Биографии Характеристики Анализ

Что такое графическое решение уравнений. Графическое решение смешанных неравенств

>>Математика: Графическое решение уравнений

Графическое решение уравнений

Подытожим наши знания о графиках функций. Мы с вами научились строить графики следующих функций:

у =b (прямую, параллельную оси х);

y = kx (прямую, проходящую через начало координат);

y - kx + m (прямую);

у = х 2 (параболу).

Знание этих графиков позволит нам в случае необходимости заменить аналитическую модель геометрической (графической), например, вместо модели у = х 2 (которая представляет собой равенство с двумя переменными х и у) рассматривать параболу в координатной плоскости. В частности, это иногда полезно для решения уравнений. Как это делается, обсудим на нескольких примерах.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

На уроке учащиеся продемонстрировали знания и умения программы:

– распознавать виды функции, строить их графики;
– отрабатывали навыки построения квадратичной функции;
– отрабатывали графические способы решения квадратных уравнений, используя метод выделения полного квадрата.

Мне захотелось уделить особое внимание решению задач с параметром, так как ЕГЭ по математике предлагает очень много заданий такого типа.

Возможность применить на уроке такой вид работы дали мне сами ученики, так как они имеют достаточную базу знаний, которые можно углубить и расширить.

Заранее подготовленные учащимися шаблоны позволили экономить время урока. В ходе урока мне удалось реализовать поставленные задачи в начале урока и получить ожидаемый результат.

Использование физкультминутки помогло избежать переутомления учащихся, сохранить продуктивную мотивацию получения знаний.

В целом результатом урока я довольна, но думаю, что есть еще резервные возможности: современные инновационные технологические средства, которыми мы, к сожалению, не имеем возможности пользоваться.

Тип урока: закрепление изученного материала.

Цели урока:

  • Общеобразовательные и дидактические :
    • развивать разнообразные способы мыслительной деятельности учащихся;
    • формировать способности самостоятельного решения задач;
    • воспитывать математическую культуру учащихся;
    • развивать интуицию учащихся и умение пользоваться полученными знаниями.
  • Учебные цели :
    • обобщить ранее изученные сведения по теме «Графическое решение квадратных уравнений»;
    • повторить построение графиков квадратичной функции;
    • сформировать навыки использования алгоритмов решения квадратичных уравнений графическим методом.
  • Воспитательные :
    • привитие интереса к учебной деятельности, к предмету математики;
    • формирование толерантности (терпимости), умения работать в коллективе.

ХОД УРОКА

I. Организационный момент

– Сегодня на уроке мы обобщим и закрепим графическое решение квадратных уравнений различными способами.
В дальнейшем эти навыки нам будут нужны в старших классах на уроках математики при решении тригонометрических и логарифмических уравнений, нахождения площади криволинейной трапеции, а также на уроках физики.

II. Проверка домашней работы

Разберем на доске № 23.5(г).

Решить это уравнение с помощью параболы и прямой.

Решение :

х 2 + х – 6 = 0
Преобразуем уравнение: х 2 = 6 – х
Введем функции:

у = х 2 ; квадратичная функция у = 6 – х линейная,
графиком явл. парабола, графиком явл. прямая,

Строем в одной системе координат графики функций (по шаблону)

Получили две точки пересечения.

Решением квадратного уравнения являются абсциссы этих точек х 1 = – 3, х 2 = 2.

Ответ: – 3; 2.

III. Фронтальный опрос

  • Что является графиком квадратичной функции?
  • Скажите алгоритм построения графика квадратичной функции?
  • Что называется квадратичным уравнением?
  • Приведите примеры квадратичных уравнений?
  • Запишите на доске свой пример квадратичного уравнения, Назовите, чему равны коэффициенты?
  • Что значит решить уравнение?
  • Сколько способов вы знаете графического решения квадратных уравнений?
  • В чем заключается графические способы решение квадратных уравнений:

IV. Закрепление материала

На доске решают учащиеся первым, вторым, третьим способами.

