Биографии Характеристики Анализ

Пракикум "решение задач по комбинаторике". Методы решения комбинаторных задач

Комбинаторика - это раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов. Основы комбинаторики очень важны для оценки вероятностей случайных событий, т.к. именно они позволяют подсчитать принципиальновозможное количество различных вариантов развития событий.

Основная формула комбинаторики

Пусть имеется k групп элементов, причем i-я группа состоит из n i элементов. Выберем по одному элементу из каждой группы. Тогда общее число N способов, которыми можно произвести такой выбор, определяется соотношением N=n 1 *n 2 *n 3 *...*n k .

Пример 1. Поясним это правило на простом примере. Пусть имеется две группы элементов, причем первая группа состоит из n 1 элементов, а вторая - из n 2 элементов. Сколько различных пар элементов можно составить из этих двух групп, таким образом, чтобы в паре было по одному элементу от каждой группы? Допустим, мы взяли первый элемент из первой группы и, не меняя его, перебрали все возможные пары, меняя только элементы из второй группы. Таких пар для этого элемента можно составить n 2 . Затем мы берем второй элемент из первой группы и также составляем для него все возможные пары. Таких пар тоже будет n 2 . Так как в первой группе всего n 1 элемент, всего возможных вариантов будет n 1 *n 2 .

Пример 2. Сколько трехзначных четных чисел можно составить из цифр 0, 1, 2, 3, 4, 5, 6, если цифры могут повторяться?
Решение: n 1 =6 (т.к. в качестве первой цифры можно взять любую цифру из 1, 2, 3, 4, 5, 6), n 2 =7 (т.к. в качестве второй цифры можно взять любую цифру из 0, 1, 2, 3, 4, 5, 6), n 3 =4 (т.к. в качестве третьей цифры можно взять любую цифру из 0, 2, 4, 6).
Итак, N=n 1 *n 2 *n 3 =6*7*4=168.

В том случае, когда все группы состоят из одинакового числа элементов, т.е. n 1 =n 2 =...n k =n можно считать, что каждый выбор производится из одной и той же группы, причем элемент после выбора снова возвращается в группу. Тогда число всех способов выбора равно n k . Такой способ выбора в комбинаторики носит название выборки с возвращением.

Пример 3. Сколько всех четырехзначных чисел можно составить из цифр 1, 5, 6, 7, 8?
Решение. Для каждого разряда четырехзначного числа имеется пять возможностей, значит N=5*5*5*5=5 4 =625.

Рассмотрим множество, состоящие из n элементов. Это множество в комбинаторике называется генеральной совокупностью .

Число размещений из n элементов по m

Определение 1. Размещением из n элементов по m в комбинаторике называется любой упорядоченный набор из m различных элементов, выбранных из генеральной совокупности в n элементов.

Пример 4. Различными размещениями из трех элементов {1, 2, 3} по два будут наборы (1, 2), (2, 1), (1, 3), (3, 1), (2, 3),(3, 2). Размещения могут отличаться друг от друга как элементами, так и их порядком.

Число размещений в комбинаторике обозначается A n m и вычисляется по формуле:

Замечание: n!=1*2*3*...*n (читается: "эн факториал"), кроме того полагают, что 0!=1.

Пример 5 . Сколько существует двузначных чисел, в которых цифра десятков и цифра единиц различные и нечетные?
Решение: т.к. нечетных цифр пять, а именно 1, 3, 5, 7, 9, то эта задача сводится к выбору и размещению на две разные позиции двух из пяти различных цифр, т.е. указанных чисел будет:

Определение 2. Сочетанием из n элементов по m в комбинаторике называется любой неупорядоченный набор из m различных элементов, выбранных из генеральной совокупности в n элементов.

Пример 6 . Для множества {1, 2, 3}сочетаниями являются {1, 2}, {1, 3}, {2, 3}.

Число сочетаний из n элементов по m

Число сочетаний обозначается C n m и вычисляется по формуле:

Пример 7. Сколькими способами читатель может выбрать две книжки из шести имеющихся?

Решение: Число способов равно числу сочетаний из шести книжек по две, т.е. равно:

Перестановки из n элементов

Определение 3. Перестановкой из n элементов называется любой упорядоченный набор этих элементов.

Пример 7a. Всевозможными перестановками множества, состоящего из трех элементов {1, 2, 3} являются: (1, 2, 3), (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 2, 1), (3, 1, 2).

Число различных перестановок из n элементов обозначается P n и вычисляется по формуле P n =n!.

Пример 8. Сколькими способами семь книг разных авторов можно расставить на полке в один ряд?

Решение: эта задача о числе перестановок семи разных книг. Имеется P 7 =7!=1*2*3*4*5*6*7=5040 способов осуществить расстановку книг.

Обсуждение. Мы видим, что число возможных комбинаций можно посчитать по разным правилам (перестановки, сочетания, размещения) причем результат получится различный, т.к. принцип подсчета и сами формулы отличаются. Внимательно посмотрев на определения, можно заметить, что результат зависит от нескольких факторов одновременно.

Во-первых, от того, из какого количества элементов мы можем комбинировать их наборы (насколько велика генеральная совокупность элементов).

Во-вторых, результат зависит от того, какой величины наборы элементов нам нужны.

И последнее, важно знать, является ли для нас существенным порядок элементов в наборе. Поясним последний фактор на следующем примере.

Пример 9. На родительском собрании присутствует 20 человек. Сколько существует различных вариантов состава родительского комитета, если в него должны войти 5 человек?
Решение: В этом примере нас не интересует порядок фамилий в списке комитета. Если в результате в его составе окажутся одни и те же люди, то по смыслу для нас это один и тот же вариант. Поэтому мы можем воспользоваться формулой для подсчета числа сочетаний из 20 элементов по 5.

