Биографии Характеристики Анализ

Сравнительная характеристика стеклообразного и высокоэластичного состояния полимеров. Химия и физика полимеров основной курс химия полимеров

Различают следующие типы химических реакций полимеров: 1. Реакции деструкции; 2. Реакции сшивания; 3. Полимераналогичные реакции; 4. Реакции, сопровождающиеся внутримолекулярными перегруппировками. На практике часто эти реакции протекают одновременно под влиянием комплекса факторов. Особенности химических реакций полимеров. На скорость и глубину химических реакций в полимерах оказывают влияние следующие факторы: 1. Длина макромолекул. С увеличением длины химическая реакционноспособность ограничивается скоростью диффузии или растворения реагирующих веществ, что проявляется в снижении скорости протекания реакций.

2. Конфигурационные эффекты. Реакционная способность функциональной группы может изменяться в зависимости от того в какую пространственную последовательность звеньев она входит (изо- или синдиотактическую), вследствие этого механизм и скорость химической реакции изменяются. 3. Конформационные эффекты. По ходу химической реакции изменяется химический состав макромолекул, характер внутри- и межмолекулярного взаимодействия, потенциальные барьеры вращения и т. д. , и как следствие, конформация цепи. Это влияет на степень свернутости клубка и доступность функциональных групп для реагента. Изменение конформации может привести как к ускорению, так и замедлению скорости химической реакции. 4. Надмолекулярные эффекты. Различная доступность для реагентов функциональных групп, расположенных в аморфных и кристаллических областях, а также надмолекулярных образованиях с различной плотностью упаковки, является одной из причин неоднородности продуктов реакций в полимерах, модифицируемых в стеклообразном или кристаллическом состоянии.

5. Эффект “соседа”. Проявляется в том, что соседние прореагировавшие функциональные группы способны как ускорять, так и замедлять скорость химической реакции, а в некоторых случаях изменять механизм реакции. Например: щелочной гидролиз ПВА - повышение скорости реакции в ряду триад: Установлено, что ацетил, расположенный между двумя гидроксильными группами, гидролизуется в 100 раз быстрее, чем находящийся между двумя ацильными. Причина – адсорбция каталитически активных гидроксиланионов ОН- на образующихся гидроксильных группах, что повышает локальную концентрацию щелочи в районе реакции и, соответственно, ускоряет ее.

Примером замедляющего влияния соседней группы служит гидролиз ПМАА в сильноосновных средах: Появление рядом с амидной группой одной и, тем более, двух карбоксилатанионов препятствует подходу к ней гидроксиланиона, поэтому степень превращения амидных групп не превышает 70 %. В результате действия различных факторов макромолекулы после участия в химических реакциях характеризуются композиционной неоднородностью двух видов: а) неоднородностью по химическому составу, так как в реакциях принимают участие только часть функциональных групп, вследствие пространственной недоступности участков макромолекул, находящихся внутри клубка или надмолекулярной структуры. б) неоднородностью распределения прореагировавших функциональных групп по длине макромолекулы.

Реакции деструкции – это реакции, протекающие с разрывом химических связей в основной цепи; сопровождаются изменением ММ полимеров. В процессе переработки полимеров и эксплуатации изделий на их основе деструкция обычно проходит под одновременным действием ряда факторов: термоокислительная деструкция, фотоокислительная деструкция и т. д.

Различают два направления деструкции: 1. Случайный разрыв связей, лежащих внутри макромолекул – образуются продукты меньшей молекулярной массы; 2. Специфический разрыв связей у концов макромолекул (деполимеризация) – образуются мономеры или продукты, близкие по ММ к мономерам, при этом ММ и другие свойства полимеров изменяются значительно медленнее, чем при деструкции по закону случая. Термодеструкция (без окисления) протекает при эксплуатации полимерного изделия в условиях высоких температурах в инертной среде или в вакууме (например в аппаратах, без доступа воздуха). Механизм термодеструкции, как правило, свободно-радикальный. Установлена закономерность, связывающая характер продуктов деструкции полимеров с теплотой полимеризации: - полимеры, содержащие четвертичные атомы углерода в цепи и имеющих низкое значение теплот полимеризации деструктируются по механизму деполимеризации, т. е. продукт деструкции – мономер; - полимеры, содержащие в цепях вторичные и третичные атомы углерода и имеющие высокое значение теплоты полимеризации деструктируются по закону случая, т. е. продуктом деструкции являются устойчивые макромолекулы меньшей молекулярной массы.

Для ПЭ характерны случайные разрывы связей в основной цепи, что сопровождается образованием двух макрорадикалов, стабилизирующихся по механизму диспропорционирования, при этом ММ ПЭ быстро уменьшается: Для ПММА, поли- -метилстирола характерна деструкция по механизму деполимеризации. Эти полимеры характеризуются низкой теплотой полимеризации (табл.) и содержат на концах двойные связи: последовательное отщепление звеньев вдоль цепи

В тоже время ПМА (83, 6 к. Дж/моль), содержащий третичные атомы углерода с подвижными водородами практически не дает мономеров при термическом распаде; развиваются радикальные реакции передачи цепи после первоначального случайного разрыва С-С связи в основной цепи:

Полимеры, содержащие функциональные группы в основной деструктируются по закону случая, например сложный полиэфир: цепи Кроме того, гетероцепные полимеры могут деструктироваться с выделением разнообразных НМС. В частности полиамиды деструктируются с образованием циклопентанона согласно схемы:

Термостойкость полимеров - способность сохранять химическое строение и свойства при высоких температурах. Имеет значение как при переработке, так и при эксплуатации. Факторы, влияющие на термостойкость карбоцепных полимеров: - степень разветвленности. Разветвленные полимеры всегда менее термостойкие, чем неразветвленные; - количество заместителей. По мере увеличения числа заместителей в цепи энергия связи С-С уменьшается, поэтому ПЭ является более стойким материалом по сравнению с полипропиленом и полиизобутиленом; - микроструктура полимеров. Изотактические полимеры более термостойки, чем атактические; По величине температуры начала разложения (°С) наиболее чувствительны к термическому распаду: ПВХ (150), ПВА (170), ПММА (220). Высокой термостойкостью обладают лестничные полимеры, особенно с сопряженными двойными связями, сетчатые полимеры с ароматическими звеньями, элементорганические полимеры с высокой степенью поляризации ковалентных связей вдоль основной цепи. Например, полидиметилсилоксан (300), полиимид (450).

Фотодеструкция (фотолиз) Фотолиз протекает в полимерах под действием света с длиной волны l = 180 – 800 нм (УФ и видимая часть спектра электромагнитного излучения), наибольшее действие оказывает свет с длиной волны менее 400 нм. Фотолиз характерен для полимеров, содержащих группировки, способные поглощать свет из УФ и видимой областей электромагнитного спектра сопряженные двойные С=С связи в основной цепи и боковые хромофорные группы (бензольные ядра, ненасыщенные функциональные группы). При поглощении света происходит разрыв связей в основной или боковой цепях с образованием макрорадикалов, которые вызывают вторичные реакции распада, изомеризации, передачи цепи, сшивания. Преимущественное протекание одной из них предопределяется строением полимера и условиями. Поскольку группировки, способные к поглощению света могут содержаться не только в макромолекулах, но и в составе пластификаторов, стабилизаторов и т. п. то, под действием естественного освещения практически все полимеры подвергаются фотостарению в той или иной степени.

В карбоцепных полимерах под действием света отщепляются боковые группы, чаще всего, водород, например в случае полиизопрена летучие продукты на 80 % содержат молекулярный водород: Последующие реакции макрорадикалов ведут к изменению строения, ММ и ММР полимеров. В разбавленных растворах полиизопрена образующийся макрорадикал аллильного типа может изомеризоваться, вызывая деструкцию макромолекулы: В концентрированных растворах или в массе протекают реакции сшивания:

Фотодеструкция ПЭ вызывается группами, находящимися в составе примесей и добавок. Низкомоелкулярные радикалы переводит макромолекулы в состояние макрорадикалов. Продуктами фотолиза могут быть как молекулы меньшей ММ, так и большей: Фотолиз полистирола, содержащего пожелтением и потерей растворимости: хромофорные группы, сопровождается Образование двойных связей в результате распространения этой реакции вдоль цепи приводит к возникновению островков сопряженных двойных связей, придающих окраску полимеру. Потеря растворимости происходит из-за сшивания макрорадикалов:

Радиолиз протекает под действием излучений с высокой энергией: рентгеновские лучи, g-лучи, потоки заряженных частиц, энергия этих частиц составляет порядка 9 – 10 э. В. При поглощении энергии излучения в качестве первичных продуктов образуются макроионы, свободные электроны и возбужденные частицы, которые вызывают различные радиационно-химические превращения в полимерах: 1) разрыв связей в главных цепях и образование молекул меньшей длины; 2) образование химических связей между макромолекулами; 3) изменение числа и расположения двойных связей; Кроме того, в ходе радиационно-химических превращений выделяются низкомолекулярные соединения. Основными летучими продуктами являются: ПЭ, ПП, ПС, полибутадиен – молекулярный водород; сложные полиэфиры – оксид и диоксид углерода; ПВХ и поливинилиденхлорид – хлороводород и молекулярный хлор.

Под действием излучения макромолекулы ионизируются и возбуждаются: g П ® П+ + 1 е. П+ + е- ® П*, где П* - возбужденная макромолекула (молекула с избыточной энергией). Возбужденная макромолекула может распадаться на два радикала, что является актом деструкции: П* ® R 1 * + R 2 * Кроме того, возможно увеличение ненасыщенности цепей, сшивание макромолекул. Например радиолиз ПЭ:

Реакции деструкции и сшивания протекают одновременно, но в зависимости от химического строения полимера одна из них преобладает. Предпочтительной деструкции подвергаются: - полимеры, характеризующиеся низкими теплотами полимеризации, содержащие в основной цепи чередующиеся четвертичные атомы углерода: ПММА, полиизобутилен, поли- -метилстирол; - галогенсодержащие полимеры: ПВХ, поливинилиденхлорид, политетрафторэтилен, а также целлюлоза. Предпочтительному сшиванию подвергаются: - полимеры с высокой теплотой полимеризации, не имеющие четвертичных атомов углерода: ПЭ, СКИ, полибутадиен, ПМА, полиамиды, полиэфиры. Устойчивы к радиолизу полимеры на основе ароматических углеводородов, так как бензольные кольца способны поглощать значительную часть радиоизлучения. Деструкция полимеров с ароматическими заместителями протекает медленно. Стойкость ПС в 80 – 100 раз выше, чем у ПЭ.

Механодеструкция (пластикация) протекает в условиях переработки полимеров на вальцах, в смесителях, в экструдерах; это явление характерно только для высокомолекулярных соединений. Почему? Потому что макромолекулы достаточно длинные и суммарная энергия межмолекулярного взаимодействия превышает энергию химической связи в основной цепи (например С-С связи). Поэтому сдвиговые деформации при перемешивании вызывают не нарушение межмолекулярного взаимодействия (как при перемешивании НМС), а разрывы химических связей в цепи. Механодеструкция протекает до тех пор, пока суммарная энергия физических межмолекулярных взаимодействий не станет равной энергии химической связи. Тогда под действием механического напряжения макромолекулы начнут смещаться относительно друга. Таким образом, механодеструкция способствует усреднению ММ и сужению ММР. Величина механодеструкции сильно зависит от температуры; имеет отрицательный температурный коэффициент - с понижением температуры возрастает число актов разрыва цепей, тогда как с повышением – возрастает скольжение макромолекул относительно друга.

