السير الذاتية صفات تحليل

كيفية حل المعادلة ب. كيفية حل المعادلات مع الكسور

تعليمات

ملحوظة:π مكتوب كـ pi؛ الجذر التربيعي كـ sqrt().

الخطوة 1.أدخل مثالا محددا يتكون من الكسور.

الخطوة 2.انقر فوق الزر "حل".

الخطوه 3.الحصول على نتائج مفصلة.

للتأكد من أن الآلة الحاسبة تحسب الكسور بشكل صحيح، أدخل الكسر مفصولاً بعلامة "/". على سبيل المثال: . ستقوم الآلة الحاسبة بحساب المعادلة وستظهر على الرسم البياني سبب الحصول على هذه النتيجة.

ما هي المعادلة مع الكسور

المعادلة الكسرية هي معادلة تكون فيها المعاملات أرقامًا كسرية. يتم حل المعادلات الخطية ذات الكسور وفقًا للمخطط القياسي: يتم نقل المجهول إلى جانب والمعروف إلى الجانب الآخر.

لنلقي نظرة على مثال:

يتم نقل الكسور ذات المجهولات إلى اليسار، ويتم نقل الكسور الأخرى إلى اليمين. عندما تنتقل الأرقام إلى ما بعد علامة التساوي فإن إشارة الأرقام تتغير إلى العكس:

الآن ما عليك سوى تنفيذ الإجراءات على جانبي المساواة:

والنتيجة هي معادلة خطية عادية. أنت الآن بحاجة إلى تقسيم الجانبين الأيسر والأيمن على معامل المتغير.

حل المعادلات بالكسور عبر الإنترنتتم التحديث: 7 أكتوبر 2018 بواسطة: المقالات العلمية.Ru


دعونا نحلل نوعين من الحلول لأنظمة المعادلات:

1. حل النظام باستخدام طريقة الاستبدال.
2. حل النظام عن طريق الجمع (الطرح) لمعادلات النظام حدًا تلو الآخر.

من أجل حل نظام المعادلات بطريقة الاستبدالتحتاج إلى اتباع خوارزمية بسيطة:
1. اكسبريس. من أي معادلة نعبر عن متغير واحد.
2. بديل. نعوض بالقيمة الناتجة في معادلة أخرى بدلاً من المتغير المعبر عنه.
3. حل المعادلة الناتجة بمتغير واحد. نجد حلا للنظام.

لتحل النظام عن طريق طريقة الجمع (الطرح) مصطلحًا تلو الآخربحاجة ل:
1. حدد المتغير الذي سنعمل له معاملات متطابقة.
2. نقوم بجمع أو طرح المعادلات، مما ينتج عنه معادلة ذات متغير واحد.
3. حل المعادلة الخطية الناتجة. نجد حلا للنظام.

حل النظام هو نقاط تقاطع الرسوم البيانية للوظائف.

دعونا نفكر بالتفصيل في حل الأنظمة باستخدام الأمثلة.

مثال 1:

دعونا نحل بطريقة الاستبدال

حل نظام المعادلات باستخدام طريقة الاستبدال

2x+5y=1 (معادلة واحدة)
x-10y=3 (المعادلة الثانية)

1. اكسبريس
ويمكن ملاحظة أنه يوجد في المعادلة الثانية متغير x بمعامل 1، مما يعني أنه من الأسهل التعبير عن المتغير x من المعادلة الثانية.
س=3+10ص

2. وبعد أن عبرنا عنها، نعوض بـ 3+10y في المعادلة الأولى بدلاً من المتغير x.
2(3+10ص)+5ص=1

3. حل المعادلة الناتجة بمتغير واحد.
2(3+10ص)+5ص=1 (افتح القوسين)
6+20ص+5ص=1
25ص=1-6
25ص=-5 |: (25)
ص=-5:25
ص=-0.2

حل نظام المعادلة هو نقاط تقاطع الرسوم البيانية، لذلك نحتاج إلى إيجاد x و y، لأن نقطة التقاطع تتكون من x و y.لنجد x، في النقطة الأولى التي عبرنا عنها نستبدل y.
س=3+10ص
س=3+10*(-0.2)=1

ومن المعتاد أن نكتب النقاط في المقام الأول نكتب المتغير x، وفي المركز الثاني المتغير y.
الجواب: (1؛ -0.2)

المثال رقم 2:

دعونا نحل باستخدام طريقة الجمع (الطرح) حدًا تلو الآخر.

