Биографии Характеристики Анализ

Вычисление определенного интеграла методом прямоугольников. Численное интегрирование

Екатеринбург


Вычисление определенного интеграла

Введение

Задача численного интегрирования функций заключается в вычислении приближенного значения определенного интеграла:

на основе ряда значений подынтегральной функции.{ f(x) |x=x k = f(x k) = y k }.

Формулы численного вычисления однократного интеграла называются квадратурными формулами, двойного и более кратного – кубатурными.

Обычный прием построения квадратурных формул состоит в замене подынтегральной функции f(x) на отрезке интерполирующей или аппроксимирующей функцией g(x) сравнительно простого вида, например, полиномом, с последующим аналитическим интегрированием. Это приводит к представлению

В пренебрежении остаточным членом R[f] получаем приближенную формулу

.


Обозначим через y i = f(x i) значение подинтегральной функции в различных точках на . Квадратурные формулы являются формулами замкнутого типа, если x 0 =a , x n =b.

В качестве приближенной функции g(x) рассмотрим интерполяционный полином на в форме полинома Лагранжа:

,

, при этом , где - остаточный член интерполяционной формулы Лагранжа.

Формула (1) дает

, (2)

. (3)

В формуле (2) величины {} называются узлами, {} – весами, - погрешностью квадратурной формулы. Если веса {} квадратурной формулы вычислены по формуле (3), то соответствующую квадратурную формулу называют квадратурной формулой интерполяционного типа.

Подведем итог.

1. Веса {} квадратурной формулы (2) при заданном расположении узлов не зависят от вида подынтегральной функции.

2. В квадратурных формулах интерполяционного типа остаточный член R n [f] может быть представлен в виде значения конкретного дифференциального оператора на функции f(x). Для

3. Для полиномов до порядка n включительно квадратурная формула (2) точна, т.е. . Наивысшая степень полинома, для которого квадратурная формула точна, называется степенью квадратурной формулы.

Рассмотрим частные случаи формул (2) и (3): метод прямоугольников, трапеций, парабол (метод Симпсона). Названия этих методов обусловлены геометрической интерпретацией соответствующих формул.

Метод прямоугольников

Определенный интеграл функции от функции f(x): численно равен площади криволинейной трапеции, ограниченной кривыми у=0, x=a, x=b, y=f(x) (рисунок. 1).


Рис. 1 Площадь под кривой y=f(x) Для вычисления этой площади весь интервал интегрирования разбивается на n равных подинтервалов длины h=(b-a)/n. Площадь под подынтегральной кривой приближенно заменяется на сумму площадей прямоугольников, как это показано на рисунке (2).

Рис. 2 Площадь под кривой y=f(x) аппроксимируется суммой площадей прямоугольников
Сумма площадей всех прямоугольников вычисляется по формуле

Метод, представленный формулой (4), называется методом левых прямоугольников, а метод, представленный формулой(5) – методом правых прямоугольников:

Погрешность вычисления интеграла определяется величиной шага интегрирования h. Чем меньше шаг интегрирования, тем точнее интегральная сумма S аппроксимирует значение интеграла I. Исходя из этого строится алгоритм для вычисления интеграла с заданной точностью. Считается, что интегральная сумма S представляет значение интеграла I c точностью eps, если разница по абсолютной величине между интегральными суммами и , вычисленными с шагом h и h/2 соответственно, не превышает eps.

Для нахождения определенного интеграла методом средних прямоугольников площадь, ограниченная прямыми a и b, разбивается на n прямоугольников с одинаковыми основаниями h, высотами прямоугольников будут точки пересечения функции f(x) с серединами прямоугольников (h/2). Интеграл будет численно равен сумме площадей n прямоугольников (рисунок 3).


Рис. 3 Площадь под кривой y=f(x) аппроксимируется суммой площадей прямоугольников

,

n – количество разбиений отрезка .

Метод трапеций

Для нахождения определенного интеграла методом трапеций площадь криволинейной трапеции также разбивается на n прямоугольных трапеций с высотами h и основаниями у 1 , у 2 , у 3 ,..у n , где n - номер прямоугольной трапеции. Интеграл будет численно равен сумме площадей прямоугольных трапеций (рисунок 4).