Класс решает четвертым

– х 2 + 6х – 5 = 0

Преобразую квадратное уравнение, выделяя полный квадрат двучлена:

– х 2 + 6х – 5 = – (х 2 – 6х + 5) = – (х 2 – 6х + 32 – 9 + 5) = – ((х – 3) 2 – 4) = – (х – 3) 2 + 4

Получили квадратное уравнение:

– (х – 3) 2 + 4 = 0

Введем функцию:

у = – (х 2 – 3) 2 + 4

Квадратичная функция вида у = а (х + L) 2 + m

Графиком явл. парабола, ветви направлены вниз, сдвиг основной параболы по оси Ох в право на 3 ед., по оси Оу вверх на 4 ед., вершина (3; 4).

Строим по шаблону.

Нашли точки пересечения параболы с осью Ох. Абсциссы этих точек явл. решением данного уравнения. х = 1, х = 5.

Давайте посмотрим другие графические решение у доски. Прокомментируйте свой способ решения квадратных уравнений.

1 ученик

Решение :

– х 2 + 6х – 5 = 0

Введем функцию у = – х + 6х – 5, квадратичная функция, графиком является парабола, ветви направлены вниз, вершина

х 0 = – в/2а
х 0 = – 6/– 2 = 3
у 0 = – 3 2 + 18 = 9; точка (3; 9)
ось симметрии х = 3

Строим по шаблону

Получили точки пересечения с осью Ох, абсциссы этих точек являются решением квадратного уравнения. Два корня х 1 = 1, х 2 = 5

2 ученик

Решение :

– х 2 + 6х – 5 = 0

Преобразуем: – х 2 + 6х = 5

Введем функции: у1 = – х 2 + 6х, у2 = 5, линейная функция, квадратичная функция, графиком графиком явл. прямая у || Ох явл. парабола, ветви направлены вниз, вершина х 0 = – в/2а
х 0 = – 6/– 2 = 3
у 0 = – 3 2 + 18 = 9;
(3; 9).
ось симметрии х = 3
Строим по шаблону
Получили точки пересечения
параболы и прямой, их абсциссы являются решением квадратного уравнения. Два корня х 1 = 1, х 2 = 5
Итак, одно и тоже уравнение можно решать различными способами, а ответ получаться должен один и тот же.

V. Физкультминутка

VI. Решение задачи с параметром

При каких значениях р уравнение х 2 + 6х + 8 = р:
– Не имеет корней?
– Имеет один корень?
– Имеет два корня?
Чем отличается это уравнение от предыдущего?
Правильно, буквой!
Эту букву в дальнейшем мы будем называть параметром, Р .
Пока она вам ни о чем не говорит. Но мы будем в дальнейшем решать различные задачи с параметром.
Сегодня решим квадратное уравнение с параметром графическим методом, используя третий способ с помощью параболы и прямой параллельной оси абсцисс.
Ученик помогает учителю решать у доски.
С чего начнем решать?

Зададим функции:

у 1 = х 2 + 6х + 8 у 2 = р линейная функция,
квадратичная функция, графиком является прямая
графиком явл. парабола,
ветви направлены вниз, вершина

х 0 = – в/2а,
х 0 = – 6/2 = – 3
у 0 = (– 3) 2 + 6(– 3) + 8 = – 1
(– 3; – 1)

Ось симметрии х = 3, таблицу строить не буду, а возьму шаблон у = х 2 и приложу к вершине параболы.
Парабола построена! Теперь надо провести прямую у = р .
– Где надо начертить прямую р , чтобы получить два корня?
– Где надо начертить прямую р , чтобы получить один корень?
– Где надо начертить прямую р , чтобы не было корней?
– Итак, сколько наше уравнение может иметь корней?
– Понравилась задача? Спасибо за помощь! Оценка 5.

VII. Самостоятельная работа по вариантам (5 мин.)

у = х 2 – 5х + 6 у = – х 2 + х – 6

Решить квадратное уравнение графическим способом, выбирая для вас удобный способ. Если кто-то справится с заданием раньше, проверьте свое решение другим способом. За это будет выставляться дополнительная оценка.

VIII. Итог урока

– Чему научились вы на сегодняшнем уроке?
– Сегодня на уроке мы с вами квадратные уравнения решали графическим методом, используя различные способы решения, и рассмотрели графический способ решения квадратного уравнения с параметром!
– Переходим к домашнему заданию.

IХ. Домашнее задание

1. Домашняя контрольная работа на стр. 147, из задачника Мордковича по вариантам I и II.
2. На кружке, в среду, будем решать V-м способом, (гипербола и прямая).