В процессе механодеструкции происходят разрывы связей в макромолекулах и инициируются различные химические реакции. Образовавшиеся при механодеструкции активные макрорадикалы стабилизируются путем взаимодействия с активными центрами других макромолекул (-СН 2 двойные связи, трет. атом углерода), взаимодействия между собой и с НМС. На примере полибутадиена: взаимодействие с -СН 2

Окисление полимеров Химическое взаимодействие полимеров с кислородом воздуха лежит в основе реакций, ведущих к быстрому выходу полимерных изделий из строя в результате окислительного старения. Процесс окисления активируется под действием: тепла, механических нагрузок, ультрафиолета, радиационного излучения, химических веществ (агрессивных сред, солей металлов переменной валентности). В реальных условиях чаще всего наблюдается совместное действие перечисленных факторов. Механизм окисления полимеров – свободно-радикальный цепной с вырожденным разветвлением. Характеризуется наличием трех стадий: инициирования, роста и обрыва цепи.

Механизм окисления полимеров в общем виде Инициирование сводится к образованию свободных радикалов в результате: а) «чистого» окисления связей С-Н кислородом воздуха, при этом реакционным центром становятся -метиленовое звено или третичный атом углерода, содержащие подвижный атом водорода: RH + O 2 ® R* + HOO* 2 RH + O 2 ® 2 R* + H 2 O 2 Однако эта реакция протекает с низкой скоростью. б) гомолитического распада тех же связей С-Н под действием различных видов энергии (тепловой, световой, механической): RH ® R* + Н* R* + О 2 ® ROO*

Рост цепи: ROO* + Образующиеся окисления. гидроперекиси RH ® ROOH + R* называются первичными продуктами Вырожденное разветвление цепи происходит в результате распада чрезвычайно неустойчивых гидроперекисей с образованием новых радикалов (окисных, углеводородных): ROOH ® RO* + OH* RO* + RH ® ROH + R* OH* + RH ® R* + H 2 O Обрыв цепи: происходит в результате рекомбинации радикалов: 2 R* ® R-R R* + ROO* ® ROOR 2 ROO* ® O 2 + ROOR RO* + R* ® ROR

Вырожденное разветвление цепи: Реакция ведет к уменьшению ММ и сопровождается образованием макромолекул с кислородсодержащими группами – вторичный продукт окисления.

О:

Озонное старение каучуков. Скорость реакции озона с двойной связью С=С в 100 000 раз выше, чем скорость реакции озона с одинарной связью С-С. Поэтому от озона в первую очередь стареют каучуки и резины. Взаимодействие озона с двойной С=С связью сопровождается образованием озонидов, легко разлагающихся водой (следами воды), что сопровождается деструкцией макромолекул:

Кинетика окисления полимеров обычно описывается S-образной кривой, характерной для автокаталитических процессов: I – начальное присоединение кислорода по активным центрам макромолекул; II – индукционный период, где происходит накопление критической массы свободных радикалов; III – участок автокатализа, когда начинают протекать реакции, связанные с распадом гидроперекисей; в полимере интенсивно образуются различные продукты окисления; IV – снижение скорости окисления вследствие исчерпания активных центров. На интенсивность окисления влияют вещества, способные как ускорять (катализаторы), так и замедлять процесс (ингибиторы). Наиболее активными ускорителями являются соли металлов переменной валентности (меди, железа, кобальта, марганца), которые облегчают распад гидроперекисей, а также макромолекул: ROOH + Fe 2+ ® RO* + Fe 3+ + OHROOH + Fe 3+ ® ROO* + Fe 2+ + H+ RH + Co 3+ → R* + H+ + Co 2+

Ингибируют процесс окисления НМВ, способные: 1. дезактивировать свободные радикалы на стадии их образования – антиоксиданты аминного и фенольного типа; характеризуются наличием в молекуле подвижного атома, который отрывается легче, чем активные атомы водорода от макромолекул, при этом радикалы антиоксиданта малоактивны (в результате сопряжения электронного облака неспаренного электрона с ароматическим ядром) и не вызывают продолжение цепного процесса. К ним относятся:

Ингибирование протекает согласно следующих уравнений: R* + Ing. H ® RH + Ing* ROO* + Ing. H ® ROOH + Ing* ROO* + Ing* ® ROOIng R* + Ing*® RIng 2 Ing*® Ing-Ing В процессе окисления антиоксидант расходуется, при этом часть его присоединяется к полимеру. Т. о. действие антиоксидантов первой группы заключается во взаимодействии со свободными радикалами и обрыве цепи. На кинетике это отражается увеличением длительности индукционного периода. Однако полностью окисление не прекращается, поскольку в полимере образуются легко разлагающиеся гидроперекиси, после исчерпания антиоксиданта процесс окисления продолжается.

2. разрушение гидроперекисей до неактивных для развития окислительной цепи молекул - антиоксиданты превентивного действия: органические сульфиды, дитиофосфаты, дитиокарбаматы, меркаптаны. Механизм действия антиоксидантов превентивного действия на примере сульфидов: R-S-R + ROOH ® R-S-R + ROH, O при этом сульфид окисляется до сульфоокиси.

Антиоксиданты второй группы не влияют на величину индукционного периода, но сильно снижают скорость окисления на втором участке; кроме того, способны дезактивировать соли металлов переменной валентности, образуя с ними неактивные комплексы. Для усиления защиты от окисления в полимерные системы вводят антиоксиданты первой и второй групп, которые при совместном присутствии обладают синергизмом. Это приводит к резкому увеличению индукционного периода и снижению скорости окисления во втором периоде. В литературе имеются данные о антиоксидантах молекулы которых содержат два антиокислительных центра: фенольный фрагмент и серу, причем количество обоих центров в молекуле должно быть равным. Они гораздо лучше тормозят окисление, чем обычные антиоксиданты и антиоксиданты, в которых на один атом серы приходится два фенольных фрагмента – антиоксиданты третьего поколения.

Скорость окисления полимеров зависит от наличия в цепях активных центров: - -метиленовых звеньев; - третичных атомов углерода. По способности к окислению полимеры располагаются в ряд: полидиметилсилоксан

Основная причина изменений в полимерах в процессе окисления – это протекание реакций деструкции и сшивания. В первом случае образуются молекулы меньшей ММ с концевыми кислородсодержащими функциональными группами, во втором – макромолекулы с повышенной ММ. Соотношение между актами распада и сшивания зависит от структуры полимера и температуры окисления. В случае эластомеров, построенных из звеньев 1, 4 с электронодонорными заместителями, преобладает деструкция, полимеры становятся мягкими и липкими. Для полибутадиена и его сополимеров – сшивание, полимеры становятся хрупкими и твердыми.

Реакции сшивания (структурирования) – это реакции, протекающие с образованием поперечных связей между макромолекулами, сопровождаются образованием полимеров сетчатого строения. Реакции сшивания протекают как в процессе синтеза полимеров, так и при переработке в полимерные изделия: реакции вулканизации (при изготовлении резин) и отверждения (при изготовлении пластмасс). Сшивание может быть осуществлено в результате: 1. Взаимодействия функциональных групп разных полимеров; 2. Взаимодействия функциональных групп одного и того же полимера; 3. Взаимодействия функциональных групп или активных центров макромолекул с полифункциональным НМС. Для осуществления сшивания требуется внешнее воздействие – нагревание, использование катализаторов, УФ- или радиационного облучения.

Реакции функциональных групп разных полимеров. При наличии реакционноспособных функциональных групп в боковых цепях, возможно, их взаимодействие, например, ПВС с ПАК, что приводит к сшиванию разных макромолекул: Реакции между функциональными группами разных полимеров не имеют широкого применения для синтеза сетчатых структур, вследствие взаимной несовместимости полимеров, даже в растворах в общих растворителях. В растворах реакции преимущественно протекают на границе раздела фаз или, в лучшем случае, на поверхности молекулярных клубков, что не обеспечивает необходимой степени сшивания.

Кроме прочных химических связей полимеры могут быть “сшиты” за счет физического взаимодействия, например посредством образования водородных связей при взаимодействии ПАК и ПЭО (а); электростатического взаимодействия ионизированных функциональных групп (б), например, при взаимодействии водных растворов ПАК и полиэтиленимина. Однако физические поперечные связи не достаточно прочные и разрушаются под действием повышенных температур.

Реакции функциональных групп одного и того же полимера протекают при наличии в полимере разных по природе функциональных групп. Например, реакции полиорганосилоксанов, содержащих винильные радикалы, а также гидридные связи Si – Н легко протекают в присутствии катализаторов с образованием поперечных связей между силоксановыми цепями: Особенностью таких реакций является возможность их внутримолекулярного протекания, что будет приводить к образованию циклов вместо поперечных связей.

Реакции макромолекул с полифункциональными НМС. Полифункциональные НМС – это соединения содержащие две и более реакционноспособные функциональные группы. Такие реакции имеют наибольшее распространение с целью превращения линейных полимеров в сетчатые. Например, ПВС и его сополимеры можно сшивать диизоцианатами:

Полимеры с карбоксильными группами в боковых цепях подвергаются сшивке при взаимодействии с диаминами (амидные связи), гликолями и диоксиранами (сложноэфирные), оксидами металлов (солевые):

Полимеры и сополимеры с альдегидными группами в боковых цепях сшивают путем обработки гликолями (ацетальные поперечные связи) или диаминами (азометиновые сшивки): Число реакций, используемых для сшивания полимеров с функциональными группами, чрезвычайно велико и охватывает практически большинство основных реакций ОХ. Общим для процессов сшивания полифункциональными реагентами является циклообразование, особенно для гибкоцепных полимеров в разбавленных растворах:

Вулканизация эластомеров С химической точки зрения: вулканизация – это процесс образования редкой сетки поперечных связей между макромолекулами. С технологической точки зрения: вулканизация – это процесс превращения сырого каучука в резину, материал, обладающий в широком температурном интервале необходимыми эксплуатационными свойствами (прочностью, высокоэластичностью, твердостью, сопротивлением раздиру и т. д.). Вулканизация может происходить под действием: физических факторов - повышенных температур (термовулканизация), радиации (радиационная вулканизация); химических факторов - вулканизующего агента (сера, перекиси, ди- и полисульфиды, оксиды металлов, азо- и диазосоединения, би-, трифункциональные соединения). Способ вулканизации предопределяется строением каучука и условиями эксплуатации резиновых изделий. При переходе от одного метода вулканизации к другому можно в широких пределах менять свойства резин на основе одного и того же каучука.

Вулканизация различными методами позволяет получать вулканизационные сетки с разными по строению поперечными связями или их набором. В частности: ковалентные связи ~С-С~ (радиационная вулканизация, перекисная, серная); ~С-S-С~, ~С-Sх-С~ (вулканизация серой, дисульфидами); ~С-О-С~ (вулканизация оксидами металлов); ионные (солевые) ~С-СО-О-…Ме 2+…-О-ОС-С~ схема а (вулканизация оксидами металлов карбоксилсодержащих каучуков - сополимеров бутадиена, изопрена с ненасыщенными кислотами); ~С-SО-О-…Ме 2+…-О-ОS-С~ схема б (вулканизация оксидами металлов хлорсульфополиэтилена); координационные (RCN)x…Zn. Cl 2 (RCl)2 Zn. Cl 2 схема в (вулканизация акрилонитрильных, хлоропреновых каучуков оксидами металлов соответственно).