حل نظام المعادلات باستخدام طريقة الجمع

3x-2y=1 (معادلة واحدة)
2x-3y=-10 (المعادلة الثانية)

1. نختار متغيرًا، لنفترض أننا اخترنا x. في المعادلة الأولى، المتغير x له معامل 3، في الثانية - 2. نحن بحاجة إلى جعل المعاملات هي نفسها، ولهذا لدينا الحق في ضرب المعادلات أو القسمة على أي رقم. نضرب المعادلة الأولى في 2، والثانية في 3 ونحصل على المعامل الإجمالي 6.

3س-2ص=1 |*2
6س-4ص=2

2س-3ص=-10 |*3
6س-9ص=-30

2. اطرح الثانية من المعادلة الأولى للتخلص من المتغير x وحل المعادلة الخطية.
__6س-4ص=2

5ص=32 | :5
ص=6.4

3. ابحث عن x. نعوض بـ y الموجود في أي من المعادلات، دعنا نقول في المعادلة الأولى.
3س-2ص=1
3س-2*6.4=1
3س-12.8=1
3س=1+12.8
3x=13.8 |:3
س=4.6

ستكون نقطة التقاطع x=4.6؛ ص=6.4
الجواب: (4.6؛ 6.4)

هل تريد الاستعداد للامتحانات مجانا؟ مدرس على الانترنت مجانا. لا تمزح.

الغرض من الخدمة. تم تصميم حاسبة المصفوفات لحل أنظمة المعادلات الخطية باستخدام طريقة المصفوفات (انظر مثالاً لحل المشكلات المشابهة).

تعليمات. لحلها عبر الإنترنت، تحتاج إلى تحديد نوع المعادلة وتعيين أبعاد المصفوفات المقابلة. حيث A، B، C هي المصفوفات المحددة، X هي المصفوفة المطلوبة. يتم حل المعادلات المصفوفية من الصيغة (1) و (2) و (3) من خلال المصفوفة العكسية A -1. إذا تم إعطاء التعبير A·X - B = C، فمن الضروري أولاً إضافة المصفوفات C + B وإيجاد حل للتعبير A·X = D، حيث D = C + B. إذا تم إعطاء التعبير A*X = B 2، فيجب أولاً تربيع المصفوفة B.

يوصى أيضًا بالتعرف على العمليات الأساسية على المصفوفات.

المثال رقم 1. يمارس. أوجد حل معادلة المصفوفة
حل. دعنا نشير إلى:
ثم ستكتب معادلة المصفوفة بالصيغة: A·X·B = C.
محدد المصفوفة A يساوي detA=-1
بما أن A هي مصفوفة غير مفردة، فهناك مصفوفة معكوسة A -1 . اضرب طرفي المعادلة على اليسار بـ A -1: اضرب طرفي هذه المعادلة على اليسار بـ A -1 وعلى اليمين بـ B -1: A -1 ·A·X·B·B -1 = أ -1 ·ج·ب -1 . بما أن A A -1 = B B -1 = E وE X = X E = X، فإن X = A -1 C B -1

المصفوفة العكسية أ -1:
لنجد المصفوفة العكسية B -1.
المصفوفة المنقولة B T:
المصفوفة العكسية B -1:
نحن نبحث عن المصفوفة X باستخدام الصيغة: X = A -1 ·C·B -1

إجابة:

المثال رقم 2. يمارس.حل معادلة المصفوفة
حل. دعنا نشير إلى:
ثم ستكتب معادلة المصفوفة بالصيغة: A·X = B.
محدد المصفوفة A هو detA=0
بما أن A هي مصفوفة فردية (المحدد هو 0)، وبالتالي فإن المعادلة ليس لها حل.

المثال رقم 3. يمارس. أوجد حل معادلة المصفوفة
حل. دعنا نشير إلى:
ثم ستكتب معادلة المصفوفة بالصيغة: X A = B.
محدد المصفوفة A هو detA=-60
بما أن A هي مصفوفة غير مفردة، فهناك مصفوفة معكوسة A -1 . لنضرب طرفي المعادلة على اليمين في A -1: X A A -1 = B A -1، حيث نجد أن X = B A -1
دعونا نجد المصفوفة العكسية A -1 .
المصفوفة المنقولة A T:
المصفوفة العكسية أ -1:
نحن نبحث عن المصفوفة X باستخدام الصيغة: X = B A -1


الجواب: >

في هذا الفيديو سوف نقوم بتحليل مجموعة كاملة من المعادلات الخطية التي تم حلها باستخدام نفس الخوارزمية - ولهذا السبب يطلق عليها الأبسط.