Х. Литература:

1. А.Г. Мордкович . Алгебра-8. Часть 1. Учебник для учащихся образовательных учреждений. М.: Мнемозина, 2008 г.
2. А.Г. Мордкович, Л.А.Александрова, Т.Н. Мишустина, Е.Е. Тульчинская . Алгебра – 8. Часть 2. Задачник для учащихся образовательных учреждений. М.: Мнемозина, 2008 г.
3. А.Г. Мордкович . Алгебра 7-9. Методическое пособие для учителя.М.: Мнемозина, 2004 г.
4. Л.А. Александрова . Алгебра-8. Самостоятельные работы для учащихся образовательных учреждений./Под ред. А.Г. Мордковича. М.: Мнемозина, 2009 г.

Графическое решение уравнений

Расцвет, 2009

Введение

Необходимость решать квадратные уравнения еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения вавилоняне умели решать еще около 2000 лет до н.э. Правило решения этих уравнений, изложенное в Вавилонских текстах, совпадает по существу с современными, однако неизвестно, каким образом дошли вавилоняне до этого правила.

Формулы решения квадратных уравнений в Европе были впервые изложены в «Книге абака», написанной в 1202 году итальянским математиком Леонардо Фибоначчи. Его книга способствовала распространению алгебраических знаний не только в Италии, но и Германии, Франции и других странах Европы.

Но общее правило решения квадратных уравнений, при всевозможных комбинациях коэффициентов b и c было сформулировано в Европе лишь в 1544 году М. Штифелем.

В 1591 году Франсуа Виет ввел формулы для решения квадратных уравнений.

В древнем Вавилоне могли решить некоторые виды квадратных уравнений.

Диофант Александрийский и Евклид , Аль-Хорезми и Омар Хайям решали уравнения геометрическими и графическими способами.

В 7 классе мы изучали функции у = С, у = kx , у = kx + m , у = x 2 , у = – x 2 , в 8 классе – у = √ x , у = |x |, у = ax 2 + bx + c , у = k / x . В учебнике алгебры 9 класса я увидела ещё не известные мне функции: у = x 3 , у = x 4 , у = x 2 n , у = x - 2 n , у = 3 √x , ( x a ) 2 + (у – b ) 2 = r 2 и другие. Существуют правила построения графиков данных функций. Мне стало интересно, есть ли ещё функции, подчиняющиеся этим правилам.

Моя работа заключается в исследовании графиков функций и графическом решении уравнений.

1. Какие бывают функции

График функции – это множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов, а ординаты – соответствующим значениям функции.

Линейная функция задаётся уравнением у = kx + b , гдеk и b – некоторые числа. Графиком этой функции является прямая.

Функция обратной пропорциональности у = k / x , где k¹ 0. График этой функции называется гиперболой.

Функция ( x a ) 2 + (у – b ) 2 = r 2 , где а , b и r – некоторые числа. Графиком этой функции является окружность радиуса r с центром в т. А (а , b ).

Квадратичная функция y = ax 2 + bx + c где а, b , с – некоторые числа и а ¹ 0. Графиком этой функции является парабола.

Уравнение у 2 ( a x ) = x 2 ( a + x ) . Графиком этого уравнения будет кривая, называемая строфоидой.

Уравнение ( x 2 + y 2 ) 2 = a ( x 2 y 2 ) . График этого уравнения называется лемнискатой Бернулли.

Уравнение. График этого уравнения называется астроидой.

Кривая(x 2 y 2 – 2 a x) 2 =4 a 2 (x 2 + y 2) . Эта кривая называется кардиоидой.

Функции: у = x 3 – кубическая парабола, у = x 4 , у = 1/ x 2 .

2. Понятие уравнения, его графического решения

Уравнение – выражение, содержащее переменную.

Решить уравнение – это значит найти все его корни, или доказать, что их нет.

Корень уравнения – это число, при подстановке которого в уравнение получается верное числовое равенство.

Решение уравнений графическим способом позволяет найти точное или приближенное значение корней, позволяет найти количество корней уравнения.

При построении графиков и решении уравнений используются свойства функции, поэтому метод чаще называют функционально-графическим.

Для решения уравнение «делим» на две части, вводим две функции, строим их графики, находим координаты точек пересечения графиков. Абсциссы этих точек и есть корни уравнения.