Иначе будут обстоять дела, если каждый член комитета изначально отвечает за определенное направление работы. Тогда при одном и том же списочном составе комитета, внутри него возможно 5! вариантов перестановок , которые имеют значение. Количество разных (и по составу, и по сфере ответственности) вариантов определяется в этом случае числом размещений из 20 элементов по 5.

Задачи для самопроверки
1. Сколько трехзначных четных чисел можно составить из цифр 0, 1, 2, 3, 4, 5, 6, если цифры могут повторяться?

2. Сколько существует пятизначных чисел, которые одинаково читаются слева направо и справа налево?

3. В классе десять предметов и пять уроков в день. Сколькими способами можно составить расписание на один день?

4. Сколькими способами можно выбрать 4 делегата на конференцию, если в группе 20 человек?

5. Сколькими способами можно разложить восемь различных писем по восьми различным конвертам, если в каждый конверт кладется только одно письмо?

6. Из трех математиков и десяти экономистов надо составить комиссию, состоящую из двух математиков и шести экономистов. Сколькими способами это можно сделать?

Задача 1. Восемь студентов обменялись рукопожатиями. Сколько было рукопожатий?

Решение. В рукопожатии участвует «подмножество», состоящее из двух студентов (m=2), тогда как всё множество» студентов составляет 8 человек (n=8). Так как в процессе рукопожатия порядок не важен, выбираем формулу для числа сочетаний:

Задача. Сколькими способами можно составить трехцветный полосатый флаг из пяти различных по цвету отрезков материи?

Решение . Порядок важен, так как перестановка материи внутри трехцветного флга обозначает разные страны. Поэтому выбираем формулу числа размещений без повторений, где множество отрезков материи n = 5, а подмножество цветов m=3:

Задача 2. Сколько словарей надо издать, чтобы можно было выполнять переводы с любого из шести языков на любой из них?

Решение . Множество включает 6 языков n=6. Поскольку перевод есть отношение между двумя языками, то m=2, причем порядок важен, так как, например, словари русско-английский и англо-русский имеют различное применение. Поэтому выбираем размещения без повторений:

Задача 3. Сколько имеется вариантов составления расписания на понедельник, если предметов у студентов 9, а в понедельник 4 пары занятий, и предметы не повторяются?

Решение . а) Для студентов порядок не важен, поэтому выбираем формулу числа сочетаний:

б) Для преподавателей порядок важен, поэтому выбираем формулу размещений без повторений:

Задача 4. Сколькими способами можно расставить на книжной полке девять книг, среди которых есть трехтомник А.С. Пушкина?

Решение .

Так как три тома, входящие в трехтомник, должны стоять рядом, причем по возрастанию номера славе направо, то рассматриваем их как один элемент данного множества, в котором имеется еще 6 элементов. Поэтому выбираем перестановки без повторений во множестве, содержащем семь элементов:

Р 7 = 7! = 5040

Задача 5. Сколькими способами можно назначить в группе из 30 человек трех дежурных?

Решение .

а) Если их роль в процессе дежурства одинакова, то порядок не важен, поэтому выбираем сочетания без повторений:

С 3 30 = 30! / 3!27! = 4060

б) Если порядок важен, т.е. во время дежурства их функциональные обязанности различны, то по формуле размещения без повторений имеем:

А 3 30 = 30! / 27! = 24360

Задача 6. Сколько существует шестизначных телефонных номеров, у которых: а) возможны любые цифры; б) все цифры различные?

Решение.

а) 1. Так как в шестизначном наборе телефонного номера возможны любые цифры, то на каждом из шести мест может встретиться любая из 10-ти цифр от 0 до 9. Необходимо из всех возможных десяти цифр выбрать лишь те шесть, которые будут испльзованы для для шастизначных телефонных номеров. Поскольку в записи телефонных номеров порядок расположения цифр важен, по формуле размещений с повторениями имеем:

А 10 6 = 10 6 = 1000000

2. Как известно, не бывает шестизначных номеров, начинающихся с нуля, поэтому надо подсчитать их количество и вычесть его из общего числа комбинаций. Число номеров, первая цифра у которых 0, найдем по формуле размещений с повторениями, «зафиксировав» ноль т.е. на каждом из пяти остальных возможных мест может встретиться любая из десяти цифр от
0 до 9. Тогда число таких комбинаций:

А 10 5 = 10 5 = 100000

3. Общее число шестизначных телефонных номеров, у которых могут быть любые, в том числе и повторяющиеся, цифры, равно разности:

А 10 6 – А 10 5 = 10 6 – 10 5 = 1000000 – 100000 = 900000

б) 1. Пусть теперь в шестизначном наборе все цифры различные. Необходимо из всех возможных десяти цифр выбрать лишь те шесть, которые используются для шестизначных телефонных номеров, причем никакая цифра не повторяется. Тогда по формуле размещений без повторений имеем:

А 10 6 = 10! / (10 – 6)! = 5х6х7х8х9х10 = 151200

2. Поскольку шестизначных номеров, начинающихся с нуля, не бывает, надо посчитать их количество и вычесть его из общего числа комбинаций. Число номеров, первая цифра у которых 0, найдем по формуле размещений без повторений, «зафиксировав ноль», т.е. на каждом из пяти оставшихся возможных мест могут встретиться цифры от 0 до 9. Тогда число таких комбинаций найдем по формуле размещений без повторений. Имеем:

А 10 5 = 10! / (10-5)! = 6х7х8х9х10 = 30240

3. Общее число шестизначных телефонных номеров, у которых не может быть повторяющихся цифр, равно разности:

А 10 6 – А 10 5 = 10 6 – 10 5 = 151200 – 30240 = 120960

Задача 7. Сколькими способами можно выделить делегацию в составе трех человек, выбирая их среди четырех супружеских пар, если:

а) в состав делегации входят любые трое из данных восьми человек;

б) делегация должна состоять из двух женщин и одного мужчины;

в делегацию не входят члены одной семьи?