Рис. 4 Площадь под кривой y=f(x) аппроксимируется суммой площадей прямоугольных трапеций.

n – количество разбиений

(6)

Погрешность формулы трапеций оценивается числом

Погрешность формулы трапеций с ростом уменьшается быстрее, чем погрешность формулы прямоугольников. Следовательно, формула трапеций позволяет получить большую точность, чем метод прямоугольников.

Формула Симпсона

Если для каждой пары отрезков построить многочлен второй степени, затем проинтегрировать его на отрезке и воспользоваться свойством аддитивности интеграла, то получим формулу Симпсона.

В методе Симпсона для вычисления определенного интеграла весь интервал интегрирования разбивается на подинтервалы равной длины h=(b-a)/n. Число отрезков разбиения является четным числом. Затем на каждой паре соседних подинтервалов подинтегральная функция f(x) заменяется многочленом Лагранжа второй степени (рисунок 5).

Рис. 5 Функция y=f(x) на отрезке заменяется многочленом 2-го порядка

Рассмотрим подынтегральную функцию на отрезке . Заменим эту подынтегральную функцию интерполяционным многочленом Лагранжа второй степени, совпадающим с y= в точках :


Проинтегрируем на отрезке .:

Введем замену переменных:

Учитывая формулы замены,

Выполнив интегрирование, получим формулу Симпсона:

Полученное для интеграла значение совпадает с площадью криволинейной трапеции, ограниченной осью , прямыми , и параболой, проходящей через точки На отрезке формула Симпсона будет иметь вид:

В формуле параболы значение функции f(x) в нечетных точках разбиения х 1 , х 3 , ..., х 2 n -1 имеет коэффициент 4, в четных точках х 2 , х 4 , ..., х 2 n -2 - коэффициент 2 и в двух граничных точках х 0 =а, х n =b - коэффициент 1.

Геометрический смысл формулы Симпсона: площадь криволинейной трапеции под графиком функции f(x) на отрезке приближенно заменяется суммой площадей фигур, лежащих под параболами.

Если функция f(x) имеет на непрерывную производную четвертого порядка, то абсолютная величина погрешности формулы Симпсона не больше чем

где М - наибольшее значение на отрезке . Так как n 4 растет быстрее, чем n 2 , то погрешность формулы Симпсона с ростом n уменьшается значительно быстрее, чем погрешность формулы трапеций.

Вычислим интеграл

Этот интеграл легко вычисляется:

Возьмем n равным 10, h=0.1, рассчитаем значения подынтегральной функции в точках разбиения , а также полуцелых точках .

По формуле средних прямоугольников получим I прям =0.785606 (погрешность равна 0.027%), по формуле трапеций I трап =0.784981 (погрешность около 0,054. При использовании метода правых и левых прямоугольников погрешность составляет более 3%.

Для сравнения точности приближенных формул вычислим еще раз интеграл

но теперь по формуле Симпсона при n=4. Разобьем отрезок на четыре равные части точками х 0 =0, х 1 =1/4, х 2 =1/2, х 3 =3/4, х 4 =1 и вычислим приближенно значения функции f(x)=1/(1+x) в этих точках: у 0 =1,0000, у 1 =0,8000, у 2 =0,6667, у 3 =0,5714, у 4 =0,5000.

По формуле Симпсона получаем

Оценим погрешность полученного результата. Для подынтегральной функции f(x)=1/(1+x) имеем: f (4) (x)=24/(1+x) 5 , откуда следует, что на отрезке . Следовательно, можно взять М=24, и погрешность результата не превосходит величины 24/(2880× 4 4)=0.0004. Сравнивая приближенное значение с точным, заключаем, что абсолютная ошибка результата, полученного по формуле Симпсона, меньше 0,00011. Это находится в соответствии с данной выше оценкой погрешности и, кроме того, свидетельствует, что формула Симпсона значительно точнее формулы трапеций. Поэтому формулу Симпсона для приближенного вычисления определенных интегралов используют чаще, чем формулу трапеций.

Сравнение методов по точности

Сравним методы по точности, для этого произведем вычисления интеграла функций y=x, y=x+2, y=x 2 , при n=10 и n=60, a=0, b=10. Точное значение интегралов составляет соответственно: 50, 70, 333.(3)

таблица 1

Из таблицы 1 видно, что наиболее точным является интеграл, найденный по формуле Симпсона, при вычислении линейных функций y=x, y=x+2 также достигается точность методами средних прямоугольников и методом трапеций, метод правых прямоугольников является менее точным. Из таблицы 1 видно, что при увеличении количества разбиений n (увеличения числа интеграций) повышается точность приближенного вычисления интегралов

Задание на лабораторную работу

1) Написать программы вычисления определенного интеграла методами: средних, правых прямоугольников, трапеции и методом Симпсона. Выполнить интегрирование следующих функций:

на отрезке с шагом , ,

3. Выполнить вариант индивидуального задания (таблица 2)

Таблица 2 Индивидуальные варианты задания

Функция f(x)

Отрезок интегрирования

2) Провести сравнительный анализ методов.