3. Алгоритм построения графика функции

Зная график функции у = f ( x ) , можно построить графики функций у = f ( x + m ) , у = f ( x )+ l и у = f ( x + m )+ l . Все эти графики получаются из графика функции у = f ( x ) с помощью преобразования параллельного переноса: на m единиц масштаба вправо или влево вдоль оси x и на l единиц масштаба вверх или вниз вдоль оси y .

4. Графическое решение квадратного уравнения

На примере квадратичной функции мы рассмотрим графическое решение квадратного уравнения. Графиком квадратичной функции является парабола.

Что знали о параболе древние греки?

Современная математическая символика возникла в 16 веке.

У древнегреческих же математиков ни координатного метода, ни понятия функции не было. Тем не менее, свойства параболы были изучены ими подробно. Изобретательность античных математиков просто поражает воображение, – ведь они могли использовать только чертежи и словесные описания зависимостей.

Наиболее полно исследовал параболу, гиперболу и эллипс Аполоний Пергский , живший в 3 веке до н.э. Он же дал этим кривым названия и указал, каким условиям удовлетворяют точки, лежащие на той или иной кривой (ведь формул-то не было!).

Существует алгоритм построения параболы:

Находим координаты вершины параболы А (х 0 ; у 0): х 0 =- b /2 a ;

Y 0 =ах о 2 +вх 0 +с;

Находим ось симметрии параболы (прямая х=х 0);

Составляем таблицу значений для построения контрольных точек;

Строим полученные точки и построим точки им симметричные относительно оси симметрии.

1. По алгоритму построим параболу y = x 2 – 2 x – 3 . Абсциссы точек пересечения с осью x и есть корни квадратного уравнения x 2 – 2 x – 3 = 0.

Существует пять способов графического решения этого уравнения.

2. Разобьём уравнение на две функции: y = x 2 и y = 2 x + 3

3. Разобьём уравнение на две функции: y = x 2 –3 и y =2 x . Корни уравнения – абсциссы точек пересечения параболы с прямой.

4. Преобразуем уравнениеx 2 – 2 x – 3 = 0 при помощи выделения полного квадрата на функции: y = ( x –1) 2 иy =4. Корни уравнения – абсциссы точек пересечения параболы с прямой.

5. Разделим почленно обе части уравненияx 2 – 2 x – 3 = 0 на x , получим x – 2 – 3/ x = 0 , разобьём данное уравнение на две функции: y = x – 2, y = 3/ x . Корни уравнения – абсциссы точек пересечения прямой и гиперболы.

5. Графическое решение уравнений степени n

Пример 1. Решить уравнение x 5 = 3 – 2 x .

y = x 5 , y = 3 – 2 x .

Ответ: x = 1.

Пример 2. Решить уравнение 3 x = 10 – x .

Корнями данного уравнения является абсцисса точки пересечения графиков двух функций: y = 3 x , y = 10 – x .

Ответ: x = 8.

Заключение

Рассмотрев графики функций: у = ax 2 + bx + c , у = k / x , у = √ x , у = |x |, у = x 3 , у = x 4 , у = 3 √x , я заметила, что все эти графики строятся по правилу параллельного переноса относительно осей x и y .

На примере решения квадратного уравнения можно сделать выводы, что графический способ применим и для уравнений степени n.

Графические способы решения уравнений красивы и понятны, но не дают стопроцентной гарантии решения любого уравнения. Абсциссы точек пересечения графиков могут быть приближёнными.

В 9 классе и в старших классах я буду ещё знакомиться с другими функциями. Мне интересно знать: подчиняются ли те функции правилам параллельного переноса при построении их графиков.

На следующий год мне хочется также рассмотреть вопросы графического решения систем уравнений и неравенств.

Литература

1. Алгебра. 7 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

2. Алгебра. 8 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

3. Алгебра. 9 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

4. Глейзер Г.И. История математики в школе. VII–VIII классы. – М.: Просвещение, 1982.

5. Журнал Математика №5 2009; №8 2007; №23 2008.

6. Графическое решение уравнений сайты в Интернете: Тол ВИКИ; stimul.biz/ru; wiki.iot.ru/images; berdsk.edu; pege 3–6.htm.

Графическое решение уравнений

Расцвет, 2009

Введение

Необходимость решать квадратные уравнения еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения вавилоняне умели решать еще около 2000 лет до н.э. Правило решения этих уравнений, изложенное в Вавилонских текстах, совпадает по существу с современными, однако неизвестно, каким образом дошли вавилоняне до этого правила.