Решение.

а) Порядок не важен:

С 8 3 = 8! / 3! 5! = 56

б) Выберем двух женщин из имеющихся 4-х С 4 2 способами и одного мужчину из 4-х С 4 1 способами. По правилу произведения (и мужчина, и две женщины) имеем С 4 2 х С 4 1 = 24.

в) Из четырех семей выбираем 3-х членов делегации четырьмя способами (т.к. С 4 3 = 4! / 3!1! = 4). Но в каждой семье имеется по два способа выбора члена делегации. По правилу произведения С 4 3 х2х2х2 = 4х8 =32.

Задача 8. В колледже учится 2000 студентов. Можно ли утверждать, что хотя бы двое из них имеют одинаковые инициалы и имени, и фамилии?

Решение.

В русском алфавите 33 буквы, из них ъ, ь, ы, й не могут быть использованы, поэтому n = 33-4 = 29. Каждая из 29 букв может быть инициалом и имени,и фамилии. По правилу произведения 29х29 = 841 < 2000. Значит может быть лишь 841 различных вариантов, и среди 2000 студентов обязательно будут совпадения.

В последние годы все больше внимания уделяется проблемам развивающего обучения. Небывалый рост объема информации требует от современного человека таких качеств, как инициативность, изобретательность, предприимчивость, способность быстро и безошибочно принимать решения. А это невозможно без умения работать творчески, самостоятельно. Если в недавнем прошлом основной задачей, стоящей перед учителем, была передача ученикам определенной суммы знаний, то в настоящее время на первый план выдвигается задача развития учащихся в процессе обучения. Обучение математике должно быть ориентировано не столько на собственно математическое образование, в узком смысле этого слова, сколько на образование с помощью математики.

Развитие математического мышления и творческих способностей осуществляется в ходе размышлений учащихся над задачами. Самостоятельная деятельность учащихся по решению задач занимает главное место в обучении математике. Умение решать задачи – критерий успешности в учебе. Очень важно показать, как обычную жизненную ситуацию можно описать математической моделью.

Материалы разработки могут быть использованы как в рамках урока (5 – 7 класс), так и на занятиях математического кружка или факультатива.

Целью разработки является повышение математической культуры учащихся, пробуждение и развитие устойчивого интереса к математике, расширение и углубление знаний.

Основные задачи, решаемые внедрением разработки – это знакомство на популярном уровне с комбинаторикой – разделом дискретной математики, который приобрел сегодня серьезное значение в связи с развитием теории вероятностей, математической логики, информационных технологий . Учащиеся должны получить представление о том, что такое комбинаторная задача, познакомиться с методами и правилами ее решения.

На этом богатом материале повышается уровень математического и логического мышления учащихся, развиваются навыки исследовательской деятельности .

Пояснительная записка

Занятия по программе «Развивающее обучение на уроках математики» проводятся мною систематически в рамках учебного времени. Такие уроки я провожу в начале и в конце четверти, чтобы активизировать деятельность учащихся, пробудить и развить интерес к математике. Кроме этого, одну – две нестандартные задачи стараюсь рассмотреть на каждом уроке, наряду с программным материалом, развивая тем самым в учениках «вкус» к познанию. При подготовке к подобным занятиям использую материалы пособия «Математика: дополнительные главы – 5 класс», а также задания из УМК и.

План урока

· Организационный момент

· Актуализация знаний учащихся

· Исторический экскурс (сообщение ученика)

· Теоретический материал

· Решение задач (с элементами самопроверки)

· Постановка домашнего задания, повторение теории

· Самостоятельная работа (взаимопроверка)

· Подведение итогов урока

(раздаточный материал ) ПРИЛОЖЕНИЕ 1

К а р т а у р о к а

«Считай несчастным тот день или тот час, в который ты не усвоил ничего нового и ничего не прибавил к своему образованию»,

«Учиться нелегко, но интересно». Ян Амос Коменский (),

чешский педагог, писатель

тема урока ________________________________

Комбинаторика – это раздел математики, посвященный решению задач выбора и расположения заданных элементов по заданным правилам.

Правило суммы

(выбор одного элемента)

А – m способов

В – n способов

А В – (m+n) способов

Например: 5 яблок, 4 груши.

Выбор яблока или груши:

5 + 4 = 9 способов

https://pandia.ru/text/78/021/images/image003_105.jpg" width="153" height="177 src=">

Правило произведения

(выбор пары,

нескольких элементов)

А – m способов

В – n способов

А В – (m·n) способов

Например: 2 конверта, 3 открытки.

Выбор конверта с открыткой:

2 · 3 = 6 способов

https://pandia.ru/text/78/021/images/image006_71.jpg" width="143" height="90 src=">

0 " style="margin-left:40.85pt;border-collapse:collapse;border:none">

__________________

__________________________________

№ 5. 1, 2, 3, 4, 5

__________________

__________________________________

№ 6. 0, 1, 2, 3

__________________

__________________________________

__________________

___________________________________

№ 7. 1, 3, 5, 7, 9; меньше 400

__________________

__________________________________

№ 8. _______________________________________________________________________________________________________________

______________________________________

№ 9. ____________________________________________________________________________________________________________________________________________________________________

_________________________________________

_________________________________________

_____________________________________________________________________________________________________________________________________________________________________________________________________________

_________________________________________

(раздаточный материал )

Задачи к уроку «Знакомьтесь, комбинаторика!»

1.

2. У одного знаменитого мушкетера в гардеробе имеются 3 элегантных шляпы, 4 чудных плаща и 2 пары отличных сапог. Сколько вариантов костюма ему можно составить?

3.

4.

5.

6. Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3, если цифры: а) могут повторяться; б) не могут повторяться?

7.

ПРИЛОЖЕНИЕ 2

9. Сколькими способами можно разместить 6 человек за столом, на котором поставлено 6 приборов?

10.

11.

12. Сколько различных чисел, меньших миллиона, можно записать с помощью цифр 8 и 9?

«Переменка»

Найдите закономерность построения

последовательности 111, 213, 141,

516, 171, 819, 202, 122…

Домашнее задание

1) В 5 «б» классе 26 учеников. Сколькими способами можно выбрать старосту класса и его заместителя? старосту, заместителя и ответственного за дежурство?

2) В магазине купили 9 красных, 10 зеленых и 7 желтых воздушных шаров . Сколькими способами можно взять один любой шар? зеленый и желтый шар? красный или желтый?

3 шара разного цвета?

2 шара разного цвета? (рассмотреть

все возможные варианты)

Актуализация знаний.

Повторение пройденного (решение задач методом перебора).

«Счет и внимание – основы порядка в голове»

· Сколько различных двузначных чисел можно составить из цифр 5 и 0

(без повтора)? 1 число (50)

· Сколько различных двузначных чисел можно составить из цифр 3 и 5

(повтор допускается)? 4 числа (33, 55, 53, 35)

· Сколько различных трехзначных чисел можно составить из цифр 3 и 5

(повтор допускается)? 8 чисел (333, 555, 355, 533, 335, 553, 353, 535)

· Сколько различных трехзначных чисел можно составить из цифр 3, 8, 7

(без повтора)? 6 чисел (387, 378, 837, 873, 738, 783)

Используя количество полученных в каждом задании чисел, составить название темы сегодняшнего урока и вписать ее в карту урока: «Знакомьтесь, ___________________ !»

1 число – «комби»

2 числа – «вичи»

3 числа – «рум»

4 числа – «нато»

5 чисел – «тема»

6 чисел – «ка»

7 чисел – «аза»

8 чисел – «ри»

9 чисел – «немо»

10 чисел – «хор»

Ответ: «комбинаторика»

В математике существует немало задач, в которых требуется из имеющихся элементов составить различные наборы, подсчитать количество всевозможных комбинаций элементов, образованных по определенному правилу. Решая подобные задачи, приходится перебирать различные варианты, переставлять заданные элементы, комбинировать их. Такие задачи называются комбинаторными, а раздел математики, занимающийся решением этих задач, называется комбинаторикой.

Исторический экскурс (сообщение учащегося)

С комбинаторными задачами люди имели дело еще в глубокой древности, когда, например, выбирали наилучшее расположение воинов во время охоты, придумывали узоры на одежде или посуде. В дальнейшем появились игры, требовавшие умения планировать, рассчитывать свои действия, продумывать возможные комбинации. Приспособления для таких игр археологи находили в древних захоронениях, например, в пирамиде египетского фараона Тутанхамона (II век до н. э.). А позже появились нарды, шашки, шахматы.

Долгие века комбинаторика развивалась внутри арифметики, алгебры и геометрии. Так, древнегреческие ученые большое внимание уделяли и комбинаторике чисел – составление и изучение магических квадратов, и геометрической комбинаторике – разрезанию фигур.

Как ветвь математики комбинаторика возникла только в XVII веке. Гражданин Франции Шевалье Де Марэ любил изобретать различные игры, играя в которые, получал очень интересные результаты. Например, однажды он придумал такую игру: бросает 4 кости, выигрывает тот, у кого на одной есть шестерка. Но с ним очень быстро перестали играть, так как он слишком часто выигрывал. В другой раз Шевалье придумал такую игру: бросает две кости несколько раз, выигрывает, если хотя бы раз выпало две шестерки. Однако вскоре он сам бросил играть, так как стал часто проигрывать. Такой исход дела очень удивил Шевалье де Марэ, и он обратился к двум крупнейшим математикам Франции того времени – Блезу Паскалю и Пьеру Ферма с вопросом, как можно объяснить эти удачи и проигрыши в игре, а также, как правильно делать ставки в таких и в аналогичных играх.

Решая эту задачу, Блез Паскаль и Пьер Ферма разработали начало двух ветвей математики: комбинаторики и теории вероятности. Впоследствии этими науками занимались многие великие математики тех времен: , Якоб Бернулли, Леонард Эйлер и др.

Использование комбинаторики в настоящее время очень разнообразно. Одно из них – кодирование и расшифровка текстов (шифр появился еще в средние века). В биологии комбинаторика служит для подсчета клеточных структур ДНК и РНК, в физике – для описания свойств кристаллов. Также комбинаторика широко используется и в химии.

Теоретический материал.

Комбинаторика – это раздел математики, посвященный решению задач выбора и расположения заданных элементов по заданным правилам (см. карту урока).

Обычный вопрос в комбинаторных задачах – это «Сколькими способами …?» или

«Сколько вариантов …?»

Комбинаторные задачи можно решать несколькими способами: методом перебора, перестановок (с ним мы уже знакомы), использование определенных правил комбинаторики (с ними мы познакомимся сегодня на уроке) и с помощью построения так называемого «дерева вариантов» (о нем мы поговорим позже).

Итак, начнем знакомиться с правилами комбинаторики – это правила суммы и произведения.

Правило суммы:

если некоторый элемент А можно выбрать m способами, а элемент В можно выбрать n способами, то выбор «либо А, либо В» можно сделать (m + n) способами. Например, если вам предлагают 5 яблок и 4 груши, то выбрать один плод можно 5 + 4 = 9 способами (см. карту урока).

а) В вазе 6 яблок, 5 груш и 4 сливы. Сколько вариантов выбора одного плода?

(15 вариантов)

б) В магазине продаются 3 алые, 2 белые и 4 желтые розы. Сколькими способами можно купить один цветок? (9 способов)

Еще раз обращаем внимание на то, что мы выбираем лишь один из предложенных элементов.