Свойства резин изменяются в зависимости от типа поперечных связей: серная вулканизация позволяет получать резины с хорошими динамическими свойствами; перекисная – резины с повышенной теплостойкостью; радиационная – резины с улучшенными диэлектрическими характеристиками. При этом методы вулканизации, разработанные для каучуков общего назначения, как правило не приемлемы для каучуков специального назначения. Технические способы проведения вулканизации: - вулканизация в горячем воздухе; в основном используется для вулканизации изделий из резин на основе насыщенных каучуков в термостатах при 150 – 250 С; - вулканизация в поле токов высокой частоты; используется для вулканизации полярных каучуков (хлоропреновый, бутадиен-нитрильные и др.), обогрев осуществляется тепловой энергией генерируемой переменным электрическим полем сверхвысокой частоты; - вулканизация в псевдоожиженном слое; используется для вулканизации полых и пористых резиновых профилей в среде стеклянных шариков или кварцевого песка, поддерживаемых во взвешенном состоянии горячим воздухом 150 – 250 С, продуваемом с определенной скоростью; - вулканизация в расплаве солей; используются расплавы солей, температуры расплава которых 170 – 300 С.

Изменение свойств каучука при вулканизации. Наиболее характерными являются: 1. Вулканизаты обладают высокой эластичностью, не способны к пластической (необратимой) деформации в отличие от сырых резиновых смесей. 2. Вулканизат теряет способность растворяться даже в термодинамически “хороших” растворителях: он лишь ограниченно набухает в них. 3. Резко повышается прочность при растяжении: резиновая смесь на основе НК (после обработки на вальцах) имеет прочность при растяжении 1 – 1, 5 МПа, после вулканизации до 35 МПа. Однако прочность в зависимости от степени вулканизации изменяется экстремально (рис.). 4. Повышается твердость материала и улучшаются его динамические свойства (при многократных циклических деформациях). 5. Повышается стойкость к старению. 6. Уменьшается влаго- и газопроницаемость, т. к. сшивание макромолекул уменьшает диффузию газов и паров. Рис. Зависимость прочности вулканизатов при одноосном растяжении от степени вулканизации

Однако необходимо учитывать, что в зависимости от степени вулканизации эластомеров серой можно получать как резины (материал, обладающий высокой эластичностью), так и эбонит - твердый, жесткий, рогоподобный материал. На рисунке представлены зависимости прочности резины на основе НК и относительного удлинения при одноосном растяжении от количества присоединенной серы. При содержании серы до 3 % происходит увеличение прочности вулканизатов; при содержании серы 9 – 10 % прочность падает из-за снижения способности молекулярных цепей к ориентации в процессе растяжения, прочность снижается. Повышение прочности вулканизата при высоком содержании серы свыше 10 % связано с высокой степенью сшивания (густо сшитый вулканизат) и переходом от ВЭД к упругой деформации.

Кинетика вулканизации. Кинетическая кривая вулканизации – зависимость величины какого-либо показателя (прочности, модуля, остаточного удлинения) от времени вулканизации при определенной температуре. На рис. представлена зависимость напряжения f при заданном удлинении от продолжительности вулканизации; имеет S-образный вид, характеризуется наличием 3 стадий. АБ – индукционный период, длительность которого определяется стойкостью резиновой смеси к преждевременной вулканизации; БВ – формирование вулканизационной сетки; скорость поперечного сшивания зависит от температуры, типа вулканизующего агента и ускорителя вулканизации; ВГ – стадия перевулканизации (реверсии), которая сопровождается деструктивными процессами распада образовавшихся поперечных связей.

Подвулканизация (или преждевременная вулканизация, скорчинг) – необратимое изменение свойств резиновой смеси при изготовлении, переработке и хранении (т. е. на стадиях, предшествующих вулканизации), сопровождается повышением вязкости и снижением перерабатываемости. С технологической точки зрения – нежелательный процесс. Длительность индукционного периода определяется длительностью нахождения резиновой смеси в вязкотекучем состоянии от начала нагрева резиновой смеси до момента, когда скорость вулканизации становится заметной. На участке БВ (главный период вулканизации) интенсивно образуются поперечные связи и, кроме того, происходит созревание вулканизационной сетки, суть которого заключается в перегруппировке полисульфидных связей в моно- и дисульфидные (при серной вулканизации). Завершению процесса формирования вулканизационной сетки соответствует оптимум вулканизации (точка В).

Оптимум вулканизации - время вулканизации в течение которого получают вулканизаты с наилучшим комплексом свойств. Вулканизаты с меньшим временем вулканизации называются недовулканизованными, с большим – перевулканизованными. Плато вулканизации – это отрезок времени (ВГ), в течение которого значения измеряемых параметров близки к оптимальным и меняются относительно мало. В соответствии с этим различают широкое и узкое плато вулканизации. С технологической точки зрения предпочтительно широкое плато вулканизации. Реверсия обусловлена наложением двух процессов: образования поперечных связей и реакций деструкции (распада поперечных связей). С технической точки зрения реверсия – нежелательный процесс, резины характеризуются меньшей прочностью, имеют низкое сопротивление старению.

Методы определения скорости вулканизации. Скорость вулканизации определяется: - физическими; - химическими методами. Химические методы позволяют определить расход агента вулканизации в образцах вулканизатов с различным временем вулканизации, например определение содержания свободной и связанной серы. К физическим относится метод определения количества поеперечных связей методом равновесного набухания, при этом исследуются вулканизаты с разным временем вулканизации. Кинетическую кривую вулканизации с использованием одного образца, возможно, получить с помощью реометров. В этом методе в образец резиновой смеси запрессовывается ротор, который, находясь при повышенной температуре периодически поворачивается на небольшой угол. По мере вулканизации возрастает упругость смеси и увеличивается усилие, необходимое для поворота ротора, что позволяет оценить изменение модуля сдвига в ходе вулканизации. Полученные с помощью различных методов кинетические кривые используют для расчета таких параметров, как скорость вулканизации, константа скорости, температурный коэффициент и энергия активации процесса в соответствии с уравнениями формальной кинетики химических реакций.

Перекисная вулканизация применяется для получения резин с повышенной теплостойкостью из таких каучуков как СКН, СКЭП, СКИ, полисилоксановые каучуки и т. д. Для вулканизации используются органические перекиси и гидроперекиси, особенностью строения которых является наличие –О-О-, которая легко распадается гомолитически. Отдельные представители: Основные требования, предъявляемые к перекисям: - нетоксичность; - нелетучесть при температурах приготовления резиновых смесей; - хорошая совместимость с каучуком (для равномерного распределения в объеме резиновой смеси) ; - высокая скорость разложения на свободные радикалы при температуре вулканизации (но не при температурах других технологических стадий, иначе это приведет к преждевременной вулканизации); - высокая эффективность сшивания.

Механизм перекисной вулканизации. Температура гомолитического разложения перекиси зависит от ее строения. Электронодонорные заместители при связи О-О (метил) снижают термическую стойкость перекиси, а электроноакцепторные (фенил) - повышают. Перекиси сложного строения претерпевают ступенчатый распад: При этом реакционноспособными являются как окисный, так и углеводородные. Далее радикалы перекисей взаимодействуют с активными центрами каучука: Ка. Н- активный центр каучука (-СН 2, третичный атом углерода); Ка*- макрорадикал. Образовавшиеся Ка* взаимодействуют между собой, вызывая сшивание макромолекул, а также участвуют в побочных реакциях, в том числе деструкции каучука. Вид побочных реакций зависит от строения эластомера и перекиси, состава резиновой смеси и условий вулканизации.

Вулканизацию полиизопрена и других ненасыщенных эластомеров можно представить схемой: Побочными реакциями являются реакции циклизации (а) и деструкции (б):

Вулканизация СКЭП в присутствии гидроперекиси изопропилбензола: Установлено, что в среде насыщенного каучука основным свободным радикалом, взаимодействующим с каучуком, является метильный, так как около половины введенной перекиси расходуется на образование ацетофенона СН 3 СОС 6 Н 5:

Наряду с реакциями сшивания происходит и разрыв цепи, вероятность которого повышается с увеличением содержания пропиленовых звеньев в сополимере: Особенностью сшивания перекисями является отсутствие реверсии. Вулканизация органическими дисульфидами С помощью дисульфидов вулканизуют непредельные каучуки СКД, СКС, СКН, СКИ, при этом дисульфиды характеризуются низкой энергией диссоциации связи S-S. Отдельные представители: В отсутствии активаторов вулканизации (оксидов металлов) вулканизация подобна перекисной. Реакции сшивания ненасыщенных каучуков развиваются по -СН 2 группам.

Механизм вулканизации в общем виде: RSSR ® 2 RS* (распад при температуре вулканизации) Ka. H + RS* ® RSH + Ka* 2 Ka* ® Ka-Ka (С-С связь) Связей С-С образуется мало, т. к. отличительной чертой вулканизации дисульфидами является активное взаимодействие радикалов RS* и непрореагировавших молекул дисульфида RSSR с макрорадикалами, приводящее к их дезактивации (образованию неактивных продуктов присоединения): Ка* + RS* ® Ka-S-R Ka* + RSSR ® Ka. SR + RS* Для подавления реакций дезактивации и получения сшитых продуктов в резиновые смеси вводится более 5 масс. ч. дисульфида, где наряду с неактивными продуктами присоединения (Ка. SR) образуются активные типа Kа. SSR, которые впоследствии приводят к образованию моносульфидных связей: RS* + R-SSR ® RSR + RSS* Ka* + RSS* ® Ka. SSR активный продукт присоединения Ka. H Ka. S-SR ® Ka. S* + *SR ® Ka. S* + Ka* ® Ka-S-Ka моносульфидная связь - RSH

Вулканизация СКИ в присутствии тетраметилтиурамдисульфида (ТМТД). Под действием температуры вулканизации ТМТД гомолитически расщепляется по связи S-S, а затем дегидрирует макромолекулы по -СН 2: Макрорадикалы взаимодействуют друг с другом с образованием С-С связей, содержание которых мало:

Т. о. , при вулканизации СКИ тетратиурамдисульфидом образуются С-С (мало), С-S-С (много) связи. Недостатком процесса является термический распад дитиокарбаминовой кислоты с образованием токсичного СS 2 и диметиламина (СН 3)2 NH, под действием последнего наблюдается сильная реверсия.

Более эффективно процесс вулканизации дисульфидами протекает в комбинации с оксидами металлов (Zn, Mg, Cd, Ca), которые являются активаторами процесса вулканизации – облегчают, улучшают процесс взаимодействия макромолекул с вулканизующим агентом. Являясь полярными соединениями оксиды металлов коллоидно диспергированы в неполярной углеводородной среде. Первоначально происходит адсорбция части молекул дисульфида на поверхности частиц оксидов металлов, что сопровождается гомолитическим разрывом связи S-S и удерживанием агента вулканизации на поверхности частицы за счет координации атома металла у атома азота (на примере ТМТД): Образующиеся радикалы дисульфида (RS*) на поверхности частиц оксида металла активируют два типа реакций.