Вычисление определенного интеграла: Методические указания к лабораторной работе по дисциплине «Вычислительная математика» / сост. И.А.Селиванова. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2006. 14 с.

Указания предназначены для студентов всех форм обучения специальности 230101 – «Вычислительные машины, комплексы, системы и сети» и бакалавров направления 230100 – «Информатика и вычислительная техника». Составитель Селиванова Ирина Анатольевна

Графическое изображение:


Вычислим приближенное значение интеграла. Для оценки точности используем просчет методом левых и правых прямоугольников.

Рассчитаем шаг при разбиении на 10 частей:

Точки разбиения отрезка определяются как.

Вычислим приближенное значение интеграла по формулам левых прямоугольников:

0.1(0.6288+0.6042+0.5828+0.5642+0.5479+0.5338+0.5214+0.5105+0.5008+0.4924)0.5486

Вычислим приближенное значение интеграла по формулам правых прямоугольников:

0.1(0.6042+0.5828+0.5642+0.5479+0.5338+0.5214+0.5105+0.5008+0.4924+0.4848)0.5342

Решение краевой задачи для обыкновенного дифференциального уравнения методом прогонки.

Для приближенного решения обыкновенного дифференциального уравнения можно использовать метод прогонки.

Рассмотрим линейное д.у.

y""+p(x)y"+q(x)y=f(x) (1)

c двухточечными линейными краевыми условиями

Введём обозначения:

Метод прогонки состоит из «прямого хода», в котором определяются коэффициенты:

После выполнения «прямого хода», переходят к выполнению «обратного хода», который заключается в определении значений искомой функции по формулам:

Используя метод прогонки, составить решение краевой задачи для обыкновенного дифференциального уравнения с точностью; Шаг h=0.05

2; A=1; =0; B=1.2;

Задача Дирихле для уравнения Лапласа методом сеток

Найти непрерывную функцию и (х, у), удовлетворяющую внутри прямоугольной области уравнению Лапласа

и принимающую на границе области заданные значения, т. е.

где f l , f 2 , f 3 , f 4 -- заданные функции.

Вводя обозначения, аппроксимируем частные производные и в каждом внутреннем узле сетки центральными разностными производными второго порядка

и заменим уравнение Лапласа конечно-разностным уравнением

Погрешность замены дифференциального уравнения разностным составляет величину.

Уравнения (1) вместе со значениями в граничных узлах образуют систему линейных алгебраических уравнений относительно приближенных значений функции и (х, у) в узлах сетки. Наиболее простой вид имеет эта система при:

При получении сеточных уравнений (2) была использована схема узлов, изображенная на рис. 1. Набор узлов, используемых для аппроксимации уравнения в точке, называется шаблоном.

Рисунок 1

Численное решение задачи Дирихле для уравнения Лапласа в прямоугольнике состоит в нахождении приближенных значений искомой функции и(х, у) во внутренних узлах сетки. Для определения величин требуется решить систему линейных алгебраических уравнений (2).

В данной работе она решается методом Гаусса--Зейделя, который состоит в построении последовательности итераций вида

(верхним индексом s обозначен номер итерации). При последовательность сходится к точному решению системы (2). В качестве условия окончания итерационного процесса можно принять

Таким образом, погрешность приближенного решения, полученного методом сеток, складывается из двух погрешностей: погрешности аппроксимации дифференциального уравнения разностными; погрешности, возникающей в результате приближенного решения системы разностных уравнений (2).

Известно, что описанная здесь разностная схема обладает свойством устойчивости и сходимости. Устойчивость схемы означает, что малые изменения в начальных данных приводят к малым изменениям решения разностной задачи. Только такие схемы имеет смысл применять в реальных вычислениях. Сходимость схемы означает, что при стремлении шага сетки к нулю () решение разностной задачи стремится в некотором смысле к решению исходной задачи. Таким образом, выбрав достаточно малый шаг h, можно как угодно точно решить исходную задачу.