Правило произведения:

если некоторый элемент А можно выбрать m способами, а элемент В можно выбрать n способами, то выбор «А и В» можно сделать (m · n) способами. Например, если вам предлагают 2 конверта и 3 открытки, то составить пару (конверт и открытка) можно 3 · 2 = 6 способами (см. карту урока).

Устно решите следующие задачи:

а) Сколько танцевальных пар можно составить из 8 юношей и 6 девушек? (48 пар)

б) В столовой имеются в продаже 4 первых блюда и 7 вторых. Сколько различных вариантов обеда из двух блюд можно заказать? (28 вариантов)

Обращаем внимание на то, что мы выбираем пару элементов из предложенных множеств.

Решение задач

Учащиеся работают на бланках карты урока в соответствующем разделе, тексты задач на отдельных листах у каждого ученика. Список задач можно изменять, добавляя или убирая некоторые вопросы в зависимости от уровня подготовки класса. Можно разбить задачи по уровню сложности, некоторые оставить для самостоятельного решения. В некоторых задачах полезно подчеркнуть, что они уже ранее решались методом перебора, а сегодня – второй способ их решения. Осуществить на этом этапе дифференцированный подход. Ввести элементы самостоятельной работы с последующей самопроверкой.

1. Сколькими способами можно выбрать гласную и согласную буквы в слове «платок»? (Согласных букв в слове – 4, гласных букв – 2, значит, по правилу умножения, вариантов выбора пары - 4 · 2 = 8.)

2. У одного довольно знаменитого мушкетера в гардеробе имеются 3 элегантных шляпы,

4 чудных плаща и 2 пары отличных сапог. Сколько вариантов костюма ему можно со -

ставить? (Выбираем по одному элементу из трех множеств, то есть, составляем

«тройку», значит, по правилу умножения получаем 3 · 4 · 2 = 24 варианта костюма.)

3. В футбольной команде 11 человек. Необходимо выбрать капитана и его заместителя. Сколькими способами можно это сделать? (Всего 11 человек, значит, капитана можно выбрать 11-ю способами, осталось 10 футболистов, из которых можно выбрать заместителя капитана. Итак, пару, капитана и его заместителя, можно выбрать 11 · 10 = 110 способами.)

4. Сколько различных двузначных чисел можно составить, используя цифры 1, 4, 7, если допустить повторение цифр? (Должно получиться двузначное число – всего две позиции. На первую позицию можно поставить любую из предложенных цифр – 3 варианта выбора, на вторую позицию, с учетом возможности повтора цифры, тоже 3 варианта выбора. Значит, пару цифр мы составляем 3 · 3 = 9 способами, т. е. получится 9 чисел.

Запись решения:

3 ∙ 3 = 9 чисел.

Такая запись решения используется во всех подобных задачах при работе на бланках карты урока.)

5. Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что ни одна цифра не повторяется? (Трехзначное число: первая позиция – 5 вариантов цифр, вторая позиция, с учетом исключения повторов цифр, - 4 варианта, третья позиция – 3 варианта. Получаем 5 · 4 · 3 = 60 чисел.)

6. Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3, если цифры:

а) могут повторяться; б) не могут повторяться? (а) Двузначное число, как и любое мно-

гозначное, не может начинаться с 0, поэтому на первую позицию можно поставить

лишь 3 из имеющихся 4-х цифр, 3 варианта выбора, на вторую позицию, с учетом по-

втора, можно поставить любую из цифр – 4 варианта выбора. Поэтому получается

3 · 4 = 12 чисел; б) Первая позиция – 3 варианта, вторая позиция – 3 варианта, т. к.

повтор исключается. Получаем 3 · 3 = 9 чисел.)

7. Сколько различных трехзначных чисел, меньших 400, можно составить из цифр 1, 3, 5, 7, 9, если любая цифра может быть использована только один раз? (Трехзначное число < 400, значит, на первую позицию можно поставить лишь 1 или 3 – 2 варианта выбора, на вторую, исключая повтор, – 4 варианта цифр из 5-ти, на третью позицию – 3 варианта. Получается 2 · 4 · 3 = 24 числа.)

8. Шифр для сейфа состоит из пяти различных цифр. Сколько различных вариантов составления шифра? (5 · 4 · 3 · 2 · 1 = 120 вариантов.)

9. Сколькими способами можно разместить 6 человек за столом, на котором поставлено

6 приборов? (6 · 5 · 4 · 3 · 2 · 1 = 720 способов.)

10. В пятом классе изучаются 8 предметов. Сколько различных вариантов расписания можно составить на понедельник, если в этот день должно быть 5 уроков и все уроки – разные? (8 · 7 · 6 · 5 · 4 = 6720 вариантов.)

11. Сколько вариантов семизначных телефонных номеров можно составить, если исключить из них номера, начинающиеся с 0 и 9? (Используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – всего 10 цифр, исключая по условию 0 и 9 в начале номера, с учетом возможности повтора, получаем 8 · 10 · 10 · 10 · 10 · 10 · 10 = 8 номеров.)

12. Сколько различных чисел, меньших миллиона, можно записать с помощью цифр

8 и 9? (Однозначных чисел – 2, двузначных чисел - 2 · 2 = 4, трехзначных чисел –

2 · 2 · 2 = 8, четырехзначных чисел – 16, пятизначных чисел – 32, шестизначных

чисел – 64. А всего - 2 + 4 + 8 + 16 + 32 + 64 = 126 чисел.)

«Переменка»

Найдите закономерность построения последовательности 111, 213, 141, 516, 171, 819, 202, 122… (В данной последовательности надо иначе расставить запятые, и получим 11, 12, 13, 14, 15…)

Постановка домашнего задания (см. приложение 2) , повторение теоретического материала (правила сложения и умножения, условия выбора элементов).