1. Реакции с исходными молекулами ТМТД (RSSR), не претерпевших хемосорбционных превращений: В общем виде RS* + RSSR ® RSR + *SSR 2. Реакции с молекулами каучука, что сопровождается образованием макрорадикала, соли дитиокарбаминовой кислоты, например цинковой, если в качестве активатора используются цинковые белила, воды:

Макрорадикал Ка* образуется на поверхности частицы оксида металла и далее взаимодействует с радикалами тиурама или молекулой тиурама, которые находятся в непосредственной близости к частице под действием концентрационных сил с образованием не активных и активных продуктов присоединения:

Дальнейшие превращения активных продуктов присоединения, которые также как и распад исходного дисульфида происходят (активируются) на поверхности оксида металла. А именно: распад активного продукта присоединения по связи S-S с образованием радикалов: Часть радикалов Ka. S* затем быстро рекомбинируют с образованием дисульфидных поперечных связей, что облегчается их близким пространственным расположением в результате адсорбции на поверхности частиц: Радикалы RS* участвуют в реакциях дегидирования каучука с образованием полимерных радикалов Ка*, взаимодействие которых с оставшимися Ka. S* приводит к образованию моносульфидных связей:

Т. о. в присутствии активаторов вулканизации образуются моно- и дисульфидные поперечные связи. Сшивание происходит на поверхности частиц, затем сшитые участки под влиянием теплового движения десорбируются и перераспределяются в объем каучука. Преимуществом является и то, что вместо дитиокарбаминовой кислоты образуется дитиокарбомат цинка, являющийся эффективным антиоксидантом: Серная вулканизация Применяется для получения резиновых изделий (автопокрышки и камеры, РТИ, резиновая обувь) из ненасыщенных каучуков. Вулканизующая группа состоит из серы, ускорителя (или комплекса ускорителей), активатора. Ускоритель – это вещество, с помощью которого можно влиять на кинетику вулканизации (скорость, оптимум и плато вулканизации), характер вулканизационной сетки и, соответственно, свойства вулканизатов.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение высшего профессионального образования "Ивановская государственная текстильная академия"

Кафедра химии

ФИЗИКА И ХИМИЯ ПОЛИМЕРОВ

Методические указания для студентов специальностей 280800, 280900

всех форм обучения

Иваново 2003

В настоящих методических указаниях рассматриваются основные понятия физики и химии полимеров, особенности их химической структуры, способы получения, химические превращения полимеров, свойства растворов полимеров, физико-механические свойства высокомолекулярных соединений, синтез волокнообразующих полимеров, общие вопросы производства химических волокон, а также практическое применение ВМС в текстильной промышленности.

Составители: канд. хим. наук, проф. Л.А. Гарцева, канд. техн. наук, доц. О.Г. Циркина, канд. хим. наук, проф. В.В. Васильев

Научный редактор канд. хим. наук, доц. Л.В. Красухина Редактор Т.В. Федорова Корректор И.Н. Худякова

Лицензия ИД №06309 от 19.11.2001. Подписано в печать 25.06.2003. Формат 1/16 60х84. Бумага писчая. Плоская печать. Усл.печ.л.3,95. Уч.-изд.л. 4,0. Тираж 300 экз. Заказ №

Редакционно-издательский отдел Ивановской государственной текстильной академии

Участок оперативной полиграфии ИГТА 153000 г. Иваново, пр. Ф. Энгельса, 21

Введение

Широкая химизация швейного производства, характерная для современного этапа его развития, основана на использовании новейших технологий облагораживания тканей и изделий из них, а также различных химических веществ, в том числе и высокомолекулярных соединений. Поэтому изучение курса «Физика и химия полимеров» крайне важно для подготовки специалистов швейного производства.

В процессе изучения дисциплины необходимо уяснить особенности структуры и свойств высокомолекулярных соединений и, прежде всего, волокнообразующих полимеров, входящих в состав природных и химических волокон. Эти сведения лежат в основе технологического цикла отделки тканей, представляющих сырьевую базу швейного производства. В технологическом цикле изготовления швейных изделий необходимо учитывать качество и виды отделок, большинство из которых базируется на применении полимерных материалов. Их использование позволяет расширить ассортимент швейной продукции, улучшить ее качество. Знание технологий практического применения этих веществ и физико-химической сущности явлений, происходящих в волокнах при изготовлении из них швейных изделий, позволяет более экономично использовать энергетические и материальные ресурсы.

Физика и химия полимеров являются теоретической базой для обоснования сущности процессов, протекающих в волокне, пряже, ткани, в изделиях из нее при отбеливании, колорировании, заключительной отделке, при химических операциях, осуществляемых в швейном производстве (дублирования, формостабилизации, использования сетчатых прокладочных материалов, стабилизации деталей кроя, предотвращения осыпания срезов деталей одежды и др.).

1. ОБЩИЕ ПОНЯТИЯ О ВЫСОКОПОЛИМЕРНЫХ СОЕДИНЕНИЯХ (ПОЛИМЕРАХ)

Высокомолекулярными органическими соединениями (ВМС) называют вещества, в состав молекулы которых входят сотни и тысячи отдельных атомов, связанных друг с другом химическими связями. Следовательно, каждая молекула полимера представляет собой

гигантское образование, имеющее молекулярную массу, измеряемую десятками и сотнями тысяч атомных единиц массы (а.е.м.). Вследствие большого размера молекул их называют макромолекулами .

Особенностью химического строения макромолекул ВМС является множество повторяющихся звеньев одного или нескольких типов, называемых элементарным звеном . Число, показывающее, сколько раз в макромолекуле повторяется элементарное звено, называется степенью полимеризации (СП) и обозначается символом n. Связь между величиной молекулярной массы (Mп ) и степенью полимеризации выражается отношением n = Mп / Мэ , где Мэ – молекулярная масса элементарного звена.

Низкомолекулярные вещества, из которых путем синтеза получают полимеры, называются мономерами .

Функции мономеров могут выполнять вещества, молекулы которых проявляют полифункциональность, т.е. способность каждой молекулы химически взаимодействовать не менее чем с двумя другими молекулами, ими являются органические соединения с:

– кратными связями

n CH2

пропилен

полипропилен

– легко размыкающимися циклами

CH CH C O

n CH2

(CH2 )5

CH2 CH2 NH

Капролактам

поликапроамид (капрон)

– несколькими (не менее двух) функциональными группами

n H2 N

(CH2 )6

(CH2 )6

Аминоэнантовая

полиэнантоамид

В первом и втором случаях получается полимер с таким же элементным составом, что и у мономера, в третьем случае реакция идет с выделением побочных продуктов, поэтому молярная масса полимера будет отлична от суммы молярных масс мономеров, вступивших в реакцию.

2. КЛАССИФИКАЦИЯ ПОЛИМЕРОВ

Обилие ВМС обусловило необходимость в их классификации. В основу классификации полимеров положены следующие признаки:

– происхождение;

состав основной цепи макромолекул;

форма макромолекул;

поведение при нагревании;

структура цепей и пространственное строение молекул;

характер элементарных звеньев.

2.1. Классификация по происхождению

По происхождению полимеры подразделяются на:

природные (натуральные), которые существуют в природе (крахмал, целлюлоза, лигнин, казеин, каучук, белки и др.);

искусственные, получаемые из природных полимеров путем их химической обработки (вискозный, ацетатный шелк, карбоксиметилцеллюлоза (КМЦ), карбоксиметалкрахмал (КМК), эфиры целлюлозы и др.);

синтетические, которые получают путем химического синтеза (полиэтилен, поливинилхлорид, полиамиды и многие другие).

Названия полимеров по происхождению не отражают особенностей их химического строения и свойств, поэтому была принята классификация ВМС по составу основной цепи макромолекул, позволяющая дать этим классам соединений рациональные названия.

2.2. Классификация по составу цепи

Классификация полимеров по этому признаку можно представить следующей схемой:

Высокомолекулярное соединение

органические

неорганиче-

элементорганические

Каждый из приведенных классов подразделяется на отдельные группы в зависимости от строения цепи, наличия в ней кратных связей, количества и природы заместителей и боковых цепей, а неорганические и элементорганические классифицируются по природе соответствующего неорганического элемента.

Органические полимеры являются производными органических соединений класса: карбоцепные игетероцепные .

У карбоцепных полимеров главная цепь состоит только из атомов углерода и может иметь насыщенный характер:

…– СН2 – СН2 – СН2 – … (полиэитлен) или ненасыщенный характер:

… – СН2 – СН = СН – СН2 – СН2 – СН = СН – СН2 – … (полибутадиен)

Данные полимеры используют в синтезе полиолефиновых волокон. В зависимости от природы заместителей и боковых цепей различают следующие классы полимерных материало:

Общее название, Химическая структура важнейших

отдельные

представители

применения

Галогензамещенные

CH CH2

Поливинилхлорид

полимеры: поливи-

нилхлорид, поливи-

Используют

изготовления

нилиденхлорид,

синтетического волокна, устойчивого к

поливинилфторид,

действию кислот, щелочей и др.

полихлоропрен,

реактивов, для изготовления пластмасс,

тетрафторэтилен и

пленок, материалов для верха обуви, для

тканей с покрытиями

из синтетических

смол (кожезаменители), в качестве клеев

синтетических смол (латекс СВХ-1).

Латекс СВХ-1 находит применение для

аппретирования тканей с целью придания

стойкости

истиранию,

проницаемости,

малосминаемой

отделке, при получении на тканях

цветных узоров

Полимерные спирты

CH CH CH CH ....

и их производные:

2 OH

2 OH

поливиниловый

поливиниловый спирт (ПВС)

спирт, поливинилал-

Используют как полупродукт для получе-

кильные эфиры,

ния растворимых и нерастворимых поли-

поливинилацетат,

винилспиртовых волокон. Ткани из них

поливинилацетали

устойчивы к химическим воздействиям, а

в смеси с вискозой, реже с шерстью, эти

используют

выработки

одежных, спортивных, декоративно-

мебельных и обивочных тканей.

Коллоидные

растворы

применяют

при изготовлении шлихты, загустителей

печатных красок, для аппретирования

CH CH2 CH ....

OCOCH3 OCOCH3

поливинлацетат (ПВА)

Используют в качестве аппретирующего вещества для улучшения потребительских свойств тканей, для изготовления клеев.

Полимерные альде-

CH CH2

гиды и кетоны:

полиакрелин, поли-

полиакролеин

винилметилкетон

Полимеры карбоно-

CH CH2

вых кислот: полиак-

риловая, полиметак-

полиакриловая кислота

риловая, полиакри-

ловые эфиры

полиметакриловая кислота

Используют в качестве печатных красок, в производстве органического стекла, для изготовления различных изолирующих деталей приборов и устройств автоматики.

Полимерные нитри- ...

CH CH2

лы: полиакрилонит-

рил и нитрилы дру-

полиакрилонитрил

гих непредельных

Используют в производстве ПАН-волокон

Полимеры аромати- ...

CH2 CH CH2 CH ....

ческих углеводоро-

дов: полистирол,

фенолформальде-

полистирол

гидные смолы

Используют для аппретирования тканей,

изготовления облицовочных материалов

CH 2 ...

полифенолформальдегид

Используют в получении лаковых пленок, клеев, текстолита.

У гетероцепных высокомолекулярных соединений основные полимерные цепи, помимо атомов кислорода, содержат гетероатомы (кислород, азот, фосфор, серу).

Строение и область практического применения гетероцепных полимеров представлены в таблице.

