Биографии Характеристики Анализ

Что такое привести подобные слагаемые. Подобные слагаемые — Гипермаркет знаний


Представленный ниже материал является логическим продолжением теории из статьи под заголовком НОК - наименьшее общее кратное, определение, примеры, связь между НОК и НОД . Здесь мы поговорим про нахождение наименьшего общего кратного (НОК) , и особое внимание уделим решению примеров. Сначала покажем, как вычисляется НОК двух чисел через НОД этих чисел. Дальше рассмотрим нахождение наименьшего общего кратного с помощью разложения чисел на простые множители. После этого остановимся на нахождении НОК трех и большего количества чисел, а также уделим внимание вычислению НОК отрицательных чисел.

Навигация по странице.

Вычисление наименьшего общего кратного (НОК) через НОД

Один из способов нахождения наименьшего общего кратного основан на связи между НОК и НОД . Существующая связь между НОК и НОД позволяет вычислять наименьшее общее кратное двух целых положительных чисел через известный наибольший общий делитель. Соответствующая формула имеет вид НОК(a, b)=a·b:НОД(a, b) . Рассмотрим примеры нахождения НОК по приведенной формуле.

Пример.

Найдите наименьшее общее кратное двух чисел 126 и 70 .

Решение.

В этом примере a=126 , b=70 . Воспользуемся связью НОК с НОД, выражающуюся формулой НОК(a, b)=a·b:НОД(a, b) . То есть, сначала нам предстоит найти наибольший общий делитель чисел 70 и 126 , после чего мы сможем вычислить НОК этих чисел по записанной формуле.

Найдем НОД(126, 70) , используя алгоритм Евклида: 126=70·1+56 , 70=56·1+14 , 56=14·4 , следовательно, НОД(126, 70)=14 .

Теперь находим требуемое наименьшее общее кратное: НОК(126, 70)=126·70:НОД(126, 70)= 126·70:14=630 .

Ответ:

НОК(126, 70)=630 .

Пример.

Чему равно НОК(68, 34) ?

Решение.

Так как 68 делится нацело на 34 , то НОД(68, 34)=34 . Теперь вычисляем наименьшее общее кратное: НОК(68, 34)=68·34:НОД(68, 34)= 68·34:34=68 .

Ответ:

НОК(68, 34)=68 .

Заметим, что предыдущий пример подходит под следующее правило нахождения НОК для целых положительные чисел a и b : если число a делится на b , то наименьшее общее кратное этих чисел равно a .

Нахождение НОК с помощью разложения чисел на простые множители

Другой способ нахождения наименьшего общего кратного базируется на разложении чисел на простые множители . Если составить произведение из всех простых множителей данных чисел, после чего из этого произведения исключить все общие простые множители, присутствующие в разложениях данных чисел, то полученное произведение будет равно наименьшему общему кратному данных чисел .

Озвученное правило нахождения НОК следует из равенства НОК(a, b)=a·b:НОД(a, b) . Действительно, произведение чисел a и b равно произведению всех множителей, участвующих в разложениях чисел a и b . В свою очередь НОД(a, b) равен произведению всех простых множителей, одновременно присутствующих в разложениях чисел a и b (о чем написано в разделе нахождение НОД с помощью разложения чисел на простые множители).

Приведем пример. Пусть мы знаем, что 75=3·5·5 и 210=2·3·5·7 . Составим произведение из всех множителей данных разложений: 2·3·3·5·5·5·7 . Теперь из этого произведения исключим все множители, присутствующие и в разложении числа 75 и в разложении числа 210 (такими множителями являются 3 и 5 ), тогда произведение примет вид 2·3·5·5·7 . Значение этого произведения равно наименьшему общему кратному чисел 75 и 210 , то есть, НОК(75, 210)= 2·3·5·5·7=1 050 .

Пример.

Разложив числа 441 и 700 на простые множители, найдите наименьшее общее кратное этих чисел.

Решение.

Разложим числа 441 и 700 на простые множители:

Получаем 441=3·3·7·7 и 700=2·2·5·5·7 .