Самостоятельная работа (с последующей взаимопроверкой в парах)

· Выбор одного любого элемента из предложенных множеств выполняется по правилу ______________________. Выбор пары и более элементов из множеств происходит по правилу ______________________.

· В вазе стоят 5 красных, 3 белых и 3 желтых тюльпана. Один цветок из вазы можно выбрать _______ способами, три цветка разного цвета ________ способами.

· Сколько различных трехзначных чисел можно составить, используя цифры 3 и 5, если их повтор допускается? ____________________________________________________________

· В четверг в первом классе должно быть 4 урока: письмо, чтение, математика, физкультура. Сколько различных вариантов расписания на этот день можно предложить?

_________________________________________________________________________________

Ответы: сложения, умножения, 11, 45, 2 · 2 · 2 =8, 4 · 3 · 2 · 1 = 24.

Взаимопроверка, выставление оценок, обсуждение результатов.

Подведение итогов урока

На этом этапе урока, помимо традиционной беседы о том, какие задачи ставились, насколько успешно с ними справились, следует вернуться к эпиграфу урока (см. бланк карты урока) и поразмышлять о словах.

Кроме того, ученикам предлагается ответить на 3 блиц - вопроса:

· На сегодняшнем уроке мне было … (легко, обычно, трудно)

· Новый материал я … (усвоил и могу применить, усвоил и затрудняюсь применить, не усвоил)

· Моя самооценка за урок …

Ответы на приведенные вопросы можно не подписывать, т. к. их основная функция помочь учителю проанализировать урок и его результаты.

П о с л е с л о в и е

На следующем уроке предполагается отработка пройденного материала на этапе устной работы, введения понятия «дерево возможных вариантов» как еще одного способа решения комбинаторных задач, систематизация изученных методов решения задач, практикум по решению задач различными способами, решение задач повышенного уровня, контроль знаний.

Комбинаторика – это раздел математики, посвящённый решению задач выбора и расположения элементов некоторого множества в соответствии с заданными правилами. Комбинаторика изучает комбинации и перестановки предметов, расположение элементов, обладающее заданными свойствами. Обычный вопрос в комбинаторных задачах: сколькими способами….

К комбинаторным задачам относятся также задачи построения магических квадратов, задачи расшифровки и кодирования.

Рождение комбинаторики как раздела математики связано с трудами великих французских математиков 17 века Блеза Паскаля (1623–1662) и Пьера Ферма (1601–1665) по теории азартных игр. Эти труды содержали принципы определения числа комбинаций элементов конечного множества. С 50-х годов 20 века интерес к комбинаторике возрождается в связи с бурным развитием кибернетики.

Основные правила комбинаторики – это правило суммы и правило произведения .

  • Правило суммы

Если некоторый элемент А можно выбрать n способами, а элемент В можно выбрать m способами, то выбор «либо А, либо В» можно сделать n + m способами.

Например, Если на тарелке лежат 5 яблок и 6 груш, то один плод можно выбрать 5 + 6 = 11 способами.

  • Правило произведения

Если элемент А можно выбрать n способами, а элемент В можно выбрать m способами, то пару А и В можно выбрать n m способами.

Например, если есть 2 разных конверта и 3 разные марки, то выбрать конверт и марку можно 6 способами (2 3 = 6).

Правило произведения верно и в том случае, когда рассматривают элементы нескольких множеств.

Например, если есть 2 разных конверта, 3 разные марки и 4 разные открытки, то выбрать конверт, марку и открытку можно 24 способами (2 3 4 = 24).

Произведение всех натуральных чисел от 1 до n включительно называется n – факториалом и обозначается символом n!

n! = 1 2 3 4 … n.

Например, 5! = 1 2 3 4 5 = 120.

Например, если есть 3 шарика – красный, синий и зелёный, то выложить их в ряд можно 6 способами (3 2 1 = 3! = 6).

Иногда комбинаторная задача решается с помощью построения дерева возможных вариантов .

Например, решим предыдущую задачу о 3-х шарах построением дерева.

Практикум по решению задач по комбинаторике.

ЗАДАЧИ и решения

1. В вазе 6 яблок, 5 груш и 4 сливы. Сколько вариантов выбора одного плода?

Ответ: 15 вариантов.

2. Сколько существует вариантов покупки одной розы, если продают 3 алые, 2 алые и 4 жёлтые розы?

Ответ: 9 вариантов.

3. Из города А в город В ведут пять дорог, а из города В в город С ведут три дороги. Сколько путей, проходящих через В, ведут из А в С?

Ответ: 15 путей.

4. Сколькими способами можно составить пару из одной гласной и одной согласной букв слова «платок»?

гласные: а, о – 2 шт.
согласные: п, л, т, к – 4 шт.

Ответ: 8 способами.

5. Сколько танцевальных пар можно составить из 8 юношей и 6 девушек?

Ответ: 48 пар.

6. В столовой есть 4 первых блюда и 7 вторых. Сколько различных вариантов обеда из двух блюд можно заказать?

Ответ: 28 вариантов.

7. Сколько различных двузначных чисел можно составить, используя цифры 1, 4 и 7, если цифры могут повторяться?

1 цифра – 3 способа
2 цифра – 3 способа
3 цифра – 3 способа

Ответ: 9 различных двузначных чисел.

8. Сколько различных трёхзначных чисел можно составить, используя цифры 3 и 5, если цифры могут повторяться?

1 цифра – 2 способа
2 цифра – 2 способа
3 цифра – 2 способа

Ответ: 8 различных чисел.

9. Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3, если цифры могут повторяться?

1 цифра – 3 способа
2 цифра – 4 способа

Ответ: 12 различных чисел.

10. Сколько существует трёхзначных чисел, у которых все цифры чётные?