Используя метод сеток, составить приближенное решение задачи Дирихле, для уравнения Лапласа в квадрате ABCD c вершинами A(0;0) B(0;1) C(1;1) D(1;0); шаг h=0.02. При решении задачи использовать итерационный процесс усреднения Либмана до получения ответа с точностью до 0,01.

1) Вычислим значения функции на сторонах:

  • 1. На стороне AB: по формуле. u(0;0)=0 u(0;0.2)=9.6 u(0;0.4)=16.8 u(0;0.6)=19.2 u(0;0.8)=14.4 u(0;1)=0
  • 2. На стороне ВС=0
  • 3. На стороне CD=0
  • 4. На стороне AD: по формуле u(0;0)=0 u(0.2;0)=29,376 u(0.4;0)=47,542 u(0.6;0)=47,567 u(0.8;0)=29,44 u(1;0)=0
  • 2) Для определения значений функции во внутренних точках области методом сеток заданное уравнение Лапласа в каждой точке заменим конечно-разностным уравнением по формуле

Используя эту формулу, составим уравнение для каждой внутренней точки. В результате получаем систему уравнений.

Решение этой системы выполним итерационным способом типа Либмана. Для каждого значения составим последовательность которую строим до сходимости в сотых долях. Запишем соотношения, с помощью которых будем находить элементы всех последовательностей:

Для вычислений по этим формулам нужно определить начальные значения которые могут быть найдены каким-либо способом.

3) Чтобы получить начальное приближенное решение задачи, будем считать, что функция u(x,y) по горизонталям области распределена равномерно.

Сначала рассмотрим горизонталь с граничными точками (0;0.2) и (1;0.2).

Обозначим искомые значения функции во внутренних точках через.

Так как отрезок разбит на 5 частей, то шаг измерения функции

Тогда получим:

Аналогично найдём значения функции во внутренних точках других горизонталей. Для горизонтали, с граничными точками (0;0.4) и (1;0.4) имеем

Для горизонтали с граничными точками (0;0.6) и (1;0.6) имеем

Наконец, найдем значения для горизонтали с граничными точками (0;0.8) и(1;0.8).

Все полученные значения представим в следующей таблице, которая называется нулевым шаблоном:


Оценка остаточного члена формулы: , или .

Назначение сервиса . Сервис предназначен для онлайн вычисления определенного интеграла по формуле прямоугольников.

Инструкция . Введите подынтегральную функцию f(x) , нажмите Решить. Полученное решение сохраняется в файле Word . Также создается шаблон решения в Excel . Ниже представлена видеоинструкция.

Подынтегральная функция f(x)

Пределы интегрирования до .
Точность округления 1 2 3 4 5 6
Количество интервалов разбиения n = или Шаг h =
Метод численного интегрирования функций Формула левых прямоугольников Формула правых прямоугольников Формула средних прямоугольников Формула трапеций Элементарная формула Симпсона Формула Симпсона

Правила ввода функции

Примеры
≡ x^2/(x+2)
cos 2 (2x+π) ≡ (cos(2*x+pi))^2
≡ x+(x-1)^(2/3) Это самая простая квадратурная формула вычисления интеграла, в которой используется одно значение функции
(8.5.1)
где ; h=x 1 -x 0 .
Формула (8.5.1) представляет собой центральную формулу прямоугольников. Вычислим остаточный член. Разложим в ряд Тейлора функцию y=f(x) в точке ε 0:
(8.5.2)
где ; . Проинтегрируем (8.5.2):
(8.5.3)

Во втором слагаемом подынтегральная функция нечетная, а пределы интегрирования симметричны относительно точки ε 0 . Поэтому второй интеграл равен нулю. Таким образом, из (8.5.3) следует .
Т. к. второй множитель подынтегрального выражения не меняет знак, то по теореме о среднем получим , где . После интегрирования получим . (8.5.4)
Сравнивая с остаточным членом формулы трапеций, мы видим, что погрешность формулы прямоугольников в два раза меньше, чем погрешность формулы трапеций. Этот результат верен, если в формуле прямоугольников мы берём значение функции в средней точке.
Получим формулу прямоугольников и остаточный член для интервала . Пусть задана сетка x i =a+ih, i=0,1,...,n, . Рассмотрим сетку ε i =ε 0 +ih, i=1,2,..,n, ε 0 =a-h/2. Тогда . (8.5.5)
Остаточный член .
Геометрически формула прямоугольников может быть представлена следующим рисунком:

Если функция f(x) задана таблично, то используют либо левостороннюю формулу прямоугольников (для равномерной сетки)

либо правостороннюю формулу прямоугольников

.
Погрешность этих формул оценивается через первую производную. Для интервала погрешность равна

; .
После интегрирования получим .