Теперь составим произведение из всех множителей, участвующих в разложениях данных чисел: 2·2·3·3·5·5·7·7·7 . Исключим из этого произведения все множители, одновременно присутствующие в обоих разложениях (такой множитель только один – это число 7 ): 2·2·3·3·5·5·7·7 . Таким образом, НОК(441, 700)=2·2·3·3·5·5·7·7=44 100 .

Ответ:

НОК(441, 700)= 44 100 .

Правило нахождения НОК с использованием разложения чисел на простые множители можно сформулировать немного иначе. Если ко множителям из разложения числа a добавить недостающие множители из разложения числа b , то значение полученного произведения будет равно наименьшему общему кратному чисел a и b .

Для примера возьмем все те же числа 75 и 210 , их разложения на простые множители таковы: 75=3·5·5 и 210=2·3·5·7 . Ко множителям 3 , 5 и 5 из разложения числа 75 добавляем недостающие множители 2 и 7 из разложения числа 210 , получаем произведение 2·3·5·5·7 , значение которого равно НОК(75, 210) .

Пример.

Найдите наименьшее общее кратное чисел 84 и 648 .

Решение.

Получаем сначала разложения чисел 84 и 648 на простые множители. Они имеют вид 84=2·2·3·7 и 648=2·2·2·3·3·3·3 . К множителям 2 , 2 , 3 и 7 из разложения числа 84 добавляем недостающие множители 2 , 3 , 3 и 3 из разложения числа 648 , получаем произведение 2·2·2·3·3·3·3·7 , которое равно 4 536 . Таким образом, искомое наименьшее общее кратное чисел 84 и 648 равно 4 536 .

Ответ:

НОК(84, 648)=4 536 .

Нахождение НОК трех и большего количества чисел

Наименьшее общее кратное трех и большего количества чисел может быть найдено через последовательное нахождение НОК двух чисел. Напомним соответствующую теорему, дающую способ нахождения НОК трех и большего количества чисел.

Теорема.

Пусть даны целые положительные числа a 1 , a 2 , …, a k , наименьшее общее кратное m k этих чисел находится при последовательном вычислении m 2 =НОК(a 1 , a 2) , m 3 =НОК(m 2 , a 3) , …, m k =НОК(m k−1 , a k) .

Рассмотрим применение этой теоремы на примере нахождения наименьшего общего кратного четырех чисел.

Пример.

Найдите НОК четырех чисел 140 , 9 , 54 и 250 .

Решение.

В этом примере a 1 =140 , a 2 =9 , a 3 =54 , a 4 =250 .

Сначала находим m 2 =НОК(a 1 , a 2)=НОК(140, 9) . Для этого по алгоритму Евклида определяем НОД(140, 9) , имеем 140=9·15+5 , 9=5·1+4 , 5=4·1+1 , 4=1·4 , следовательно, НОД(140, 9)=1 , откуда НОК(140, 9)=140·9:НОД(140, 9)= 140·9:1=1 260 . То есть, m 2 =1 260 .

Теперь находим m 3 =НОК(m 2 , a 3)=НОК(1 260, 54) . Вычислим его через НОД(1 260, 54) , который также определим по алгоритму Евклида: 1 260=54·23+18 , 54=18·3 . Тогда НОД(1 260, 54)=18 , откуда НОК(1 260, 54)= 1 260·54:НОД(1 260, 54)= 1 260·54:18=3 780 . То есть, m 3 =3 780 .

Осталось найти m 4 =НОК(m 3 , a 4)=НОК(3 780, 250) . Для этого находим НОД(3 780, 250) по алгоритму Евклида: 3 780=250·15+30 , 250=30·8+10 , 30=10·3 . Следовательно, НОД(3 780, 250)=10 , откуда НОК(3 780, 250)= 3 780·250:НОД(3 780, 250)= 3 780·250:10=94 500 . То есть, m 4 =94 500 .

Таким образом, наименьшее общее кратное исходных четырех чисел равно 94 500 .

Ответ:

НОК(140, 9, 54, 250)=94 500 .

Во многих случаях наименьшее общее кратное трех и большего количества чисел удобно находить с использованием разложений данных чисел на простые множители. При этом следует придерживаться следующего правила. Наименьшее общее кратное нескольких чисел равно произведению, которое составляется так: ко всем множителям из разложения первого числа добавляются недостающие множители из разложения второго числа, к полученным множителям добавляются недостающие множители из разложения третьего числа и так далее .