أولاً، دعونا نحدد: ما هي المعادلة الخطية وأي منها تسمى الأبسط؟

المعادلة الخطية هي تلك التي يوجد فيها متغير واحد فقط، وحتى الدرجة الأولى فقط.

أبسط معادلة تعني البناء:

يتم تقليل جميع المعادلات الخطية الأخرى إلى أبسطها باستخدام الخوارزمية:

  1. قم بتوسيع الأقواس، إن وجدت؛
  2. نقل الحدود التي تحتوي على متغير إلى أحد جانبي علامة التساوي، والمصطلحات التي لا تحتوي على متغير إلى الجانب الآخر؛
  3. أعط مصطلحات مشابهة لليسار واليمين لعلامة المساواة؛
  4. اقسم المعادلة الناتجة على معامل المتغير $x$.

وبطبيعة الحال، هذه الخوارزمية لا تساعد دائما. والحقيقة هي أنه في بعض الأحيان بعد كل هذه المكائد يكون معامل المتغير $x$ مساويًا للصفر. في هذه الحالة، هناك خياران ممكنان:

  1. المعادلة ليس لها حلول على الإطلاق. على سبيل المثال، عندما يظهر شيء مثل $0\cdot x=8$، أي. على اليسار صفر، وعلى اليمين رقم غير الصفر. في الفيديو أدناه سنلقي نظرة على عدة أسباب وراء حدوث هذا الموقف.
  2. الحل هو كل الارقام الحالة الوحيدة التي يكون فيها ذلك ممكنًا هي عندما يتم اختزال المعادلة إلى البناء $0\cdot x=0$. من المنطقي تمامًا أنه بغض النظر عن $x$ الذي نستبدله، فسيظل "الصفر يساوي صفرًا"، أي. المساواة العددية الصحيحة

الآن دعونا نرى كيف يعمل كل هذا باستخدام أمثلة من الحياة الواقعية.

أمثلة على حل المعادلات

اليوم نحن نتعامل مع المعادلات الخطية، وأبسطها فقط. بشكل عام، المعادلة الخطية تعني أي مساواة تحتوي على متغير واحد بالضبط، ولا تصل إلا إلى الدرجة الأولى.

يتم حل هذه الإنشاءات بنفس الطريقة تقريبًا:

  1. أولًا، تحتاج إلى فك الأقواس، إن وجدت (كما في مثالنا الأخير)؛
  2. ثم الجمع بين مماثلة
  3. وأخيرا، عزل المتغير، أي. انقل كل ما يتعلق بالمتغير – أي المصطلحات التي يحتوي عليها – إلى جهة، وانقل كل ما بقي دونه إلى الجهة الأخرى.

ثم، كقاعدة عامة، تحتاج إلى إعطاء مماثلة على كل جانب من المساواة الناتجة، وبعد ذلك يبقى فقط القسمة على معامل "x"، وسنحصل على الإجابة النهائية.

من الناحية النظرية، يبدو هذا لطيفًا وبسيطًا، ولكن من الناحية العملية، حتى طلاب المدارس الثانوية ذوي الخبرة يمكن أن يرتكبوا أخطاء هجومية في معادلات خطية بسيطة إلى حد ما. عادة، يتم ارتكاب الأخطاء إما عند فتح الأقواس أو عند حساب "الإيجابيات" و"السلبيات".

بالإضافة إلى ذلك، قد يحدث أن المعادلة الخطية ليس لها حلول على الإطلاق، أو أن الحل هو خط الأعداد بأكمله، أي. أي رقم. سننظر في هذه التفاصيل الدقيقة في درس اليوم. لكننا سنبدأ، كما فهمت بالفعل، بأبسط المهام.

مخطط لحل المعادلات الخطية البسيطة

أولاً، اسمحوا لي مرة أخرى أن أكتب المخطط بأكمله لحل أبسط المعادلات الخطية:

  1. قم بتوسيع الأقواس، إن وجدت.
  2. نحن نعزل المتغيرات، أي. نقوم بنقل كل ما يحتوي على "X" إلى جانب واحد، وكل شيء بدون "X" إلى الجانب الآخر.
  3. نقدم مصطلحات مماثلة.
  4. نقسم كل شيء على معامل "x".

بالطبع، هذا المخطط لا يعمل دائما، هناك بعض التفاصيل الدقيقة والحيل فيه، والآن سوف نتعرف عليها.