Общее название,

Химическая структура важнейших

отдельные

представителей, область практического

представители

применения

Простые полиэфи-

ры: полигликоли,

параформальдегид,

полиэитленгликоль

полиэитленгликоль

Полигликоли – ценные растворители –

применяются в производстве синтетиче-

ских моющих средств (СМС).

Сложные полиэфи-

C ...

ры: полиэтиленте-

рефталат, полиэфи-

полиэтилентерефталат

ры, полученные из

Служит исходным сырьем для получения

остатков аминокис-

полиэфирных волокон: лавсан, терален и

Полимерные пере-

полимерная перекись стирола

Полимеры, содер-

(CH2 )5 NH

поликапроамид

жащие в основной

цепи атомы азота:

(CH2 )6

Полиэнантоамид

полимерные амины,

полиамиды, поли-

Служат исходным сырьем для получения

карбомиды.

полиамидных волокон.

Полимеры,

полиуретан

основной

одновременно

Используют для получения

текстильных

атомы азота и ки-

волокон и пленок, клеев, лаков и эмалей,

слорода – полиуре-

пенополиуретанов.

Полимеры, содер-

жащие в основной

(CH2 )n

(CH2 )m

цепи атомы серы:

политиоэфир

простые политио-

эфиры, политетра-

судбфиды, полиал-

киленсульфоны.

Полимеры, содер-

жащие в основной

цепи атомы фосфо-

Полифосфат натрия.

Эти полимеры по своим свойствам существенно отличаются от органических и представляют особый интерес в зависимости от природы и структуры.

Элементорганические полимеры обычно имеют главную цепь неорганического характера, а боковую ответвленную – органического.

Наиболее распространены: кремнийорганические полимеры (полисилановые, полисилоксановые, полиорганометаллсилоксановые и др.), титаноорганические, алюминийорганические и другие полимерные соединения.

Элементорганические соединения находят применение в текстильной и швейной технологии. Например, кремнийорганические соединения используют для придания тканям, ниткам, швейным изделиям гидрофобных свойств.

2.3. Классификация по форме макромолекул

По форме макромолекул полимеры подразделяются на линейные разветвленные и полимеры сшитой структуры.

Линейные полимеры состоят из макромолекул линейной структуры и представляют собой совокупность мономерных звеньев (– А –), соединенных в длинные неразветвленные цепи:

n А... – А – А – А – А – …

Макромолекулы линейных полимеров имеют характер фибрилл. Именно линейные полимеры являются волокнообразующими. Для таких полимеров характерно образование межмолекулярных связей за счет различных по природе сил межмолекулярного взаимодействия, вследствие чего получается достаточно прочное волокно.

Разветвленные полимеры характеризуются наличием в основных цепях макромолекул боковых ответвлений, более коротких, чем основная цепь.

Федеральное агентство по образованию РФ

Министерство образования и науки РФ

технологический институт

Контрольная работа

Химия и физика полимеров

Выполнил:

Проверил:


1. Полиакрилонитрил. Получение, свойства, применение

Реакцияполимеризации акрилонитрила протекает по схеме:

СН2=СН® …-СН2-СН-СН2-СН-СН2-СН-…

Полимеризациюакрилонитрила можно проводить в блоке, в растворе и в суспензии или эмульсии.Особенностью полимеризации акрилонитрила является нерастворимость полимеровмономере. Уже при степени полимеризации около 10 полиакрилонитрил высаживаетсяиз раствора. Таким образом, полимеризация акрилонитрила в блоке и в суспензии(в эмульсии) протекает в гетерогенных условиях и только полимеризация врастворе проходит в гомогенной среде.

Полимеризацияв блоке.

Полимеризацияакрилонитрила в блоке инициируется светом, азосоединениями перекисями, а такжелюбым другим источником получения радикалов. Через некоторое время после началадействия радикалов начинается выпадение полимера в осадок. В это времянаблюдается увеличение суммарной скорости реакции. Дальнейшая реакция протекаетв гетерогенных условиях. Реакция осложняется адсорбционными процессами и можетпротекать на частицах полимера как на матрицах. В гетерогенных условияхскорость реакции зависит от структуры выпавшего полимера, от удельнойповерхности частиц и гидравлических условий их движения. Энергия активациисуммарного процесса полимеризации при небольших степенях превращенияакрилонитрила составляет около 30 ккал/моль. Высокая энергия активации, а такжевысокая теплота полимеризации и сложность теплообмена приводят к взрывному характеруполимеризации акрилонитрила в блоке.

Полимеризацииакрилонитрила в блоке не используется на производстве.

Полимеризация в суспензии. Полимеризация акрилонитрила в суспензии отличается отблочной тем, что в полимеризационную систему добавляется вещество, нерастворяющее полимер и частично растворяющее мономер. Образуется среда,способная взаимодействовать с радикалами и тем самым участвовать в процессе.Кроме того, в этой среде, как правило, имеются примеси, оказывающие влияние наход полимеризации (например, ионы, взаимодействующие с радикалами илипереносящие их).

Взависимости от степени взаимодействия разбавителя с полимером частицы полимерамогут быть плотными или рыхлыми. При этом изменяется дисперсность полимера,что, в свою очередь, оказывает влияние на кинетику процесса. Полимеризацияпротекает в растворе и главным образом в твердой фазе. При суспензионнойполимеризации акрилонитрила в качестве разбавителя применяется вода или режеметанол.

Полимеризацияакрилонитрила в суспензии протекает в двух фазах. Первая стадия полимеризациипроходит в водной фазе, и скорость реакции зависит в основном от концентрациисвободного мономера и сравнима со скорость полимеризации в растворах.

Посколькупротекание реакции, особенно до высоких степеней превращения мономера,определяет вторая стадия процесса, важнейшее значение приобретает состояниеповерхности частиц, их форма, сорбционные слои и общая величина поверхности.

Полимеризацияв растворе.

Широкоераспространение в промышленности получил метод полимеризации акрилонитрила врастворе. В этом случае полимеризация протекает в гомогенных условиях.

Обрывцепи в процесс е полимеризации происходит в результате рекомбинации первичныхрадикалов. Таким образом полимеризация акрилонитрила в растворе подчиняетсяобщим закономерностям радикальной полимеризации. Полимеризация в растворе впромышленности осложняется обычно примесями, имеющимися в растворителях,которые способствуют обрыву цепи.

Сополимеризация.

Внастоящее время ПАН волокна производят только из сополимеров акрилонитрила.

Дляполучения полиакрилонитрила используют различные сополимеры. В отечественнойтехнологии производства полиакрилонитрила получил применение тройной сополимер,в состав которого наряду с акрилонитрилом (АН) СН2=СНСN (~90%)входят метилакрилат (МА) СН2=СНСООСН3 (~ 6%), каксополимер, нарушающий регулярность строения макромолекулы и улучшающийэластические свойства, имеющий ту же скорость полимеризации, что и АН иитаконовая кислота (ИтК) (~ 1-3%),

позволяющаяулучшить накрашиваемость полиакрилонитрила за счет присутствия реакционноспособныхкарбоксильных групп. Так как в обычных условиях итаконовая кислота представляетсобой кристаллическое вещество (Тпл=163°С), то в производстве полиакрилонитрила(ПАН) для обеспечения гомогенной среды при синтезе ПАН используют не самукислоту, а ее натриевую соль итаконат натрия (ИтNa)


Синтезполиакрилонитрила протекает по механизму цепной радикальной полимеризации:

1. Образованиеактивного радикала в качестве инициатора используется порофор:

2. Ростмакромолекулы:




3. Обрыв макромолекулы может проходитьчерез молекулу двуокиси тиомочевины (ДОТ):

/> />
через молекулу изопропиловогоспирта (ИПС):

черезмолекулу мономера:


Свойства полиакрилонитрилаПоказатели

измерения

Значения 1 2 3 Характеристики строения Конфигурация цепи - Вытянутая транс-зигзаг Длина элементарного звена в направлении оси цепи нм 0,25-0,255 Средняя степень полимеризации - 1200-1600 Сегмент Куна нм 3,0-3,2 Характеристики кристалличности и плотности Степень кристалличности - малая Плотность

1,17-1,18 Характеристики кристаллической структуры Длина элементарной ячейки Ǻ 5,1 Число звеньев по длине элементарной ячейки - 2 Площадь поперечного сечения цепи А 28-31 Температурные характеристики Температуры

Стеклования 75-100 плавления 317-320 деструкции 200-250

Полиакрилонитрил используется для формования волокон,нитей и ПАН-жгутика. ПАН-волокна и нити широко используются для изготовленияизделий народного потребления и в техническом секторе.

Волокнана основе ПАН широко используются как в чистом виде, так и в смеси с другимиволокнами, в основном, в производстве трикотажных изделий, чаще всего верхнеготрикотажа, а также при изготовлении мебельных (обивочных) тканей, камвольных,суконных и ковровых изделий, пряжи для ручного вязания, чулочно-носочныхизделий.

Втехническом секторе ПАН-волокна применяются для изготовления искусственногомеха, одеял, теплоизоляционных прокладок, спецодежды. Технический ПАН-жгутик –это основное сырье для производства углеродных волокон, а также для армированияпластиков, используется эта продукция и в производстве гардин, брезентов,парусины, палаточных тканей.

2. Особенности вязкотекучего состояния полимеров

Текучее (жидкое) состояние веществ характеризуется ихспособностью к развитию необратимых деформаций, обусловленных взаимнымипоступательными перемещениями частиц (чаще - молекул). Механические свойстватекучих систем изучает область механики, называемая реологией. Реология полимеровустанавливает взаимосвязи между напряжениями, деформациями и скоростью развитиядеформаций при различных температурах, режимах деформирования и для текучихполимеров различного химического строения и различных молекулярных масс. Знаниетаких зависимостей необходимо для создания и совершенствования процессовпереработки полимеров путем формования их расплавов или растворов.

Длинноцепочечное строение полимерных молекул предопределяетряд особенностей свойств полимеров, находящихся в жидком (текучем) состоянии.

Первой особенностью жидких полимеров является их оченьвысокая вязкость, которая при течении может составлять от нескольких тысяч до1010 Па*с. Вследствие высокой вязкости текучих полимеров их называютвязкотекучими. Большие значения вязкости полимеров, возрастающие с повышениемих молекулярной массы, являются одним из доказательств длинноцепочечногостроения макромолекул.

Вторая особенность вязкотекучих полимеров - одно­временноепроявление наряду с необратимой также и высокоэластической деформации. Особеннозаметно это явление в процессе течения полимеров при невысоких температурах инебольших нагрузках. Текучие полимеры, в которых наряду с необратимойразвивается и высокоэластическая деформация, называют вязкоупругими. Проявлениевысокоэластичности означает, что при течении происходит принудительноеизменение конформаций макромолекул и числа контактов между ними, т.е. изменениеструктуры полимерной системы.

Третья особенность полимеров, находящихся в вязкотекучемрелаксационном состоянии, заключается в сложном механизме их течения, которое взависимости от условий может осуществляться путем перемещений отдельныхучастков цепей (сегментов), макромолекул в целом и даже их агрегатов.

Четвертая особенность процесса течения полимеров - наличиемеханохимических явлений. Высокая вязкость расплавов полимеров требует для осуществленияих течения повышенных температур и механических нагрузок. Поэтому при выбраннойтемпературе течения можно достигнуть такого момента, когда приложенноймеханической энергии станет достаточно для разрыва химических связей вмакромолекулах. Этот механохимический крекинг вызовет уменьшение молекулярноймассы и ускорение течения (хотя бы временное, пока образовавшиеся фрагменты непрореагируют путем рекомбинации или прививки к другим цепям). Примеханохимических процессах возможно образование разветвленных или частичносшитых структур, что может способствовать и замедлению течения.