Рассмотрим пример нахождения наименьшего общего кратного с использованием разложения чисел на простые множители.

Пример.

Найдите наименьшее общее кратное пяти чисел 84 , 6 , 48 , 7 , 143 .

Решение.

Сначала получаем разложения данных чисел на простые множители: 84=2·2·3·7 , 6=2·3 , 48=2·2·2·2·3 , 7 (7 – простое число , оно совпадает со своим разложением на простые множители) и 143=11·13 .

Для нахождения НОК данных чисел к множителям первого числа 84 (ими являются 2 , 2 , 3 и 7 ) нужно добавить недостающие множители из разложения второго числа 6 . Разложение числа 6 не содержит недостающих множителей, так как и 2 и 3 уже присутствуют в разложении первого числа 84 . Дальше к множителям 2 , 2 , 3 и 7 добавляем недостающие множители 2 и 2 из разложения третьего числа 48 , получаем набор множителей 2 , 2 , 2 , 2 , 3 и 7 . К этому набору на следующем шаге не придется добавлять множителей, так как 7 уже содержится в нем. Наконец, к множителям 2 , 2 , 2 , 2 , 3 и 7 добавляем недостающие множители 11 и 13 из разложения числа 143 . Получаем произведение 2·2·2·2·3·7·11·13 , которое равно 48 048 .

Математические выражения и задачи требуют множества дополнительных знаний. НОК - это одно из основных, особенно часто применяемое в Тема изучается в средней школе, при этом не является особо сложным в понимании материалом, человеку знакомому со степенями и таблицей умножения не составит труда выделить необходимые числа и обнаружить результат.

Определение

Общее кратное - число, способное нацело разделиться на два числа одновременно (а и b). Чаще всего, это число получают методом перемножения исходных чисел a и b. Число обязано делиться сразу на оба числа, без отклонений.

НОК - это принятое для обозначения краткое название, собранной из первых букв.

Способы получения числа

Для нахождения НОК не всегда подходит способ перемножения чисел, он гораздо лучше подходит для простых однозначных или двухзначных чисел. принято разделять на множители, чем больше число, тем больше множителей будет.

Пример № 1

Для простейшего примера в школах обычно берутся простые, однозначные или двухзначные числа. Например, необходимо решить следующее задание, найти наименьшее общее кратное от чисел 7 и 3, решение достаточно простое, просто их перемножить. В итоге имеется число 21, меньшего числа просто нет.

Пример № 2

Второй вариант задания гораздо сложнее. Даны числа 300 и 1260, нахождение НОК - обязательно. Для решения задания предполагаются следующие действия:

Разложение первого и второго чисел на простейшие множители. 300 = 2 2 * 3 * 5 2 ; 1260 = 2 2 * 3 2 *5 *7. Первый этап завершен.

Второй этап предполагает работу с уже полученными данными. Каждое из полученных чисел обязано участвовать в вычислении итогового результата. Для каждого множителя из состава исходных чисел берется самое большое число вхождений. НОК - это общее число, поэтому множители из чисел должны в нем повторятся все до единого, даже те, которые присутствуют в одном экземпляре. Оба изначальных числа имеют в своем составе числа 2, 3 и 5, в разных степенях, 7 есть только в одном случае.

Для вычисления итогового результата необходимо взять каждое число в наибольшей их представленных степеней, в уравнение. Остается только перемножить и получить ответ, при правильном заполнении задача укладывается в два действия без пояснений:

1) 300 = 2 2 * 3 * 5 2 ; 1260 = 2 2 * 3 2 *5 *7.

2) НОК = 6300.

Вот и вся задача, если попробовать вычислить нужное число посредством перемножения, то ответ однозначно не будет верным, так как 300 * 1260 = 378 000.

Проверка:

6300 / 300 = 21 - верно;

6300 / 1260 = 5 - верно.

Правильность полученного результата определяется посредством проверки - деления НОК на оба исходных числа, если число целое в обоих случаях, то ответ верен.