Формулы решения квадратных уравнений в Европе были впервые изложены в «Книге абака», написанной в 1202 году итальянским математиком Леонардо Фибоначчи. Его книга способствовала распространению алгебраических знаний не только в Италии, но и Германии, Франции и других странах Европы.

Но общее правило решения квадратных уравнений, при всевозможных комбинациях коэффициентов b и c было сформулировано в Европе лишь в 1544 году М. Штифелем.

В 1591 году Франсуа Виет ввел формулы для решения квадратных уравнений.

В древнем Вавилоне могли решить некоторые виды квадратных уравнений.

Диофант Александрийский и Евклид , Аль-Хорезми и Омар Хайям решали уравнения геометрическими и графическими способами.

В 7 классе мы изучали функции у = С, у = kx , у = kx + m , у = x 2,у = – x 2, в 8 классе – у = √ x , у = |x |, у = ax 2 + bx + c , у = k / x . В учебнике алгебры 9 класса я увидела ещё не известные мне функции: у = x 3, у = x 4,у = x 2n, у = x - 2n, у = 3√x , (x a ) 2 + (у – b ) 2 = r 2 и другие. Существуют правила построения графиков данных функций. Мне стало интересно, есть ли ещё функции, подчиняющиеся этим правилам.

Моя работа заключается в исследовании графиков функций и графическом решении уравнений.

1. Какие бывают функции

График функции – это множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов, а ординаты – соответствующим значениям функции.

Линейная функция задаётся уравнением у = kx + b , гдеk и b – некоторые числа. Графиком этой функции является прямая.

Функция обратной пропорциональности у = k / x , где k ¹ 0. График этой функции называется гиперболой.

Функция (x a ) 2 + (у – b ) 2 = r 2 , где а , b и r – некоторые числа. Графиком этой функции является окружность радиуса r с центром в т. А (а , b ).

Квадратичная функция y = ax 2 + bx + c где а, b , с – некоторые числа и а ¹ 0. Графиком этой функции является парабола.

Уравнение у 2 (a x ) = x 2 (a + x ) . Графиком этого уравнения будет кривая, называемая строфоидой.

/>Уравнение(x 2 + y 2 ) 2 = a (x 2 y 2 ) . График этого уравнения называется лемнискатой Бернулли.

Уравнение. График этого уравнения называется астроидой.

Кривая(x 2 y 2 – 2 a x) 2 =4 a 2 (x 2 + y 2 ) . Эта кривая называется кардиоидой.

Функции: у = x 3 – кубическая парабола, у = x 4, у = 1/ x 2.

2. Понятие уравнения, его графического решения

Уравнение – выражение, содержащее переменную.

Решить уравнение – это значит найти все его корни, или доказать, что их нет.

Корень уравнения – это число, при подстановке которого в уравнение получается верное числовое равенство.

Решение уравнений графическим способом позволяет найти точное или приближенное значение корней, позволяет найти количество корней уравнения.

При построении графиков и решении уравнений используются свойства функции, поэтому метод чаще называют функционально-графическим.

Для решения уравнение «делим» на две части, вводим две функции, строим их графики, находим координаты точек пересечения графиков. Абсциссы этих точек и есть корни уравнения.

3. Алгоритм построения графика функции

Зная график функции у = f (x ) , можно построить графики функций у = f (x + m ) ,у = f (x )+ l и у = f (x + m )+ l . Все эти графики получаются из графика функции у = f (x ) с помощью преобразования параллельного переноса: на m единиц масштаба вправо или влево вдоль оси x и на l единиц масштаба вверх или вниз вдоль оси y .

4. Графическое решение квадратного уравнения

На примере квадратичной функции мы рассмотрим графическое решение квадратного уравнения. Графиком квадратичной функции является парабола.

Что знали о параболе древние греки?

Современная математическая символика возникла в 16 веке.

У древнегреческих же математиков ни координатного метода, ни понятия функции не было. Тем не менее, свойства параболы были изучены ими подробно. Изобретательность античных математиков просто поражает воображение, – ведь они могли использовать только чертежи и словесные описания зависимостей.