Деформации при течении полимеров. При воздействия на расплав полимерамеханических нагрузок, вызывающих течение, наблюдается три простейших типадеформации: простой сдвиг, одноосное растяжение и всестороннее сжатие. Деформациясдвига g - величина безразмерная. Скоростьдеформации сдвига dg/dt=g* определяет изменение деформации во времени и имеет размерностьс-1.

Под влиянием приложенного напряжения в текущем полимереодновременно развиваются необратимые и обратимые высокоэластические деформации,а общая деформация является их суммой. По мере течения высокоэластическаядеформация достигает постоянного значения, а необратимая равномерноувеличивается во времени - состояние системы, при котором ее течение начинаетсяс постоянной скоростью, называют установившимся течением. Установившемусятечению соответствует динамическое равновесие процессов изменения структуры подвлиянием деформирования и ее восстановления под действием теплового движения.

Структуру текучей полимерной системы (расплава иликонцентрированного раствора) обычно представляют в виде флуктуационной сетки - узлами ее являются контакты между макромолекулами или их ассоциатами. Приотсутствии нагрузки и постоянной температуре плотность узлов флуктуационной сеткипостоянна; нагрузка, вызывающая течение (взаимное перемещение макромолекул),разрушает часть узлов, сдерживающих деформирование. Это приводит к быстромупонижению сопротивления течению, к структурной релаксации, заканчивающейся установившимсятечением.

На рис.1 представлено развитие общей деформации при низком ивысоком постоянных напряжениях сдвига. Первые участки приведенных зависимостей(отрезок ОА) соответствуют условно-упругой деформации, т.е. успевшей развитьсяза время приложения нагрузки высокоэластической деформации. Второй участок накривых рис.1, ограниченный первой вертикальной пунктирной линией, соответствуетдостижению предельной высокоэластической деформации; при малой нагрузке (рис. 1,а) наряду с этим происходят незначительные изменения структуры, и начинаетсяустановившееся течение. Снятие малой нагрузки в любой момент времени приводит крелаксации высокоэластической деформации и фиксации развившейся необратимойдеформации.

Рис. 1. Изменение во времени деформации вязкотекучего полимерапри низком (а) и высоком (б) постоянных напряжениях сдвига

При воздействии высокого напряжения сдвига быстрое нарастаниевысокоэластической деформации на участке до точки 3 задерживается, и одновременноначинают частично разрушаться межмолекулярные связи. Постоянное и высокоенапряжение действует на постепенно убывающее число таких связей, нагрузка наних возрастает и ускоряется процесс их разрушения (участок 3-4 на рис.1, б).После разрушения флуктуационной сетки начинается установившееся течение(участок после точки 4). Протяженность переходного участка 3-4 (рис.1, б) зависитот нагрузки и при большой ее величине этот участок может выродиться в точку.

Вязкость полимерных систем.

Процесс течения идеальных жид­костей подчиняется закону Ньютона

/> или />/>

показывающему на прямую пропорциональность между напряжениемсдвига sт и скоростью сдвига t, при этом коэффициент вязкости h (или просто вязкость) является константой для даннойтемпературы и характеризует сопротивление системы к сдвигу или внутреннеетрение. Наряду со сдвиговыми деформациями при течении полимеров происходит ихрастяжение в направлении течения, например при действии нормального напряжения.Скорость деформации растяжения называют продольным градиентом скорости, посколькуона зависит от перепада линейных скоростей перемещения соседних слоев в образцетекущего полимера.

В отличие от низкомолекулярных жидкостей подчинение про­цессовтечения полимеров закону Ньютона нетипично. Для большинства полимеров зависимостьнапряжения от скорости сдвига оказывается криволинейной, при этом вязкость,определяемая в каждой точке кривой по тангенсу угла наклона касательной в этойточке, с увеличением t уменьшается. Такие системы называют псевдопластичными.В случае псевдопластичных тел вязкость при постоянной температуре оказываетсязависящей от sт и t, ее называют эффективной вязкостью (hэф).

У некоторых двухфазных высококонцентрированных полимерных системувеличение скорости сдвига может приводить к повышению вязкости, например,вследствие увеличения числа контактов между частицами одной из текущих фаз ивозрастания доли процессов структурообразования. Такие текущие полимерныесистемы называют дилатантным… Существуют полимерные системы (обычнонаполненные - наполнитель образует нечто подобное пространственному каркасу),течение которых становится возможным только после достижения некоторогопредельного значения напряжения сдвига: после его достижения система начинаеттечь как идеальная, либо как неньютоновская жидкость.

В связи с тем, что скорости и напряжения сдвига могутменяться в широких пределах (до 10 порядков), зависимости sт от t чаще представляютв логарифмических координатах; типичная кривая течения псевдопластичной жидкостив широком интервале напряжения и скорости сдвига представлена на рис.2.

В общем виде кривая имеет S-образный вид: при достаточно низких и высоких значенияхскоростей и напряжений сдвига наблюдается пропорциональность между этимивеличинами. Из отсекаемых прямолинейными участками кривой течения на оси sт отрезков могут быть найдены значения наибольшей (h0) и наименьшей (hьин)ньютоновских вязкостей, при этом h0>hьин. На начальном прямолинейном участке кривой внешнеевоздействие, вызывающее течение, не влияет на структуру (если и изменяет, тотепловое движение ее восстанавливает). Средний криволинейный участок кривой(рис.2, а) называют структурной ветвью - под действием напряжения и перемещениямакромолекул нарушаются контакты между ними и изменяется структура системы.Полному разрушению структуры в системе отвечает переход к течению с наименьшейньютоновской вязкостью.


Рис.2. Кривая течения псевдопластичной жидкости в широком интервалескоростей сдвига (а) и зависимость вязкости от у (б)

Процессы разрушения или образования структур в текущей полимернойсистеме возможны и при постоянной скорости сдвига. Если для осуществлениятечения жидкости с постоянной скоростью сдвига требуется постепенноуменьшающееся во времени напряжение (до какого-то предела), то такую жидкостьназывают тиксотропной; само явление понижения вязкости системы за счетразрушения имеющейся в ней структурной организации при течении с постояннойскоростью называют тиксотропией. Противоположное явление повышения во временивязкости системы при течении с постоянной скоростью за счет формирования в нейновых межмолекулярных контактов, которые не могли реализоваться до течения,называют реопексией.

Наибольшая ньютоновская вязкость является наиболее важнымпараметром, характеризующим свойства полимеров в текучем состоянии; зависит оттемпературы и молекулярной массы.

Закон течения полимеров. В связи с отклонениями процессов течения полимеров от законатечения идеальных жидкостей и для расчета параметров процессов переработкиполимеров в изделия необходимо знание закона, в соответствии с которымпроисходит деформирование расплавов или растворов высокомолекулярныхсоединений.

Для полимеров типична кривая течения как дляпсевдопластичного тела, математическое описание такого рода кривых наиболееточно осуществляется степенной зависимостью

Показатель п в уравнении называется индексом течения. Дляряда наиболее распространенных полимеров индекс течения - величина табличная.Знание этого показателя позволяет по одному значению напряжения и скоростисдвига рассчитать всю кривую течения данного полимера. Степенной закон течениясоблюдается в достаточно широких пределах напряжений сдвига.

3. Характеристика a , g , b -целлюлоз

Целлюлоза является основным видом сырья в производствеискусственных волокон. Она представляет собой высокомолекулярное органическое соединение,относящееся к классу углеводов. Молекула целлюлозы, как уже указывалось,состоит из очень большого числа элементарных звеньев С6Н10О5.Содержание целлюлозы в растительных волокнах колеблется в широких пределах от30-60% до 85-95% (в хлопке).

В производстве вискозного волокна применяется в основномсульфитная и сульфатная древесная целлюлоза; может быть использована такжецеллюлоза из хлопкового пуха, соломы и камыша.

Сульфитную или сульфатную целлюлозу получают путем выделенияее из древесины. Для этого содержащиеся в древесине лигнин, смолы и другиепримеси переводят в раствор и удаляют из обрабатываемой массы.

Для получения высококачественной вискозной целлюлозынеобходим однородный выдержанный баланс - древесные стволы, тщательно очищенныеот коры и сучьев, отсортированные и нарезанные на двухметровые поленья. Накачество готовой целлюлозы оказывает влияние возраст дерева, местопроизрастания его, плотность древесины, наличие в ней пороков (сучков, гнили ит. п.), влажность и пр.

Сульфитный метод получения целлюлозы заключается в обработкедревесной массы раствором бисульфита кальция, содержащим свободную SO2, при высокой температуре и под давлением. Исходнымсырьем служит древесина ели или пихты. Выдержанный баланс подвергаетсясоответствующей обработке (на корообдирочных машинах) и измельчается в щепуопределенного размера (например, длиной 20-30 мм при толщине 2-3 мм) на рубильных машинах. Отсортированная щепа поступает на варку, т.е.загружается в обогреваемый котел, куда подается варочная жидкость.

Процесс варки целлюлозы включает две стадии. На первой стадиидревесина пропитывается варочной жидкостью при 105-115°С в течение 2-4 ч (такназываемая заварка), а затем при постепенном повышении температуры до 130-145°С происходит процесс собственно варки, который длится 6-12 ч. По окончанииварки масса поступает в железобетонные резервуары с ложным дном, где целлюлозаотделяется от варочной жидкости и промывается. При последующих промывкахцеллюлозная масса очищается от непроваренных частиц и поступает на отбелку. Приэтом окисляются и удаляются красящие пигменты, целлюлоза дополнительноочищается от лигнина, а при соответствующих условиях уменьшается степень ееполимеризации. По окончании отбелки масса промывается и обезвоживается,высушивается до содержания влаги 5-9% и разрезается на листы размером 600x800 мм.Вес 1 м2 целлюлозы 500-600 г.

Для повышения содержания основного полезного вещества - a-целлюлозы - полученный продукт передотбелкой и сушкой подвергают облагораживанию. Этот процесс заключается вобработке целлюлозной массы слабым раствором едкого натра для удалениярастворимых примесей. В результате содержание a-целлюлозы возрастает с 88-89% до 92-94% и выше.

Сульфатный метод получения целлюлозы отличается отсульфитного тем, что древесная щепа обрабатывается не раствором бисульфита кальция,а раствором, содержащим едкий натр и сульфид натрия.

При сульфитном методе варки целлюлоза в основномосвобождается только от лигнина, а значительные количества пентозанов остаются.Поэтому при получении целлюлозы с малым содержанием примесей из древесины лиственныхпород, содержащей больше пентозанов, чем хвойные, пользуются сульфатным методомварки. Целлюлозу из соломы получают также сульфатным методом.

Для производства некоторых видов искусственного волокна и целлофанаобычно применяют сульфитную облагороженную целлюлозу, называемую вискозной.Высокопрочная кордная нить вырабатывается из специальных сортов сульфатнойцеллюлозы.

В производстве вискозных волокон в последнее время все болееширокое применение находит сульфатная целлюлоза, в основном благодаря более равномерномуфракционному составу, что обеспечивает получение волокна с лучшимифизико-механическими свойствами (в частности, с большей разрывной и усталостнойпрочностью), чем из сульфитной целлюлозы. Кроме того, при этом методе лучшеиспользуется древесная масса - получается меньше отходов.