Чётные цифры – 0, 2, 4, 6, 8.

1 цифра – 4 способа
2 цифра – 5 способов
3 цифра – 5 способов

Ответ: существует 100 чисел.

11. Сколько существует четных трёхзначных чисел?

1 цифра – 9 способов (1, 2, 3, 4, 5, 6, 7, 8, 9)
2 цифра – 10 способов (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
3 цифра – 5 способов (0, 2, 4, 6, 8)

9 10 5 = 450

Ответ: существует 450 чисел.

12.Сколько различных трёхзначных чисел можно составить из трёх различных цифр 4, 5, 6?

1 цифра – 3 способа
2 цифра – 2 способа
3 цифра – 1 способ

Ответ: 6 различных чисел.

13. Сколькими способами можно обозначить вершины треугольника, используя буквы А, В, С, D?

1 вершина – 4 способа
2 вершина – 3 способа
3 вершина – 2 способа

Ответ: 24 способа.

14. Сколько различных трёхзначных чисел можно составить из цифр 1, 2, 3, 4, 5,при условии, что ни одна цифра не повторяется?

1 цифра – 5 способов
2 цифра – 4 способа
3 цифра – 3 способа

Ответ: 60 различных чисел.

15. Сколько различных трёхзначных чисел, меньших 400, можно составить из цифр 1, 3, 5, 7, 9, если любая из этих цифр может быть использована только один раз?

1 цифра – 2 способа
2 цифра – 4 способа
3 цифра – 3 способа

Ответ: 24 различных числа.

16. Сколькими способами можно составить флаг, состоящий из трёх горизонтальных полос различных цветов, если имеется материал шести цветов?

1 полоса – 6 способов
2 полоса – 5 способов
3 полоса – 4 способа

Ответ: 120 способов.

17. Из класса выбирают 8 человек, имеющих лучшие результаты по бегу. Сколькими способами можно составить из них команду из трёх человек для участия в эстафете?

1 человек – 8 способов
2 человек – 7 способов
3 человек – 6 способов

Ответ: 336 способов.

18. В четверг в первом классе должно быть четыре урока: письмо, чтение, математика и физкультура. Сколько различных вариантов расписания можно составить на этот день?

1 урок – 4 способа
2 урок – 3 способа
3 урок – 2 способа
4 урок – 1 способ

4 3 2 1 = 24

Ответ: 24 варианта.

19. В пятом классе изучаются 8 предметов. Сколько различных вариантов расписания можно составить на понедельник, если в этот день должно быть 5 уроков и все уроки разные?

1 урок – 8 вариантов
2 урок – 7 вариантов
3 урок – 6 вариантов
4 урок – 5 вариантов
5 урок – 4 варианта

8 7 6 5 4 = 6720

Ответ: 6720 вариантов.

20. Шифр для сейфа составляется из пяти различных цифр. Сколько различных вариантов составления шифра?

1 цифра – 5 способов
2 цифра – 4 способа
3 цифра – 3 способа
4 цифра – 2 способа
5 цифра – 1 способ

5 4 3 2 1 = 120

Ответ: 120 вариантов.

21. Сколькими способами можно разместить 6 человек за столом, на котором поставлено 6 приборов?

6 5 4 3 2 1 = 720

Ответ: 720 способов.

22. Сколько вариантов семизначных телефонных номеров можно составить, если исключить из них номера, начинающиеся с нуля и 9?

1 цифра – 8 способов
2 цифра – 10 способов
3 цифра – 10 способов
4 цифра – 10 способов
5 цифра – 10 способов
6 цифра – 10 способов
7 цифра – 10 способов

8 10 10 10 10 10 10 = 8.000.000

Ответ: 8.000.000 вариантов.

23. Телефонная станция обслуживает абонентов, у которых номера телефонов состоят из 7 цифр и начинаются с 394. На сколько абонентов рассчитана эта станция?

№ телефона 394

10 10 10 10 = 10.000

Ответ: 10.000 абонентов.

24. Имеется 6 пар перчаток различных размеров. Сколькими способами можно выбрать из них одну перчатку на левую руку и одну перчатку на правую руку так, чтобы эти перчатки были различных размеров?

Левые перчатки – 6 способов
Правые перчатки – 5 способов (6 перчатка того же размера, что и левая)

Ответ: 30 способов.

25 . Из цифр 1, 2, 3, 4, 5 составляют пятизначные числа, в которых все цифры разные. Сколько таких чётных чисел?

5 цифра – 2 способа (две чётные цифры)
4 цифра – 4 способа
3 цифра – 3 способа
2 цифра – 2 способа
1 цифра – 1 способ

2 4 3 2 1 = 48

Ответ: 48 чётных чисел.

26. Сколько существует четырёхзначных чисел, составленных из нечётных цифр и делящихся на 5?

Нечётные цифр – 1, 3, 5, 7, 9.
Из них делятся на 5 – 5.

4 цифра – 1 способ (цифра 5)
3 цифра – 4 способа
2 цифра – 3 способа
1 цифра – 2 способа

1 4 3 2 = 24

Ответ: 24 числа.

27. Сколько существует пятизначных чисел, у которых третья цифра – 7, последняя цифра – чётная?

1 цифра – 9 способов (все, кроме 0)
2 цифра – 10 способов
3 цифра – 1 способ (цифра 7)
4 цифра – 10 способов
5 цифра – 5 способов (0, 2, 4, 6, 8)

9 10 1 10 5 = 4500

Ответ: 4500 чисел.

28. Сколько существует шестизначных чисел, у которых вторая цифра – 2, четвёртая – 4, шестая – 6, а все остальные – нечётные?