Наиболее полно исследовал параболу, гиперболу и эллипс Аполоний Пергский , живший в 3 веке до н.э. Он же дал этим кривым названия и указал, каким условиям удовлетворяют точки, лежащие на той или иной кривой (ведь формул-то не было!).

Существует алгоритм построения параболы:

Находим координаты вершины параболы А (х0; у0): х =- b /2 a ;

y0=ахо2+вх0+с;

Находим ось симметрии параболы (прямая х=х0);

PAGE_BREAK--

Составляем таблицу значений для построения контрольных точек;

Строим полученные точки и построим точки им симметричные относительно оси симметрии.

1. По алгоритму построим параболу y = x 2 – 2 x – 3 . Абсциссы точек пересечения с осью x и есть корни квадратного уравнения x 2 – 2 x – 3 = 0.

Существует пять способов графического решения этого уравнения.

2. Разобьём уравнение на две функции: y = x 2 и y = 2 x + 3

3. Разобьём уравнение на две функции: y = x 2 –3 и y =2 x . Корни уравнения – абсциссы точек пересечения параболы с прямой.

4. Преобразуем уравнениеx 2 – 2 x – 3 = 0 при помощи выделения полного квадрата на функции: y = (x –1) 2 иy =4. Корни уравнения – абсциссы точек пересечения параболы с прямой.

5. Разделим почленно обе части уравненияx 2 – 2 x – 3 = 0 на x , получим x – 2 – 3/ x = 0 , разобьём данное уравнение на две функции: y = x – 2, y = 3/ x . Корни уравнения – абсциссы точек пересечения прямой и гиперболы.

5. Графическое решение уравнений степени n

Пример 1. Решить уравнение x 5 = 3 – 2 x .

y = x 5 , y = 3 – 2 x .

Ответ: x = 1.

Пример 2. Решить уравнение 3 x = 10 – x .

Корнями данного уравнения является абсцисса точки пересечения графиков двух функций: y = 3 x , y = 10 – x .

Ответ: x = 8.

Заключение

Рассмотрев графики функций: у = ax 2 + bx + c , у = k / x , у = √ x , у = |x |, у = x 3, у = x 4,у = 3√x , я заметила, что все эти графики строятся по правилу параллельного переноса относительно осей x и y .

На примере решения квадратного уравнения можно сделать выводы, что графический способ применим и для уравнений степени n.

Графические способы решения уравнений красивы и понятны, но не дают стопроцентной гарантии решения любого уравнения. Абсциссы точек пересечения графиков могут быть приближёнными.

В 9 классе и в старших классах я буду ещё знакомиться с другими функциями. Мне интересно знать: подчиняются ли те функции правилам параллельного переноса при построении их графиков.

На следующий год мне хочется также рассмотреть вопросы графического решения систем уравнений и неравенств.

Литература

1. Алгебра. 7 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

2. Алгебра. 8 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

3. Алгебра. 9 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

4. Глейзер Г.И. История математики в школе. VII–VIII классы. – М.: Просвещение, 1982.

5. Журнал Математика №5 2009; №8 2007; №23 2008.

6. Графическое решение уравнений сайты в Интернете: Тол ВИКИ; stimul.biz/ru; wiki.iot.ru/images; berdsk.edu; pege 3–6.htm.

С квадратными уравнениями вы уже встречались в курсе алгебры 7-го класса. Напомним, что квадратным уравнением называют уравнение вида ах 2 + bх + с = 0, где а, b, с — любые числа (коэффициенты), причем а . Используя наши знания о некоторых функциях и их графиках, мы в состоянии уже теперь, не дожидаясь систематического изучения темы «Квадратные уравнения», решать некоторые квадратные уравнения, причем различными способами; мы рассмотрим эти способы на примере одного квадратного уравнения.

Пример. Решить уравнение х 2 - 2х - 3 = 0.
Решение.
I способ . Построим график функции у = х 2 - 2х - 3, воспользовавшись алгоритмом из § 13:

1) Имеем: а = 1, b = -2, х 0 = = 1, у 0 = f(1)= 1 2 - 2 - 3= -4. Значит, вершиной параболы служит точка (1; -4), а осью параболы — прямая х = 1.

2) Возьмем на оси х две точки, симметричные относительно оси параболы, например точки х = -1 и х = 3.

Имеем f(-1) = f(3) = 0. Построим на координатной плоскости точки (-1; 0) и (3; 0).