حل أمثلة حقيقية للمعادلات الخطية البسيطة

المهمة رقم 1

الخطوة الأولى تتطلب منا فتح الأقواس. لكنهم ليسوا في هذا المثال، لذلك نتخطى هذه الخطوة. في الخطوة الثانية نحتاج إلى عزل المتغيرات. يرجى ملاحظة: نحن نتحدث فقط عن المصطلحات الفردية. دعنا نكتبها:

نقدم مصطلحات مماثلة على اليسار واليمين، ولكن تم القيام بذلك بالفعل هنا. لذلك ننتقل إلى الخطوة الرابعة: القسمة على المعامل:

\[\frac(6x)(6)=-\frac(72)(6)\]

لذلك حصلنا على الجواب.

المهمة رقم 2

يمكننا أن نرى الأقواس في هذه المسألة، لذلك دعونا نوسعها:

نرى على اليسار وعلى اليمين نفس التصميم تقريبًا، ولكن دعونا نتصرف وفقًا للخوارزمية، أي. فصل المتغيرات:

وهنا بعض منها مماثلة:

في أي جذور يعمل هذا؟ الجواب: لأي. لذلك، يمكننا أن نكتب أن $x$ هو أي رقم.

المهمة رقم 3

المعادلة الخطية الثالثة هي الأكثر إثارة للاهتمام:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

هناك عدة أقواس هنا، لكنها غير مضروبة بأي شيء، فهي ببساطة مسبوقة بعلامات مختلفة. دعونا نقسمها:

نقوم بالخطوة الثانية المعروفة لنا بالفعل:

\[-x+x+2x=15-6-12+3\]

دعونا نفعل الرياضيات:

ننفذ الخطوة الأخيرة - نقسم كل شيء على معامل "x":

\[\frac(2x)(x)=\frac(0)(2)\]

أشياء يجب تذكرها عند حل المعادلات الخطية

إذا تجاهلنا المهام البسيطة جدًا، أود أن أقول ما يلي:

  • كما قلت أعلاه، ليس كل معادلة خطية لها حل - في بعض الأحيان ببساطة لا توجد جذور؛
  • وحتى لو كانت هناك جذور، فقد يكون بينها صفر، فلا حرج في ذلك.

الصفر هو نفس الرقم الموجود في الأرقام الأخرى، ويجب ألا تميز ضده بأي شكل من الأشكال أو تفترض أنك إذا حصلت على الصفر، فهذا يعني أنك ارتكبت خطأ ما.

ميزة أخرى تتعلق بفتح الأقواس. يرجى ملاحظة: عندما يكون هناك "ناقص" أمامهم، نقوم بإزالته، ولكن بين قوسين نقوم بتغيير العلامات إلى عكس. وبعد ذلك يمكننا فتحه باستخدام الخوارزميات القياسية: سنحصل على ما رأيناه في الحسابات أعلاه.

إن فهم هذه الحقيقة البسيطة سيساعدك على تجنب ارتكاب أخطاء غبية ومؤذية في المدرسة الثانوية، عندما يكون القيام بهذه الأشياء أمرا مفروغا منه.

حل المعادلات الخطية المعقدة

دعنا ننتقل إلى معادلات أكثر تعقيدا. الآن سوف تصبح الإنشاءات أكثر تعقيدًا وعند إجراء تحويلات مختلفة ستظهر دالة تربيعية. ومع ذلك، لا ينبغي لنا أن نخاف من ذلك، لأنه إذا كنا، وفقا لخطة المؤلف، نحل معادلة خطية، فمن المؤكد أنه أثناء عملية التحويل، سيتم إلغاء جميع أحاديات الحد التي تحتوي على دالة تربيعية.

المثال رقم 1

من الواضح أن الخطوة الأولى هي فتح الأقواس. دعونا نفعل ذلك بعناية فائقة:

والآن دعونا نلقي نظرة على الخصوصية:

\[-x+6((x)^(2))-6((x)^(2))+x=-12\]

وهنا بعض منها مماثلة:

ومن الواضح أن هذه المعادلة ليس لها حلول، لذلك سنكتب هذا في الإجابة:

\[\varnothing\]

أو لا توجد جذور.

المثال رقم 2

نحن نقوم بنفس الإجراءات. الخطوة الأولى:

دعنا ننقل كل شيء بمتغير إلى اليسار، وبدونه - إلى اليمين:

وهنا بعض منها مماثلة:

من الواضح أن هذه المعادلة الخطية ليس لها حل، لذا سنكتبها بهذه الطريقة:

\[\فارنوثينغ\]،

أو لا توجد جذور.