Пример . Вычислить интеграл при n=5:
а) по формуле трапеций;
б) по формуле прямоугольников;
в) по формуле Симпсона;
г) по формуле Гаусса;
д) по формуле Чебышева.
Рассчитать погрешность.
Решение. Для 5-ти узлов интегрирования шаг сетки составит 0.125.
При решении будем пользоваться таблицей значений функции. Здесь f(x)=1/x.

x f(x)
x0 0.5 y0 2
x1 0.625 y1 1.6
x2 0.750 y2 1.33
x3 0.875 y3 1.14
x4 1.0 y4 1
a) формула трапеций:
I=h/2×;
I=(0.125/2)×=0.696;
R= [-(b-a)/12]×h×y¢¢(x);
f¢¢(x)=2/(x 3).
Максимальное значение второй производной функции на интервале равно 16: max {f¢¢(x)}, xÎ=2/(0.5 3)=16, поэтому
R=[-(1-0.5)/12]×0.125×16=-0.0833;
б) формула прямоугольников:
для левосторонней формулы I=h×(y0+y1+y2+y3);
I=0.125×(2+1.6+1.33+1.14)=0.759;
R=[(b-a)/6]×h 2 ×y¢¢(x);
R=[(1-0.5)/6]×0.125 2 ×16=0.02;
в) формула Симпсона:
I=(2h/6)×{y0+y4+4×(y1+y3)+2×y2};
I=(2×0.125)/6×{2+1+4×(1.6+1.14)+2×1.33}=0.693;
R=[-(b-a)/180]×h 4 ×y (4) (x);
f (4) (x)=24/(x 5)=768;
R=[-(1-0.5)/180]×(0.125) 4 ×768= - 5.2 e -4;
г) формула Гаусса:
I=(b-a)/2×;
x i =(b+a)/2+t i (b-a)/2
(A i , t i - табличные значения).
t (n=5) A (n=5)
x1 0.9765 y1 1.02 t 1 0.90617985 A 1 0.23692688
x2 0.8846 y2 1.13 t 2 0.53846931 A 2 0.47862868
x3 0.75 y3 1.33 t 3 0 A 3 0.56888889
x4 0.61 y4 1.625 t 4 -0.53846931 A 4 0.47862868
x5 0.52 y5 1.91 t 5 -0.90617985 A 5 0.23692688
I=(1-0.5)/2×(0.2416+0.5408+0.7566+0.7777+0.4525)=0.6923;
д) формула Чебышева:
I=[(b-a)/n] ×S f(x i), i=1..n,
x i =(b+a)/2+[ t i (b-a)]/2 - необходимое приведение интервала интегрирования к интервалу [­­-1;1].
Для n=5
t1 0.832498
t2 0.374541
t3 0
t4 -0.374541
t5 -0.832498
Найдем значения x и значения функции в этих точках:
x1 0,958 f(x1) 1,043
x2 0,844 f(x2) 1,185
x3 0,75 f(x3) 1,333
x4 0,656 f(x4) 1,524
x5 0,542 f(x5) 1,845
Сумма значений функции равна 6,927.
I=(1-0,5)/5×6,927=0,6927.

В общем виде формула левых прямоугольников на отрезке выглядит следующим образом(21) :

В данной формуле x 0 =a, x n =b , так как любой интеграл в общем виде выглядит: (см. формулу18 ).

h можно вычислить по формуле 19 .

y 0 , y 1 ,..., y n-1 x 0 , x 1 ,..., x n-1 (x i =x i-1 +h ).

    Формула правых прямоугольников.

В общем виде формула правых прямоугольников на отрезке выглядит следующим образом(22) :

В данной формуле x 0 =a, x n =b (см. формулу для левых прямоугольников).

h можно вычислить по той же формуле, что и в формуле для левых прямоугольников.

y 1 , y 2 ,..., y n - это значения соответствующей функции f(x) в точкахx 1 , x 2 ,..., x n (x i =x i-1 +h ).