3) Через точки (-1; 0), (1; -4), (3; 0) проводим параболу (рис. 68).

Корнями уравнения х 2 - 2х - 3 = 0 являются абсциссы точек пересечения параболы с осью х; значит, корни уравнения таковы: х 1 = - 1, х 2 — 3.

II способ. Преобразуем уравнение к виду х 2 = 2х + 3. Построим в одной системе координат графики функций у — х 2 и у = 2х + 3 (рис. 69). Они пересекаются в двух точках А(- 1; 1) и В(3; 9). Корнями уравнения служат абсциссы точек А и В, значит, х 1 = - 1, х 2 — 3.


III способ . Преобразуем уравнение к виду х 2 - 3 = 2х. Построим в одной системе координат графики функций у = х 2 - 3 и у = 2х (рис. 70). Они пересекаются в двух точках А(-1; - 2) и В (3; 6). Корнями уравнения являются абсциссы точек А и В, поэтому х 1 = - 1, х 2 = 3.

IV способ. Преобразуем уравнение к виду х 2 -2х 4-1-4 = 0
и далее
х 2 - 2х + 1 = 4, т. е. (х - IJ = 4.
Построим в одной системе координат параболу у = (х - 1) 2 и прямую y = 4 (рис. 71). Они пересекаются в двух точках А(-1; 4) и В(3; 4). Корнями уравнения служат абсциссы точек А и В, поэтому х 1 = -1, х 2 = 3.

V способ. Разделив почленно обе части уравнения на х, получим


Построим в одной системе координат гиперболу и прямую у = х - 2 (рис. 72).

Они пересекаются в двух точках А (-1; -3) и В(3; 1). Корнями уравнения являются абсциссы точек А и В, следовательно, х 1 = - 1, х 2 = 3.

Итак, квадратное уравнение х 2 - 2х - 3 = 0 мы решили графически пятью способами. Давайте проанализируем, в чем суть этих способов.

I способ. Строят график функции у точки его пересечения с осью х.

II способ. Преобразуют уравнение к виду ах 2 = -bх - с, строят параболу у = ах 2 и прямую у = -bх - с, находят точки их пересечения (корнями уравнения служат абсциссы точек пересечения, если, разумеется, таковые имеются).

III способ. Преобразуют уравнение к виду ах 2 + с = - bх,строят параболу у — ах 2 + с и прямую у = -bх (она проходит через начало координат); находят точки их пересечения.

IV способ. Применяя метод выделения полного квадрата, преобразуют уравнение к виду

Строят параболу у = а (х + I) 2 и прямую у = - m, параллельную оси х; находят точки пересечения параболы и прямой.

V способ. Преобразуют уравнение к виду


Строят гиперболу (это — гипербола при условии, что ) и прямую у = — ах — b; находят точки их пересечения.

Заметим, что первые четыре способа применимы к любым уравнениям вида ах 2 + bх + с = 0, а пятый — только к тем, у которых с . На практике можно выбирать тот способ, который вам кажется наиболее приспособленным к данному уравнению или который вам больше нравится (или более понятен).

Замечание . Несмотря на обилие способов графического решения квадратных уравнений, уверенности в том, что любое квадратное уравнение мы
сможем решить графически, нет. Пусть, например, нужно решить уравнение х 2 - х - 3 = 0 (специально возьмем уравнение, похожее на то, что было в
рассмотренном примере). Попробуем его решить, например, вторым способом: преобразуем уравнение к виду х 2 = х + 3, построим параболу у = х 2 и
прямую у = х + 3, они пересекаются в точках А и В (рис. 73), значит, уравнение имеет два корня. Но чему равны эти корни, мы с помощью чертежа
сказать не можем — точки А и В имеют не такие «хорошие» координаты, как в приведенном выше примере. А теперь рассмотрим уравнение
х 2 - 16х— 95 = 0. Попробуем его решить, скажем, третьим способом. Преобразуем уравнение к виду х 2 — 95 = 16х. Здесь надо построить параболу
у = х 2 - 95 и прямую у = 16х. Но ограниченные размеры листа тетради не позволяют этого сделать, ведь параболу у = х 2 надо опустить на 95 клеток вниз.

Итак, графические способы решения квадратного уравнения красивы и приятны, но не дают стопроцентной гарантии решения любого квадратного уравнения. Учтем это в далнейшем.