الفروق الدقيقة في الحل

تم حل كلتا المعادلتين بالكامل. باستخدام هذين التعبيرين كمثال، كنا مقتنعين مرة أخرى أنه حتى في أبسط المعادلات الخطية، قد لا يكون كل شيء بهذه البساطة: يمكن أن يكون هناك جذور واحدة، أو لا شيء، أو عدد لا نهائي من الجذور. في حالتنا، تناولنا معادلتين، ليس لكل منهما جذور.

لكني أود أن ألفت انتباهكم إلى حقيقة أخرى: كيفية العمل مع الأقواس وكيفية فتحها إذا كانت هناك علامة ناقص أمامها. خذ بعين الاعتبار هذا التعبير:

قبل الفتح، تحتاج إلى مضاعفة كل شيء بـ "X". يرجى ملاحظة: يتضاعف كل مصطلح على حدة. يوجد في الداخل فترتان - على التوالي، فترتان ومضروبة.

وفقط بعد الانتهاء من هذه التحولات التي تبدو بدائية ولكنها مهمة وخطيرة للغاية، يمكنك فتح القوس من وجهة نظر حقيقة وجود علامة ناقص بعدها. نعم، نعم: الآن فقط، عند اكتمال التحولات، نتذكر أن هناك علامة ناقص أمام الأقواس، مما يعني أن كل شيء أدناه يغير العلامات ببساطة. وفي الوقت نفسه، تختفي الأقواس نفسها، والأهم من ذلك، أن "الطرح" الأمامي يختفي أيضًا.

ونفعل نفس الشيء مع المعادلة الثانية:

ليس من قبيل المصادفة أن أنتبه إلى هذه الحقائق الصغيرة التي تبدو غير ذات أهمية. لأن حل المعادلات هو دائمًا سلسلة من التحولات الأولية، حيث يؤدي عدم القدرة على تنفيذ إجراءات بسيطة بوضوح وكفاءة إلى حقيقة أن طلاب المدارس الثانوية يأتون إلي ويتعلمون مرة أخرى حل مثل هذه المعادلات البسيطة.

وبطبيعة الحال، سيأتي اليوم الذي ستصقل فيه هذه المهارات إلى درجة التلقائية. لن تضطر بعد الآن إلى إجراء العديد من التحويلات في كل مرة، بل ستكتب كل شيء في سطر واحد. ولكن بينما تتعلم فقط، تحتاج إلى كتابة كل إجراء على حدة.

حل المعادلات الخطية الأكثر تعقيدًا

ما سنقوم بحله الآن من الصعب أن يسمى أبسط مهمة، ولكن المعنى يبقى كما هو.

المهمة رقم 1

\[\left(7x+1 \right)\left(3x-1 \right)-21((x)^(2))=3\]

دعونا نضرب جميع العناصر في الجزء الأول:

دعونا نفعل بعض الخصوصية:

وهنا بعض منها مماثلة:

فلنكمل الخطوة الأخيرة:

\[\frac(-4x)(4)=\frac(4)(-4)\]

هنا هو جوابنا النهائي. وعلى الرغم من أنه أثناء عملية الحل كانت لدينا معاملات ذات دالة تربيعية، إلا أنها ألغت بعضها البعض، مما يجعل المعادلة خطية وليست تربيعية.

المهمة رقم 2

\[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

لننفذ الخطوة الأولى بعناية: اضرب كل عنصر من القوس الأول بكل عنصر من القوس الثاني. يجب أن يكون هناك إجمالي أربعة مصطلحات جديدة بعد التحويلات:

الآن دعونا نجري عملية الضرب بعناية في كل حد:

لننقل المصطلحات التي تحتوي على "X" إلى اليسار، وتلك التي لا تحتوي على - إلى اليمين:

\[-3x-4x+12((x)^(2))-12((x)^(2))+6x=-1\]

وهنا مصطلحات مماثلة:

ومرة أخرى تلقينا الجواب النهائي.

الفروق الدقيقة في الحل

وأهم ملاحظة حول هاتين المعادلتين هي ما يلي: بمجرد أن نبدأ بضرب الأقواس التي تحتوي على أكثر من حد يتم ذلك وفق القاعدة التالية: نأخذ الحد الأول من الأول ونضرب بكل عنصر من الثاني؛ ثم نأخذ العنصر الثاني من الأول ونضربه كذلك في كل عنصر من العنصر الثاني. ونتيجة لذلك، سيكون لدينا أربعة حدود.