    Формула средних прямоугольников.

В общем виде формула средних прямоугольников на отрезке выглядит следующим образом(23) :

Где x i =x i-1 +h .

В данной формуле, как и в предыдущих, требуется h умножать сумму значений функции f(x), но уже не просто подставляя соответствующие значения x 0 ,x 1 ,...,x n-1 в функцию f(x), а прибавляя к каждому из этих значенийh/2 (x 0 +h/2, x 1 +h/2,..., x n-1 +h/2), а затем только подставляя их в заданную функцию.

h можно вычислить по той же формуле, что и в формуле для левых прямоугольников." [6 ]

На практике данные способы реализуются следующим образом:

    Mathcad ;

    Excel .

    Mathcad ;

    Excel .

Для того, чтобы вычислить интеграл по формуле средних прямоугольников в Excel, необходимо выполнить следующие действия:

    Продолжить работу в том же документе, что и при вычислении интеграла по формулам левых и правых прямоугольников.

    В ячейку E6 ввести текст xi+h/2, а в F6 - f(xi+h/2).

    Ввести в ячейку E7 формулу =B7+$B$4/2, скопировать эту формулу методом протягивания в диапазон ячеек E8:E16

    Ввести в ячейку F7 формулу =КОРЕНЬ(E7^4-E7^3+8), скопировать эту формулу методом протягивания в диапазон ячеек F8:F16

    Ввести в ячейку F18 формулу =СУММ(F7:F16).

    Ввести в ячейку F19 формулу =B4*F18.

    Ввести в ячейку F20 текст средних.

В итоге получаем следующее:

Ответ: значение заданного интеграла равно 13,40797.

Исходя из полученных результатов, можно сделать вывод, что формула средних прямоугольников является наиболее точной, чем формулы правых и левых прямоугольников.

1. Метод Монте-Карло

"Основная идея метода Монте-Карло заключается в многократном повторении случайных испытаний. Характерной особенностью метода Монте-Карло является использование случайных чисел (числовых значений некоторой случайной величины). Такие числа можно получать с помощью датчиков случайных чисел. Например, в языке программирования Turbo Pascal имеется стандартная функция random , значениями которой являются случайные чис¬ла, равномерно распределенные на отрезке . Сказанное означает, что если разбить указанный отрезок на некоторое число равных интервалов и вычислить значение функции random большое число раз, то в каждый интервал попадет приблизительно одинаковое количество случайных чисел. В языке программирования basin подобным датчиком является функция rnd. В табличном процессоре MS Excel функция СЛЧИС возвращает равномерно распределенное случайное число большее или равное 0 и меньшее 1 (изменяется при пересчете)" [7 ].

Для того чтобы его вычислить, необходимо воспользоваться формулой () :

Где (i=1, 2, …, n) – случайные числа, лежащие в интервале .

Для получения таких чисел на основе последовательности случайных чисел x i , равномерно распределенных в интервале , достаточно выполнить преобразование x i =a+(b-a)x i .

На практике данный способ реализуется следующим образом:

Для того, чтобы вычислить интеграл методом Монте-Карло в Excel, необходимо выполнить следующие действия:

    В ячейку B1 ввести текст n=.

    В ячейку B2 ввести текст a=.

    В ячейку B3 ввести текст b=.

В ячейку C1 ввести число 10.

    В ячейку C2 ввести число 0.

    В ячейку C3 ввести число 3,2.

    В ячейку A5 ввести I, в В5 – xi, в C5 – f(xi).

    Ячейки A6:A15 заполнить числами 1,2,3, …,10 – так как n=10.

    Ввести в ячейку B6 формулу =СЛЧИС()*3,2 (происходит генерация чисел в диапазоне от 0 до 3,2), скопировать эту формулу методом протягивания в диапазон ячеек В7:В15.

    Ввести в ячейку C6 формулу =КОРЕНЬ(B6^4-B6^3+8), скопировать эту формулу методом протягивания в диапазон ячеек C7:C15.

    Ввести в ячейку B16 текст «сумма», в B17 – «(b-a)/n», в B18 – «I=».

    Вести в ячейку C16 формулу =СУММ(C6:C15).

    Вести в ячейку C17 формулу =(C3-C2)/C1.

    Вести в ячейку C18 формулу =C16*C17.

В итоге получаем:

Ответ: значение заданного интеграла равно 13,12416.