарных исходов конечно. На практике встречаются опыты, для которых множество таких исходов бесконечно. Для того чтобы преодолеть этот недостаток классического определения вероятности, состоящий в том, что оно неприменимо к испытаниям с бесконечным числом исходов, вводят геометрические вероятности – вероятности попадания точки в область.

Допустим, что на плоскости задана квадрируемая область G , т.е. область, имеющая площадь S G . В области G содержится область g площади S g . В область G наудачу брошена точка. Будем считать, что брошенная точка может попасть в некоторую часть области G с вероятностью, пропорциональной площади этой части и независящей от ее формы и расположения. Пусть событие А – «попадание брошенной точки в область g », тогда геометрическая вероятность этого события определяется формулой:

В общем случае понятие геометрической вероятности вводится следующим образом. Обозначим меру области g (длину, площадь, объем) через mes g , а меру области G – черезmes G ; пусть также А – событие «попадание брошенной точки в область g , которая содержится в области G ». Вероятность попадания в область g точки, брошенной в область G , определяется формулой

.

Задача . В круг вписан квадрат. В круг наудачу бросается точка. Какова вероятность того, что точка попадёт в квадрат?

Решение. Пусть радиус круга равен R , тогда площадь круга равна . Диагональ квадрата равна , тогда сторона квадрата равна , а площадь квадрата равна . Вероятность искомого события определяется как отношение площади квадрата к площади круга, т.е. .

Контрольные вопросы

1. Что называется испытанием (опытом)?

2. Что называется событием?

3. Какое событие называется а) достоверным? б) случайным? в) невозможным?

4. Какие события называются а) несовместными? б) совместными?

5. Какие события называются противоположными?ываются а) несовместными б) совместнымиывается случайным?

6. Что называется полной группой случайных событий?

7. Если события не могут произойти все вместе в результате испытания, то будут ли они попарно несовместными?

8. Образуют ли события А и полную группу?

9. Какие элементарные исходы благоприятствуют данному событию?

10. Какое определение вероятности называется классическим?

11. В каких пределах заключена вероятность любого события?

12. При каких условиях применяется классическая вероятность?

13. При каких условиях применяется геометрическая вероятность?

14. Какое определение вероятности называется геометрическим?

15. Что называется частотой события?

16. Какое определение вероятности называется статистическим?

Контрольные задания

1. Из букв слова «консерватория» наугад извлекается одна буква. Найти вероятность того, что эта буква гласная. Найти вероятность, что это буква «о».

2. На одинаковых карточках написаны буквы «о», «р», «с», «т». Найти вероятность того, что на разложенных наудачу в ряд карточках появится слово «трос».

3. В бригаде 4 женщины и 3 мужчины. Среди членов бригады разыгрывается 4 билета в театр. Какова вероятность того, что среди обладателей билетов окажется 2 женщины и 2 мужчины?

4. Подбрасывается два игральных кубика. Найти вероятность того, что сумма очков на обоих кубиках больше 6.

5. На пяти одинаковых карточках написаны буквы л, м, о, о, т. Какова вероятность того, что извлекая карточки по одной наугад, получим в порядке их выхода слово «молот»?

6. Из 10 билетов выигрышными являются 2. Чему равна вероятность того, что среди взятых наудачу пяти билетов один выигрышный?

7. Какова вероятность того, что в наудачу выбранном двузначном числе цифры таковы, что их произведение равно нулю.

8. Наудачу выбрано число, не превосходящее 30. Найти вероятность того, что это число является делителем 30.

9. Наудачу выбрано число, не превосходящее 30. Найти вероятность того, что это число кратно 3.

10. Наудачу выбрано число, не превосходящее 50. Найти вероятность того, что это число простое.