Опыт показал, что при содержании a-целлюлозы менее 95- 96% нельзяполучить высокопрочную кордную нить. Если же содержание a-целлюлозы будет ниже 92%, то труднодаже получать достаточно хорошие по механическим свойствам вискознуютекстильную нить и штапельное волокно.

a-целлюлозой называется высокомолекулярная фракция целлюлозы,которая не растворяется в 17,5%-ном растворе едкого натра при 20 °С в течение 1часа.

В щелочном фильтрате определяют содержание так называемых гемицеллюлоз,т.е. суммарное количество низкомолекулярных фракций целлюлозы (гексозанов ипентозанов), растворимых в 17,5%-ном растворе щелочи.

Кроме суммарного определения количества гемицеллюлоз,определяют содержание b- иg-деллюлоз.

b-целлюлозой называется фракция гемицеллюлоз, которая высаживаетсяиз щелочного раствора при добавлении небольших количеств серной или уксуснойкислоты. В состав b-целлюлозывходят полисахариды со степенью полимеризации 50-150.

g-целлюлозой называется фракция гемицеллюлоз, состоящая изполисахаридов со степенью полимеризации менее 50.

Высадив и отфильтровав b-целлюлозу, в фильтрате определяют оставшуюся g-целлюлозу. Количество b-целлюлозы (в %) вычисляют какразность между общим содержанием гемицел­люлоз и содержанием g-целлюлозы.

Вязкость целлюлозы, и в особенности однородность ее по вязкости,как в пределах каждой партии (в отдельных кипах), так и в разных партиях имеетпервостепенное значение. В случае несоответствия вязкости целлюлозы стандартнойприходится соответственно изменять режим приготовления вискозы, так как дляобеспечения нормального проведения технологического процесса получения волокнатребуется, чтобы прядильный раствор имел определенную вязкость.

Зольность целлюлозы (так называемое «содержание золы»), т.е.количество минеральных веществ в целлюлозе должно быть минимальным. В противномслучае затрудняется процесс фильтрации вискозы. «Содержание золы» в целлюлозезависит от тщательности промывки, и особенно качества воды, применяемой на целлюлозныхзаводах.

Сорность целлюлозы, т.е. содержание посторонних включений,зависит от непровара и загрязнения получаемого продукта в процессе его изготовления.Непровар целлюлозы (костра) загрязняет вискозу и тем самым ухудшает еефильтруемость.

Реакционная способность целлюлозы - показатель,характеризующий поведение целлюлозы в процессе приготовления вискозы. Методопределения этого показателя основан на приготовлении (в одном сосуде за однуоперацию) из анализируемой пробы прядильного раствора с постоянным содержаниемцеллюлозы (3,3%), едкого натра (11%) и сероуг­лерода (90% от количества a-целлюлозы) и определениифильтруемости полученной вискозы через никелевую сетку № 250. Если замедлениефильтрации между первой и пятой порцией вискозы не превышает 250 сек, то pan вор считают фильтрующимся.


Список использованной литературы

1. Роговин З.А. Основы химии и технологии химических волокон. М.: Химия,1974, т.1,2.

2. Карбоцепныесинтетические волокна/Под ред. К.Е.Перепелкина М.: Химия, 1973. - 589 с.

3. Киреев В.В.Высокомолекулярные соединения. – М.: Высшая школа, 1992. – 512 с.

Тема 1. Основные понятия и определения химии и физики полимеров: струтура и классификацмя полимеров
Основные понятия химии полимеров. Макромолекула, элементарное звено, полимер, олигомер, степень полимеризации, полимергомологи. Отличительные особенности ВМС. Молекулярная масса (ММ) и полидисперсность. Молекулярно-массовое распределение (ММР). Зависимость свойств от ММ и ММР. Геометрическая форма макромолекул: линейные, разветвленные, лестничные, пространственные. Взаимосвязь между формой макромолекул полимеров и возможностью их переработки. Структура и классификация полимеров Классификация полимеров по происхождению, по химическому составу, по поведению при нагревании, по методу синтеза. Гомо- и сополимеры. Способы получения полимеров из низкомолекулярных соединений – полимеризация и поликонденсация, сравнение этих методов. Модификация полимеров.

Тема 2. Методы получения основных типов полимеров
Цепная полимеризация.
Свободно-радикальная полимеризация. Механизм. Элементарные стадии процесса. Влияние строения мономера на способность к полимеризации. Методы инициирования: термический,фотохимический,радиационный, химический. Типы инициаторов; механизмы их распада в процессе инициирования. Особенности и преимущества окислительно-восстановительного инициирования. Скорость и энергия активации стадии инициирования. Стадия роста цепи. Зависимость реакционной способности растущих макрорадикалов от условий реакции. Влияние устойчивости макрорадикалов на направление присоединения мономеров. Стадия обрыва цепи. Рекомбинация, диспропорционирование, передача цепи на мономер, растворитель, инициатор и полимер. Гель-эффект. Теломеризация. Ингибиторы, замедлители, регуляторы молекулярной массы полимера. Механизм ингибирования. Кинетическое уравнение радикальной полимеризации. Влияние концентрации мономера и инициатора, температуры, давления, примесей и кислорода на скорость полимеризации, молекулярную массу и структуру полимера. Термодинамика полимеризации. Верхняя предельная температура полимеризации.
Ионная полимеризация.
Виды цепной ионной полимеризации. Строение карбоионов, их активность. Реакционная способность мономеров в ионной полимеризации. Катализаторы катионной полимеризации, роль сокатализаторов. Механизм процесса. Элементарные стадии, их скорость. Влияние природы растворителя и противоиона, условий проведения реакции на ее механизм. Анионная полимеризация. Мономеры, склонные к анионной полимеризации. Катализаторы анионной полимеризации. Элементарные стадии процесса. "Живые полимеры".
Ионно-координационная полимеризация. Понятие о стереорегулярных полимерах. Полимеризация на катализаторах Натта-Циглера и оксидно-металлических катализаторах. Полимеризация с участием p -аллильных комплексов переходных металлов. Влияние природы и соотношения компонентов катализатора на структуру полимера. Механизм процесса.
Сополимеризация.
Значение метода. Радикальная сополимеризация. Различия в активности мономеров, константы сополимеризации. Зависимость дифференциального состава сополимера от констант сополимеризации и концентрации мономеров (уравнение Майо и Льюиса). Понятие об азеотропных полимерах и композиционной неоднородности полимеров. Ионная сополимеризация. Основные закономерности.
Ступенчатые процессы синтеза полимеров.
Ступенчатая полимеризация. Отличительные особенности ступенчатых реакций. Закономерности ступенчатой полимеризации. Влияние строения мономера на молекулярную массу полимера. Получение полиэтиленоксида, полиуретанов, поликарбамидов. Диеновый синтез (реакция Дильса-Альдера). Полимеризация циклов. Термодинамика процесса. Механизм и кинетика полимеризации циклов. Роль активаторов. Взаимосвязь между реакционной способностью (напряженностью или основностью) циклов и механизмом реакции. Влияние условий проведения реакции на равновесие цикл - полимер. Полимеризация оксидов, лактонов, лактамов. Полимеризация капролактама (гидролитическая, катионная, анионная).
Поликонденсация (ПК).
Виды реакций, используемых при поликонденсации. Влияние строения мономеров и их функциональности на способность к поликонденсации и свойства образующихся полимеров. Механизм равновесной поликонденсации. Роль реакций деструкции. Влияние температуры, концентрации и соотношения исходных мономеров, катализаторов и НМС, образующихся при ПК, примесей монофункциональных соединений, на равновесие и молекулярную массу полимера. Способы проведения равновесной поликонденсации (в расплаве, в растворе, в твердой фазе). Особенности неравновесной поликонденсации. Способы проведения неравновесной поликонденсации. Межфазная ПК. Ее закономерности, примеры. Влияние температуры, продолжительности реакции, концентрации мономеров, избытка одного из компонентов, перемешивания на скорость и молекулярную массу. Механизм акцепторно-каталитического процесса. Трехмерная поликондесация. Роль функциональности мономеров, примеры. Совместная поликонденсация. Особенности процесса в случае равновесной и неравновесной ПК.
Привитая и блок-сополимеризация.
Блоксополимеры. Получение методами цепной полимеризации, механохимическими, поликонденсации. Привитые сополимеры. Полимеризационные, радиационные методы синтеза.

Тема 3. Химические превращения полимеров (ХПП)
Общая характеристика химических реакций полимеров. Влияние структуры полимера на ХПП: конфигурационные, конформационные и надмолекулярные эффекты. Внутримолекулярные и полимераналогичные превращения полимеров. Реакции замещения, присоединения, отщепления, изомеризации в полимерной цепи. Возможность химической модификации полимеров. Межмолекулярные реакции полимеров. Взаимодействие полимеров с полифункциональными соединениями. Реакции структурирования полимеров. Основные виды структурирования. Влияние структурирования на свойства полимеров. Деструкция полимеров. Отрицательная и положительная роль деструкции. Виды деструктивных процессов. Цепной радикальный характер процесса. Термическая, окислительная, фотохимическая, радиационная, механохимическая и фотохимическая деструкция. Стабилизаторы и антиоксиданты. Проблема стабилизации полимерных материалов.

Тема 4. Структура полимеров
Межмолекулярные взаимодействия в полимерах. Энергия когезии. Зависимость величины когезии от молекулярной массы, химического состава, степени упорядоченности и регулярности строения полимеров.
Первичная структура макромолекул. Химический состав. Конфигурация макромолекул. Ближний и дальний конфигурационный порядок. Конформация макромолекул. Ближний и дальний конформационный порядок. Особенности внутреннего вращения в макромолекулах. Гибкость цепей полимеров. Термодинамическая и кинетическая гибкость. Факторы, определяющие гибкость цепей полимеров. Характеристика размеров макромолекул. Среднеквадратичное расстояние между концами цепи, среднеквадратичный радиус инерции. Оценка гибкости макромолекулы. Понятие о статистическом, кинетическом и механическом сегменте.
Надмолекулярная структура полимеров.
Понятие о надмолекулярной структуре полимеров. Строение кристаллических полимеров. Понятие о кристаллографической ячейке. Пластины. Фибриллы. Глобулы. Сферолиты. Степень кристалличности. Надмолекулярное строение аморфных полимеров. Пачечная, доменная, кластерная модели строения аморфных полимеров. Надмолекулярная структура полимеров в ориентированном состоянии. Микрофибриллярность структуры. Физические методы исследования полимеров: микроскопия, РСА, ДЛП и др.

Тема 5. Релаксационные свойства полимеров
Релаксационные явления в полимерах. Релаксация деформации. Ползучесть полимерных материалов. Релаксация напряжения. Упругий гистерезис.