حول المجموع الجبري

بهذا المثال الأخير، أود أن أذكر الطلاب ما هو المجموع الجبري. في الرياضيات الكلاسيكية، نعني بـ 1-7 دولارات بناءًا بسيطًا: طرح سبعة من واحد. ونقصد في الجبر ما يلي: إلى العدد "واحد" نضيف رقما آخر وهو "ناقص سبعة". هذه هي الطريقة التي يختلف بها المجموع الجبري عن المجموع الحسابي العادي.

بمجرد إجراء جميع التحولات، كل إضافة وضرب، تبدأ في رؤية إنشاءات مماثلة لتلك الموصوفة أعلاه، فلن تواجه أي مشاكل في الجبر عند العمل مع كثيرات الحدود والمعادلات.

أخيرًا، دعونا نلقي نظرة على بضعة أمثلة أخرى ستكون أكثر تعقيدًا من تلك التي نظرنا إليها للتو، ولحلها، سيتعين علينا توسيع الخوارزمية القياسية لدينا قليلاً.

حل المعادلات بالكسور

لحل مثل هذه المهام، سيتعين علينا إضافة خطوة أخرى إلى الخوارزمية الخاصة بنا. لكن أولاً، دعني أذكرك بالخوارزمية التي لدينا:

  1. افتح الأقواس.
  2. متغيرات منفصلة.
  3. جلب مماثلة.
  4. القسمة على النسبة.

للأسف، هذه الخوارزمية الرائعة، على الرغم من فعاليتها، ليست مناسبة تمامًا عندما تكون أمامنا كسور. وفيما سنراه أدناه، لدينا كسر على كل من اليسار واليمين في كلتا المعادلتين.

كيفية العمل في هذه الحالة؟ نعم، الأمر بسيط جدًا! للقيام بذلك، تحتاج إلى إضافة خطوة أخرى إلى الخوارزمية، والتي يمكن القيام بها قبل الإجراء الأول وبعده، أي التخلص من الكسور. لذلك ستكون الخوارزمية كما يلي:

  1. تخلص من الكسور.
  2. افتح الأقواس.
  3. متغيرات منفصلة.
  4. جلب مماثلة.
  5. القسمة على النسبة.

ماذا يعني "التخلص من الكسور"؟ ولماذا يمكن القيام بذلك بعد الخطوة القياسية الأولى وقبلها؟ في الواقع، في حالتنا، جميع الكسور عددية في مقامها، أي. في كل مكان القاسم هو مجرد رقم. ولذلك، إذا ضربنا طرفي المعادلة في هذا العدد، فسنتخلص من الكسور.

المثال رقم 1

\[\frac(\left(2x+1 \right)\left(2x-3 \right))(4)=((x)^(2))-1\]

دعونا نتخلص من الكسور في هذه المعادلة:

\[\frac(\left(2x+1 \right)\left(2x-3 \right)\cdot 4)(4)=\left(((x)^(2))-1 \right)\cdot 4\]

يرجى ملاحظة: كل شيء مضروب في "أربعة" مرة واحدة، أي. فقط لأن لديك قوسين لا يعني أن عليك ضرب كل منهما بـ "أربعة". دعنا نكتب:

\[\left(2x+1 \right)\left(2x-3 \right)=\left(((x)^(2))-1 \right)\cdot 4\]

الآن دعونا نتوسع:

نعزل المتغير:

نقوم بإجراء تخفيض المصطلحات المماثلة:

\[-4x=-1\left| :\left(-4 \right) \right.\]

\[\frac(-4x)(-4)=\frac(-1)(-4)\]

لقد حصلنا على الحل النهائي، فلننتقل إلى المعادلة الثانية.

المثال رقم 2

\[\frac(\left(1-x \right)\left(1+5x \right))(5)+((x)^(2))=1\]

هنا نقوم بتنفيذ جميع الإجراءات نفسها:

\[\frac(\left(1-x \right)\left(1+5x \right)\cdot 5)(5)+((x)^(2))\cdot 5=5\]

\[\frac(4x)(4)=\frac(4)(4)\]

حلت المشكلة.

وهذا، في الواقع، هو كل ما أردت أن أخبرك به اليوم.

النقاط الرئيسية

النتائج الرئيسية هي:

  • معرفة خوارزمية حل المعادلات الخطية.
  • القدرة على فتح الأقواس.
  • لا تقلق إذا كانت لديك دوال تربيعية في مكان ما، فمن المرجح أن يتم تقليلها أثناء عملية التحويلات الإضافية.
  • هناك ثلاثة أنواع من الجذور في المعادلات الخطية، حتى أبسطها: جذر واحد، وخط الأعداد بأكمله هو جذر، ولا توجد جذور على الإطلاق.