1 цифра – 5 вариантов (из 1, 3, 5, 7, 9)
2 цифра – 1 вариант (цифра 2)
3 цифра – 5 вариантов
4 цифра – 1 вариант (цифра 4)
5 цифра – 5 вариантов
6 цифра – 1 вариант (цифра 6)

5 1 5 1 5 1 = 125

Ответ: 125 чисел.

29.Сколько различных чисел, меньших миллиона, можно записать с помощью цифр 8 и 9?

Однозначных – 2
Двузначных – 2 2 = 4
Трёхзначных – 2 2 2 = 8
Четырёхзначных – 2 2 2 2 =16
Пятизначных – 2 2 2 2 2 = 32
Шестизначных – 2 2 2 2 2 2 = 64

Всего: 2 + 4 + 8 + 16 + 32 + 64 = 126

Ответ: 126 чисел.

30. В футбольной команде 11 человек. Нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?

Капитан – 11 способов
Заместитель – 10 способов

Ответ: 110 способов.

31.В классе учатся 30 человек. Сколькими способами из них можно выбрать старосту и ответственного за проездные билеты?

Староста – 30 способов
Ответ. за билеты – 29 способов

Ответ: 870 способов.

32. В походе участвуют 12 мальчиков, 10 девочек и 2 учителя. Сколько вариантов групп дежурных из трёх человек (1 мальчик, 1 девочка, 1 учитель) можно составить?

12 10 2 = 240

Ответ: 240 способов.

33. Сколько комбинаций из четырёх букв русского алфавита (в алфавите всего 33 буквы) можно составить при условии, что 2 соседние буквы будут разными?

При решении многих практических задач приходится использовать комбинации элементов, выбирать из данной совокупности те, которые имеют определенные свойства, и размещать их в определенном порядке. Такие задачи называются комбинаторными . Раздел математики, посвящённый решению задач выбора и расположения элементов в соответствии с данными условиями, называется комбинаторикой. Термин «комбинаторика» происходит от латинского слова «combina» , что в переводе на русский язык означает – «сочетать», «соединять».

Выбранные группы элементов называют соединениями. Если все элементы соединения разные, то получаем соединения без повторений, которые и рассмотрим ниже.

Большинство комбинаторных задач решается с помощью двух основных правил – правила суммы и правила произведения .

Задача 1.

В магазине «Все для чая» есть 6 разных чашек и 4 разных блюдца. Сколько вариантов чашки и блюдца можно купить?

Решение .

Чашку мы можем выбрать 6-ю способами, а блюдце 4-я способами. Так как нам надо купить пару чашку и блюдце, то это можно сделать 6 · 4 = 24 способами (по правилу произведения).

Ответ: 24.

Для успешного решения комбинаторных задач надо еще и правильно выбрать формулу, по которой искать количество нужных соединений. В этом поможет следующая схема.

Рассмотрим решение нескольких задач на разные виды соединений без повторений.

Задача 2.

Найдите количество трехзначных чисел, которые можно составить из цифр 1, 2, 3, 4, 5, 6, 7, если цифры в числе повторяться не могут.

Решение.

Для выбора формулы выясняем, что для чисел, которые мы будем составлять, порядок учитывается и не все элементы одновременно выбираются. Значит, это соединение – размещение из 7 элементов по 3. Воспользуемся формулой для числа размещений: A 7 3 = 7(7 – 1)(7 – 2) = 7 · 6 · 5 = 210 чисел.

Ответ: 210.

Задача 3.

Сколько существует семизначных телефонных номеров, в которых все цифры разные, а номер не может начинаться с нуля?

Решение.

На первый взгляд эта задача такая же, как и предыдущая, но сложность в том, что надо не учитывать те соединения, которые начинаются с нуля. Значит необходимо из существующих 10-ти цифр составить все семизначные номера телефонов, а потом от полученного числа отнять количество номеров, начинающихся с нуля. Формула будет иметь вид:

A 10 7 – A 9 6 = 10 · 9 · 8 · 7 · 6 · 5 · 4 – 9 · 8 · 7 · 6 · 5 · 4 = 544 320.

Ответ: 544 320.

Задача 4.

Сколькими способами можно расставить на полке 12 книг, из которых 5 книг – это сборники стихотворений, так, чтобы сборники стояли рядом?

Решение.

Сначала примем 5 сборников условно за одну книгу, потому что они должны стоять рядом. Так как в соединении существенным есть порядок, и все элементы используются, значит это перестановки из 8 элементов (7 книг + условная 1 книга). Их количество Р 8 . Далее будем переставлять между собой только сборники стихотворений. Это можно сделать Р 5 способами. Поскольку нам нужно расставить и сборники, и другие книги, то воспользуемся правилом произведения. Следовательно, Р 8 · Р 5 = 8! · 5!. Число способов будет большим, поэтому ответ можно оставить в виде произведения факториалов.

Ответ: 8! · 5!

Задача 5 .

В классе 16 мальчиков и 12 девочек. Для уборки территории возле школы нужно 4 мальчика и 3 девочки. Сколькими способами можно их выбрать со всех учеников класса?

Решение.

Сначала отдельно выберем 4 мальчика из 16 и 3 девочки из 12. Так как порядок размещения не учитывается, то соответственные соединения – сочетания без повторений. Учитывая необходимость одновременного выбора и мальчиков, и девочек, используем правило произведения. В результате число способов будет вычисляться таким образом:

С 16 4 · С 12 3 = (16!/(4! · 12!)) · (12!/(3! · 9!)) = ((13 · 14 · 15 · 16) / (2 · 3 · 4)) ·((10 · 11 · 12) / (2 · 3)) = 400 400.

Ответ: 400 400.

Таким образом, успешное решение комбинаторной задачи зависит от правильного анализа ее условия, определения типа соединений, которые будут составляться, и выбора подходящей формулы для вычисления их количества.

Остались вопросы? Не знаете, как решать комбинаторные задачи?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.