Тема 6. Фазовые и физические состояния полимеров
Агрегатные состояния веществ. Фазовые состояния веществ. Фазовые и релаксационные (физические) состояния полимеров.
Термомеханический метод исследования фазовых и физических переходов в полимерах. Факторы, определяющие вид термомеханической кривой.
Стеклообразное состояние полимеров и стеклование. Теории стеклования. Влияние структуры полимера на температуру стеклования. Методы определения температуры стеклования полимеров.
Высокоэластическое состояние полимеров. Тепловое движение в полимере выше Т с. Термодинамика высокоэластичности. Релаксационный характер перехода из высокоэластического состояния в застеклованное. Энергия активации процесса. Факторы, влияющие на пределы эластичнсти.
Вязкотекучее состояние полимеров. Тепловое движение в расплавах полимеров. Механизм течения полимеров. Температура текучести и определяющие ее факторы. Реология полимеров. Виды реологических систем. Кривые течения расплавов. Вязкость расплавов полимеров:начальная, эффективная, наименьшая. Зависимость вязкости от молекулярной массы, температуры; полидисперсности. Высокоэластичность расплавов. Аномалии вязкости расплавов. Значение физических состояний полимера в переработке и эксплуатации полимерных материалов.
Кристаллическое состояние полимера. Кристаллизация как фазовый переход. Условия, необходимые для получения кристаллических полимеров и кристаллизации. Кинетика кристаллизации. Термодинамика плавления и кристаллизации. Факторы, влияющие на процессы кристаллизации и плавления.

Тема 7. Основные физико-механические свойства полимеров
Механические свойства полимеров.
Деформационные свойства. Деформация аморфных полимеров. Упругая деформация. Вынужденная эластичность, Тхр, зависимость от различных факторов. Деформация кристаллических полимеров. Деформационные кривые. Особенности деформации растяжения и кручения полимеров. Прочность и разрушение. Теоретическая прочность, прочность, реальных полимеров. Долговечность полимеров. Уравнение Журкова, его анализ и значение. Термофлуктационная теория и механизм разрушения полимеров. Влияние макромолекулярных структур на механические свойства полимеров.
Теплофизические свойства полимеров.
Теплоемкость полимеров. Скелетная, характеристическая и конформационная составляющие теплоемкости твердых полимеров. Зависимость теплоемкости от температуры для кристаллических и аморфных полимеров. Теплопроводность. Зависимость теплопроводности от температуры, физического и фазового состояния, структуры и формы макромолекул полимера. Температуропроводность, ее зависимость от температуры, фазового состояния, молекулярной массы, формы макромолекул. Тепловое расширение. Зависимость коэффициентов объемного и линейного расширения от температуры, фазового состояния и структуры полимеров.
Электрические свойства полимеров.
Ионная, моль-ионная и электронная проводимость. Проводники, полупроводники и диэлектрики, электреты. Свойства полимерных диэлектриков: электрическая проводимость, диэлектрическая проницаемость, диэлектрические потери, электрическая прочность, статическая электризация. Влияние температуры, фазового состояния, состава полимера на электрические свойства. Проводимость полимерных полупроводников и электропроводящих материалов. Механизмы электропроводимости, их зависимость от структуры полимеров. Электретное состояние. Гетероэлектреты и гомоэлектреты, их получение и свойства.

Тема 8. Система полимер-низкомолекулярная жидкость
Набухание полимеров. Факторы, определяющие набухание. Ограниченное и неограниченное набухание. Контракция и давления набухания.
Растворение полимеров. Термодинамика растворения. Растворимость полимеров. Хороший и плохой растворитель. Параметр растворимости. Влияние различных факторов. Диаграммы фазового равновесия полимер-растворитель. Системы с ВКТР и НКТР.
Разбавленные растворы полимеров. Строение разбавленных растворов. Природа вязкости разбавленных растворов. Влияние различных факторов на вязкость разбавленных растворов.
Концентрированные растворы. Реология. Неньютоновское течение. Структурная вязкость. Тиксотропия. Эластичность растворов полимеров. Значение изучения вязкости концентрированных растворов для переработки полимеров.
Коллоидные системы. Студни и гели полимеров, их структуры. Студни 1 и 2 типов. Значение гелей в процессах переработки и эксплуатации полимеров.

Тема 9. Смеси полимеров
Смеси полимеров с пластификаторами. Внешняя и внутренняя пластификация. Механизм пластификации, важнейшие промышленные пластификаторы.
Смеси полимеров с полимерами. Совместимость полимеров, сегментальная растворимость. Свойства полимерных смесей.
Наполненные полимеры. Виды наполнителей. Механизм усиления полимера активным наполнителем. Свойства наполненных полимеров.

Литература (учебники):
1. Тугов И.И., Кострыкина Г.И. Химия и физика полимеров. М.:Химия,
1989.-432 с.
2. Кулезнев В.Н., Шершнев В.А. Химия и физика полимеров. М.:Высш.
шк., 1988.-312 с.
3. Тагер А.А. Физико-химия полимеров. М.:Химия, 1978.-514 с.
4. Киреев В.В. Высокомолекулярные соединения. М.:Высш. шк., 1992.512 с.
5. Семчиков Ю.Д. Высокомолекулярные соединения. М.:Издательский
центр “Академия”, 2005.-368 с.
2

Литература (учебные пособия):
1. Мансурова И.А. Химия и физика полимеров. Учебное пособие к
лекционному курсу. ВятГУ, 2016 (обновленный).
2. Голицина Л.А. Химия и физика полимеров. Лабораторные работы и
контрольные вопросы. ВятГУ, 2010 (электронный ресурс).
3· «Введение» (модуль 1). ,
классификация полимеров, структура полимеров, краткая
характеристика основных групп полимеров.
· «Синтез полимеров» (модуль 2). Способы получения полимеров.
Классификация реакций полимеризации, основные механизмы
синтеза полимеров, технические приемы синтеза полимеров.
· «Физика полимеров» (модуль 3). Физические и фазовые
состояния полимеров, деформационные свойства полимеров,
растворы полимеров.
· «Химия полимеров» (модуль 4). Основные химические реакции,
протекающие в процессах синтеза, переработки и эксплуатации
полимерных материалов.
4

Основные понятия и определения курса
Полимеры – высокомолекулярные соединения,
молекулы которых построены из большого числа
повторяющихся структурных единиц (одинаковых или
разных), соединенных между собой в длинные цепи.
структурные единицы
одинаковые – гомополимер
разные
– сополимер
типы связей:
химические
физические
координационные

Основные понятия и определения курса
Полимеры образуются в результате:
Реакций (со)полимеризации мономеров;
Полимераналогичных превращений в полимерах.
(Со)Полимеризация - процесс
образования макромолекул из
мономеров (одинаковых или
разных)
Исходные НМС, из которых образуются
полимеры в результате реакций
полимеризации называются мономерами
(моно – один).
Полимераналогичные
превращения - процесс
химической модификации
полимеров, протекающий без
изменения длины макромолекул

Основные понятия и определения курса
Структурная формула полимера –
строение повторяющегося звена, заключенное в скобки
(круглые, квадратные) с указанием n,
где n – степень полимеризации
ПЭ
(рац. ном-ра)
Если строение повторяющегося звена совпадает
по природе атомов,
по количеству атомов,
порядку связи атомов
со строением мономера, то повторяющееся звено называется
мономерным.

Основные понятия и определения курса
Мономерное звено (МЗ) – повторяющееся звено, которое
образуется из молекулы мономера в процессе полимеризации,
(совпадает по количеству, природе и порядку связи атомов с молекулой
мономера).
Составное повторяющееся звено (СПЗ) - наименьшее
составное звено (атом или группа атомов), многократным
повторением которого можно описать строение полимера.
Полиметилен (сис. ном-ра)

Основные понятия и определения курса
Полимеры, полученные ступенчатой
полимеризацией:
повторяющееся звено СПЗ или МЗ?
СПЗ МЗ

10.

Основные понятия и определения курса
Варианты изображения структурных формул
гомополимеров:
C
H2
Полипропилен (ПП)
C
H2
Полиэтилен (ПЭ)
Полибутадиен (СКД)
сополимеров:
H2
C
C
H
C
H
H2
C
H2
C
H
C
x
C
y
N
Бутадиен-нитрильный каучук (БНКС)
Бутилкаучук (БК)

11.

Основные понятия и определения курса
Структурные элементы макромолекул
Структурные элементы макромолекулы ПП

12.

Основные понятия и определения курса

13.

Основные понятия и определения курса
Степень полимеризации n (m, x, y в случае сополимеров)
отражает количество структурных единиц в молекулах,
может достигать сотни, тысячи единиц.
Молекулы полимеров имеют большую молекулярную
массу 104 – 106, чаще называются макромолекулами.
ММпол = nМзв
n = ММпол /Мзв
где ММпол - молекулярная масса полимера
Мзв - молекулярная масса повторяющегося звена
Свойства полимера (физические и химические) не изменяются
при добавлении или удалении одного или нескольких повторяющихся
(мономерных) звеньев.

14.

Основные понятия и определения курса
Традиционные синтетические полимеры полидисперсны, т.е.
представляют собой смесь полимергомологов – молекул
одинакового химического строения, но разной степени
полимеризации n (разной длины, разной ММ).
Фракционирование
(методом дробного осаждения)
Высокомолекулярная фракция
……
Низкомолекулярная фракция
до 10 -15 фракций
Определив содержание отдельных
фракций в общей массе полимера можно
построить кривые молекулярно-массового
распределения (кривые ММР).
Кривые ММР количественно характеризуют
полидисперсность.

15.

Кривые молекулярно-массового распределения
полимеров (ММР)
Узкое ММР (1) – в полимере
преобладают макромолекулы близкой
длины (на рис. в полимере преобладает
низкомолекулярная фракция);
Широкое ММР (2) – в полимере не
возможно выделить преобладающую
фракцию (много молекул небольшой,
средней, большой длины).
Бимодальное распределение: наличие
двух преобладающих фракций,
одна из которых обеспечивает
хорошие технологические свойства,
а другая – эксплуатационные.
Кривые ММР (бимодальное
распределение):
интегральная (сплошная) и
дифференциальная (пунктирная)

16.

Основные понятия и определения
Олигомеры - соединения, построенные из
повторяющихся мономерных единиц, при этом степень
полимеризации невелика (олигос – немного), ММ ~103.
Сходство с полимерами:
состоят из повторяющихся
структурных единиц
Отличия от полимеров:
имеют меньшую ММ
при добавлении или
удалении одного или
нескольких
мономерных звеньев
свойства олигомера
изменяются

17.

Основные отличия ВМС от НМС
Способны существовать только в конденсированном
(твердом или жидком) состоянии.
Растворы полимеров (даже разбавленные) имеют вязкость
намного выше, чем более концентрированные растворы НМС.
Растворение полимеров даже в термодинамически хороших
растворителях проходит через стадию набухания.
Полимеры способны к пленко- и волокнообразованию.
Полимеры способны к развитию высокоэластической
деформации, большой по величине и обратимой по своему
характеру (каучуки).
Химические реакции полимеров носят сложный характер;
протекают неравномерно по длине макромолекулы.

18.

Полимеры существуют
только в твердом и жидком
агрегатном состоянии
Агрегатные состояния НМС
(отличаются плотностью упаковки
и характером движения молекул)
Процесс растворения полимера
даже в «хорошем»
растворителе через стадию
набухания
Сущность
высокоэластической
деформации
полимеров

19.

Классификация полимеров
1. По происхождению
Природные (натуральные) – полимеры, выделенные из сырья
животного, растительного, микробиологического, минерального
происхождения. Образуются в ходе фото-, биосинтеза из простейших
соединений под действием ферментов, света и других факторов;
Искусственные - природные полимеры, подвергнутые химической,
физической или биологической модификации;
Синтетические – полимеры, полученные путем химического синтеза
из молекул мономеров или путем полимераналогичных превращений в
полимерах.
19

20.

Классификация полимеров
Природные
20

21.

Классификация полимеров
Искусственные
Синтетические