آمل أن يساعدك هذا الدرس في إتقان موضوع بسيط ولكنه مهم جدًا لمزيد من الفهم لجميع الرياضيات. إذا كان هناك شيء غير واضح، فانتقل إلى الموقع وحل الأمثلة المعروضة هناك. لا تنزعج، العديد من الأشياء الأكثر إثارة للاهتمام في انتظاركم!

تتم دراسة المعادلات التربيعية في الصف الثامن، لذلك لا يوجد شيء معقد هنا. القدرة على حلها ضرورية للغاية.

المعادلة التربيعية هي معادلة على الصورة ax 2 + bx + c = 0، حيث المعاملات a وb وc هي أرقام عشوائية وa ≠ 0.

قبل دراسة طرق حل محددة، لاحظ أنه يمكن تقسيم جميع المعادلات التربيعية إلى ثلاث فئات:

  1. ليس لها جذور.
  2. لديك جذر واحد بالضبط؛
  3. لديهم جذور مختلفة.

وهذا فرق مهم بين المعادلات التربيعية والمعادلات الخطية، حيث يكون الجذر موجودًا دائمًا وفريدًا. كيفية تحديد عدد جذور المعادلة؟ هناك شيء رائع لهذا - تمييزي.

مميز

دع المعادلة التربيعية ax 2 + bx + c = 0. إذن فإن المميز هو ببساطة الرقم D = b 2 − 4ac.

عليك أن تعرف هذه الصيغة عن ظهر قلب. من أين يأتي ليس مهما الآن. شيء آخر مهم: من خلال علامة المميز يمكنك تحديد عدد جذور المعادلة التربيعية. يسمى:

  1. إذا د< 0, корней нет;
  2. إذا كان D = 0، هناك جذر واحد بالضبط؛
  3. إذا كان D > 0، سيكون هناك جذرين.

يرجى ملاحظة: يشير المميز إلى عدد الجذور، وليس علاماتها على الإطلاق، كما يعتقد الكثير من الناس لسبب ما. ألقِ نظرة على الأمثلة وستفهم كل شيء بنفسك:

مهمة. ما عدد جذور المعادلات التربيعية:

  1. س 2 − 8س + 12 = 0;
  2. 5س 2 + 3س + 7 = 0؛
  3. س 2 − 6س + 9 = 0.

لنكتب معاملات المعادلة الأولى ونوجد المميز:
أ = 1، ب = −8، ج = 12؛
د = (−8) 2 − 4 1 12 = 64 − 48 = 16

إذن يكون المميز موجبًا، وبالتالي فإن المعادلة لها جذرين مختلفين. نقوم بتحليل المعادلة الثانية بنفس الطريقة:
أ = 5؛ ب = 3؛ ج = 7؛
د = 2 3 − 4 5 7 = 9 − 140 = −131.

المميز سالب، ولا توجد جذور. المعادلة الأخيرة المتبقية هي:
أ = 1؛ ب = −6؛ ج = 9؛
د = (−6) 2 − 4 1 9 = 36 − 36 = 0.

المميز هو صفر، وسيكون الجذر واحدًا.

يرجى ملاحظة أنه تم كتابة المعاملات لكل معادلة. نعم، إنها طويلة، نعم، إنها مملة، لكنك لن تخلط بين الاحتمالات وترتكب أخطاء غبية. اختر لنفسك: السرعة أو الجودة.

بالمناسبة، إذا تمكنت من ذلك، فلن تحتاج بعد فترة إلى كتابة جميع المعاملات. سوف تقوم بإجراء مثل هذه العمليات في رأسك. يبدأ معظم الأشخاص في القيام بذلك في مكان ما بعد حل المعادلات بنسبة 50-70 - بشكل عام، ليس كثيرًا.

جذور المعادلة التربيعية

الآن دعنا ننتقل إلى الحل نفسه. إذا كان المميز D > 0، فيمكن العثور على الجذور باستخدام الصيغ:

الصيغة الأساسية لجذور المعادلة التربيعية

عندما يكون D = 0، يمكنك استخدام أي من هذه الصيغ - سوف تحصل على نفس الرقم، والذي سيكون الجواب. وأخيراً إذا كان د< 0, корней нет — ничего считать не надо.