Что значит НОК в математике

Как известно, в математике нет ни одной бесполезной функции, эта - не исключение. Самым распространенным предназначением этого числа является приведение дробей к общему знаменателю. Что изучают обычно в 5-6 классах средней школы. Также дополнительно является общим делителем для всех кратных чисел, если такие условия стоят в задаче. Подобное выражение может найти кратное не только к двум числам, но и к гораздо большему количестве - трем, пяти и так далее. Чем больше чисел - тем больше действий в задаче, но сложность от этого не увеличивается.

Например, даны числа 250, 600 и 1500, необходимо найти их общее НОК:

1) 250 = 25 * 10 = 5 2 *5 * 2 = 5 3 * 2 - на этом примере детально описано разложение на множители, без сокращения.

2) 600 = 60 * 10 = 3 * 2 3 *5 2 ;

3) 1500 = 15 * 100 = 33 * 5 3 *2 2 ;

Для того чтобы составить выражение, требуется упомянуть все множители, в этом случае даны 2, 5, 3, - для всех этих чисел требуется определить максимальную степень.

Внимание: все множители необходимо доводить до полного упрощения, по возможности, раскладывая до уровня однозначных.

Проверка:

1) 3000 / 250 = 12 - верно;

2) 3000 / 600 = 5 - верно;

3) 3000 / 1500 = 2 - верно.

Данный метод не требует каких-либо ухищрений или способностей уровня гения, все просто и понятно.

Еще один способ

В математике многое связано, многое можно решить двумя и более способами, то же самое касается поиска наименьшего общего кратного, НОК. Следующий способ можно использовать в случае с простыми двузначными и однозначными числами. Составляется таблица, в которую вносятся по вертикали множимое, по горизонтали множитель, а в пересекающихся клетках столбца указывается произведение. Можно отразить таблицу посредством строчки, берется число и в ряд записываются результаты умножения этого числа на целые числа, от 1 до бесконечности, иногда хватает и 3-5 пунктов, второе и последующие числа подвергаются тому же вычислительному процессу. Все происходит вплоть до того, как найдется общее кратное.

Даны числа 30, 35, 42 необходимо найти НОК, связывающий все числа:

1) Кратные 30: 60, 90, 120, 150, 180, 210, 250 и т. д.

2) Кратные 35: 70, 105, 140, 175, 210, 245 и т. д.

3) Кратные 42: 84, 126, 168, 210, 252 и т. д.

Заметно, что все числа достаточно разные, единственное общее среди них число 210, вот оно и будет НОК. Среди связанных с этим вычислением процессов есть также наибольший общий делитель, вычисляющийся по похожим принципам и часто встречающийся в соседствующих задачах. Различие невелико, но достаточно значимо, НОК предполагает вычисление числа, которое делится на все данные исходные значения, а НОД предполагает под собой вычисление наибольшего значение на которое делятся исходные числа.

При сложении и вычитании алгебраический дробей с разными знаменателями сначала дроби приводят к общему знаменателю . Это значит, находят такой один знаменатель, который делится на исходный знаменатель каждой алгебраической дроби, входящей в состав данного выражения.

Как известно, если числитель и знаменатель дроби умножить (или разделить) на одно и то же число, отличное от нуля, то значение дроби не изменится. Это является основным свойством дроби. Поэтому, когда дроби приводят к общему знаменателю, по-сути умножают исходный знаменатель каждой дроби на недостающий множитель до общего знаменателя. При этом надо умножить на этот множитель и числитель дроби (для каждой дроби он свой).

Например, дана такая сумма алгебраических дробей:

Требуется упростить выражение, т. е. сложить две алгебраические дроби. Для этого в первую очередь надо привести слагаемые-дроби к общему знаменателю. Первым делом следует найти одночлен, который делится и на 3x и на 2y. При этом желательно, чтобы он был наименьший, т. е. найти наименьшее общее кратное (НОК) для 3x и 2y.

Для числовых коэффициентов и переменных НОК ищется отдельно. НОК(3, 2) = 6, а НОК(x, y) = xy. Далее найденные значения перемножаются: 6xy.