  1. س 2 − 2س − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. × 2 + 12س + 36 = 0.

المعادلة الأولى:
س 2 − 2س − 3 = 0 ⇒ أ = 1; ب = −2؛ ج = −3;
د = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ للمعادلة جذرين. دعونا نجدهم:

المعادلة الثانية:
15 − 2x − x 2 = 0 ⇒ أ = −1; ب = −2؛ ج = 15؛
د = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ المعادلة لها جذرين مرة أخرى. دعونا نجدهم

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \النهاية(محاذاة)\]

وأخيراً المعادلة الثالثة:
س 2 + 12س + 36 = 0 ⇒ أ = 1; ب = 12؛ ج = 36؛
د = 12 2 − 4 1 36 = 0.

د = 0 ⇒ المعادلة لها جذر واحد. يمكن استخدام أي صيغة. على سبيل المثال، الأول:

كما ترون من الأمثلة، كل شيء بسيط للغاية. إذا كنت تعرف الصيغ وتستطيع العد، فلن تكون هناك مشاكل. في أغلب الأحيان، تحدث الأخطاء عند استبدال المعاملات السلبية في الصيغة. هنا مرة أخرى، ستساعد التقنية الموضحة أعلاه: انظر إلى الصيغة حرفيًا، واكتب كل خطوة - وسرعان ما تتخلص من الأخطاء.

المعادلات التربيعية غير الكاملة

يحدث أن المعادلة التربيعية تختلف قليلاً عما ورد في التعريف. على سبيل المثال:

  1. س 2 + 9س = 0؛
  2. س 2 − 16 = 0.

من السهل ملاحظة أن هذه المعادلات تفتقد أحد المصطلحات. إن حل هذه المعادلات التربيعية أسهل من حل المعادلات القياسية: فهي لا تتطلب حتى حساب المميز. لذلك، دعونا نقدم مفهوما جديدا:

تسمى المعادلة ax 2 + bx + c = 0 بمعادلة تربيعية غير مكتملة إذا كان b = 0 أو c = 0، أي. معامل المتغير x أو العنصر الحر يساوي صفر.

بالطبع، هناك حالة صعبة للغاية عندما يكون كلا هذين المعاملين مساويًا للصفر: b = c = 0. في هذه الحالة، تأخذ المعادلة الشكل ax 2 = 0. من الواضح أن هذه المعادلة لها جذر واحد: x = 0.

دعونا ننظر في الحالات المتبقية. لنفترض أن b = 0، ثم نحصل على معادلة تربيعية غير كاملة بالصيغة ax 2 + c = 0. فلنحولها قليلاً:

بما أن الجذر التربيعي الحسابي موجود فقط لعدد غير سالب، فإن المساواة الأخيرة تكون منطقية فقط بالنسبة لـ (−c /a) ≥ 0. الخلاصة:

  1. إذا كانت في معادلة تربيعية غير مكتملة من الصيغة ax 2 + c = 0 تم تحقيق المتراجحة (−c /a) ≥ 0، فسيكون هناك جذرين. الصيغة مذكورة أعلاه.
  2. إذا (-ج /أ)< 0, корней нет.

كما ترون، لم يكن المميز مطلوبًا، إذ لا توجد حسابات معقدة على الإطلاق في المعادلات التربيعية غير المكتملة. في الواقع، ليس من الضروري حتى أن نتذكر المتراجحة (−c /a) ≥ 0. يكفي التعبير عن القيمة x 2 ومعرفة ما هو على الجانب الآخر من علامة المساواة. إذا كان هناك عدد موجب، فسيكون هناك جذرين. إذا كانت سلبية، فلن يكون هناك جذور على الإطلاق.

الآن دعونا نلقي نظرة على المعادلات ذات الصيغة ax 2 + bx = 0، حيث العنصر الحر يساوي الصفر. كل شيء بسيط هنا: سيكون هناك دائمًا جذرين. يكفي تحليل كثير الحدود إلى عوامل:

أخذ العامل المشترك من بين قوسين

يكون الناتج صفرًا عندما يكون أحد العوامل على الأقل صفرًا. ومن هنا تأتي الجذور. وفي الختام، دعونا نلقي نظرة على عدد قليل من هذه المعادلات:

مهمة. حل المعادلات التربيعية:

  1. س 2 − 7س = 0;
  2. 5س 2 + 30 = 0؛
  3. 4س 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; س 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. لا توجد جذور، لأنه لا يمكن للمربع أن يساوي رقمًا سالبًا.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1.5; × 2 = −1.5.