Теперь надо определить, на какой множитель надо умножить 3x, чтобы получить 6xy:
6xy ÷ 3x = 2y

Значит, при приведении первой алгебраической дроби к общему знаменателю ее числитель надо умножить на 2y (знаменатель уже был умножен при приведении к общему знаменателю). Аналогично ищется множитель для числителя второй дроби. Он будет равен 3x.

Таким образом, получаем:

Далее уже можно действовать как с дробями с одинаковыми знаменателями: складываются числители, а в знаменателе пишется один общий:

После преобразований получается упрощенное выражение, представляющее собой одну алгебраическую дробь, являющуюся суммой двух исходных:

Алгебраические дроби в исходном выражении могут содержать знаменатели, представляющие собой многочлены, а не одночлены (как в приведенном выше примере). В таком случае, перед поиском общего знаменателя следует разложить знаменатели на множители (если это возможно). Далее общий знаменатель собирается из разных множителей. Если множитель есть в нескольких исходных знаменателях, то его берут единожды. Если множитель имеет разные степени в исходных знаменателях, то его берут с большей. Например:

Здесь многочлен a 2 – b 2 можно представить как произведение (a – b)(a + b). Множитель 2a – 2b раскладывается как 2(a – b). Таким образом, общий знаменатель будет равен 2(a – b)(a + b).

Пусть дано выражение, которое является произведением числа и букв. Число в таком выражении называется коэффициентом . Например:

в выражении коэффициентом является число 2;

в выражении - число 1;

в выражении - это число -1;

в выражении коэффициентом является произведение чисел 2 и 3, то есть число 6.

У Пети было 3 конфеты и 5 абрикосов. Мама подарила Пете ещё 2 конфеты и 4 абрикоса (см. Рис. 1). Сколько всего конфет и абрикосов стало у Пети?

Рис. 1. Иллюстрация к задаче

Решение

Запишем условие задачи в таком виде:

1) Было 3 конфеты и 5 абрикосов:

2) Мама подарила 2 конфеты и 4 абрикоса:

3) То есть всего у Пети:

4) Складываем конфеты с конфетами, абрикосы с абрикосами:

Следовательно, всего стало 5 конфет и 9 абрикосов.

Ответ: 5 конфет и 9 абрикосов.

В задаче 1 в четвёртом действии мы занимались приведением подобных слагаемых.

Слагаемые, имеющие одинаковую буквенную часть, называются подобными слагаемыми. Подобные слагаемые могут отличаться только своими числовыми коэффициентами.

Чтобы сложить (привести) подобные слагаемые, надо сложить их коэффициенты и результат умножить на общую буквенную часть.

Приведением подобных слагаемых мы упрощаем выражение.

Являются подобными слагаемыми, так как у них одинаковая буквенная часть. Следовательно, для их приведения необходимо сложить все их коэффициенты - это 5, 3 и -1 и умножить на общую буквенную часть - это a .

2)

В данном выражении записаны подобные слагаемые. Общая буквенная часть - это xy , а коэффициенты - это 2, 1 и -3. Приведём эти подобные слагаемые:

3)

В данном выражении подобными слагаемыми являются и , приведём их:

4)

Упростим данное выражение. Для этого находим подобные слагаемые. В этом выражении есть две пары подобных слагаемых - это и , и .

Упростим данное выражение. Для этого раскроем скобки, воспользовавшись распределительным законом:

В выражении есть подобные слагаемые - это и , приведём их:

На этом уроке мы познакомились с понятием коэффициент, узнали, какие слагаемые называются подобными, и сформулировали правило приведения подобных слагаемых, а также мы решили несколько примеров, в которых использовали данное правило.

Список литературы

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. М.: Мнемозина, 2012.
  2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. М.: Гимназия, 2006.
  3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. М.: Просвещение, 1989.
  4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. М.: ЗШ МИФИ, 2011.
  5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6 классов заочной школы МИФИ. - М.: ЗШ МИФИ, 2011.
  6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. М.: Просвещение, Библиотека учителя математики, 1989.

Домашнее задание

  1. Интернет-портал Youtube.com ( ).
  2. Интернет-портал For6cl.uznateshe.ru ().
  3. Интернет-портал Festival.1september.ru ().
  4. Интернет-портал Cleverstudents.ru ().