Биографии Характеристики Анализ

Формирование разности потенциалов на мембране. Биофизические основы мембранного потенциала покоя

В 1786 году профессор анатомии Болонского университета Луиджи Гальвани провел ряд опытов, положивших начало целенаправленным исследованиям в области биоэлектрических явлений. В первом опыте он подвешивал препарат обнаженных лапок лягушки с помощью медного крючка на железной решетке, и обнаружил, что при каждом касании мышцами решетки, они сокращались. Гальвани предположил, что сокращения мышц вообще – следствие воздействия на них «животного электричества», источником которого являются нервы и мышцы. Однако, по мнению Вольта, причиной сокращения был электрический ток, возникший в области контакта разнородных металлов. Гальвани поставил второй опыт, в котором источником тока, действовавшего на мышцу, точно был нерв: мышца опять сокращалась. Таким образом, было получено точное доказательство существования «животного электричества».

Все клетки имеют свой электрический заряд, который формируется в результате неодинаковой проницаемости мембраны для различных ионов. Клетки возбудимых тканей (нервная, мышечная, железистая) отличаются тем, что они под действием раздражителя меняют проницаемость своей мембраны для ионов, в результате чего ионы очень быстро транспортируются согласно электрохимическому градиенту. Это и есть процесс возбуждения. Его основой является потенциал покоя.

Потенциал покоя

Потенциал покоя – относительно стабильная разность электрических потенциалов между наружной и внутренней сторонами клеточной мембраны. Его величина обычно варьирует в пределах от -30 до -90 мВ. Внутренняя сторона мембраны в покое заряжена отрицательно, а наружная – положительно из-за неодинаковых концентраций катионов и анионов внутри и вне клетки.

Внутри- и внеклеточные концентрации ионов (ммоль/л) в мышечных клетках теплокровных животных

В нервных клетках похожая картина. Таким образом, видно, что основную роль в создании отрицательного заряда внутри клетки играют ионы K + и высокомолекулярные внутриклеточные анионы, главным образом они представлены белковыми молекулами с отрицательно заряженными аминокислотами (глутамат, аспартат) и органическими фосфатами. Эти анионы, как правило, не могут транспортироваться через мембрану, создавая постоянный отрицательный внутриклеточный заряд. Во всех точках клетки отрицательный заряд практически одинаков. Заряд внутри клетки является отрицательным как абсолютно (в цитоплазме анионов больше, чем катионов), так и относительно наружной поверхности клеточной мембраны. Абсолютная разность невелика, однако этого достаточно для создания электрического градиента.

Главным ионом, обеспечивающим формирование потенциала покоя (ПП), является K + . В покоящейся клетке устанавливается динамическое равновесие между числом входящих и выходящих ионовK + . Это равновесие устанавливается тогда, когда электрический градиент уравновесит концентрационный. Согласно концентрационному градиенту, создаваемому ионными насосами, K + стремится выйти из клетки, однако отрицательный заряд внутри клетки и положительный заряд наружной поверхности клеточной мембраны препятствуют этому (электрический градиент). В случае равновесия на клеточной мембране устанавливается равновесный калиевый потенциал.

Равновесный потенциал для каждого иона можно рассчитать по формуле Нернста:

E ion =RT/ZF·ln( o / i),

где E ion - потенциал, создаваемый данным ионом;

R – универсальная газовая постоянная;

Т – абсолютная температура (273+37°С);

Z – валентность иона;

F – постоянная Фарадея (9,65·10 4);

O – концентрация иона во внешней среде;

I - концентрация иона внутри клетки.

При температуре 37°С равновесный потенциал для K + равен -97мВ. Однако реальный ПП меньше – около -90 мВ. Это объясняется тем, что в формирование ПП свой вклад вносят и другие ионы. В целом ПП – это алгебраическая сумма равновесных потенциалов всех ионов, находящихся внутри и вне клетки, включающий также значения поверхностных зарядов самой клеточной мембраны.

Вклад Na + и Cl - в создание ПП невелик, но, тем не менее, он имеет место. В покое вход Na + в клетку низкий (намного ниже, чем K +), но он уменьшает мембранный потенциал. Влияние Cl - противоположно, так как это анион. Отрицательный внутриклеточный заряд не позволяет большому количеству Cl - проникнуть в клетку, поэтому Cl - это в основном внеклеточный анион. Как внутри клетки, так и вне ееNa + и Cl - нейтрализуют друг друга, вследствие чего их совместное поступление в клетку не оказывает существенного влияния на величину ПП.

Наружная и внутренняя стороны мембраны несут на себе собственные электрические заряды, преимущественно с отрицательным знаком. Это полярные составляющие мембранных молекул – гликолипидов, фосфолипидов, гликопротеинов. Ca 2+ , как внеклеточный катион, взаимодействует с наружными фиксированными отрицательными зарядами, а также с отрицательными карбоксильными группами интерстиция, нейтрализуя их, что приводит к увеличению и стабилизации ПП.

Для создания и поддержания электрохимических градиентов необходима постоянная работа ионных насосов. Ионный насос – это транспортная система, обеспечивающая перенос иона вопреки электрохимическому градиенту, с непосредственными затратами энергии. Градиенты Na + и K + поддерживаются с помощью Na/K – насоса. Сопряженность транспорта Na + и K + примерно в 2 раза уменьшает энергозатраты. В целом же траты энергии на активный транспорт огромны: лишь Na/K – насос потребляет около 1/3 всей энергии, расходуемой организмом в покое. 1АТФ обеспечивает один цикл работы – перенос 3Na + из клетки, и 2 K + в клетку. Асимметричный перенос ионов способствует заодно формированию и электрического градиента (примерно 5 – 10мВ).

Нормальная величина ПП является необходимым условием возникновения возбуждения клетки, т.е. распространения потенциала действия, инициирующего специфическую деятельность клетки.

Потенциал действия (ПД)

ПД – это электрофизиологический процесс, выражающийся в быстром колебании мембранного потенциала, вследствие специфического перемещения ионов и способный распространяться без декремента на большие расстояния. Амплитуда ПД колеблется в пределах 80 – 130 мВ, длительность пика ПД в нервном волокне – 0,5 – 1 мс. Амплитуда потенциала действия не зависит от силы раздражителя. ПД либо совсем не возникает, если раздражение подпороговое, либо достигает максимальной величины, если раздражение пороговое или сверхпороговое. Главным в возникновении ПД является быстрый транспорт Na + внутрь клетки, что способствует вначале снижению мембранного потенциала, а затем – изменению отрицательного заряда внутри клетки на положительный.

В составе ПД различают 3 фазы: деполяризацию, инверсию, и реполяризацию.

1. Фаза деполяризации . При действии на клетку деполяризующего раздражителя начальная частичная деполяризация происходит без изменения ее проницаемости для ионов (не происходит движение Na + внутрь клетки, т. к. закрыты быстрые потенциалчувствительные каналы для Na +). Na + - каналы обладают регулируемым воротным механизмом, который расположен на внутренней и внешней сторонах мембраны. Имеются активационные ворота (m – ворота) и инактивационные (h – ворота). В покое m – ворота закрыты, а h – ворота открыты. В мембране также имеются K + - каналы, имеющие только одни ворота (активационные), закрытые в покое.

Когда деполяризация клетки достигает критической величины (Е кр – критический уровень деполяризации, КУД), которая обычно равна 50мВ, проницаемость для Na + резко возрастает – открывается большое количество потенциалзависимых m – ворот Na + - каналов. За 1 мс через 1 открытый Na + - канал в клетку попадает до 6000 ионов. Развивающаяся деполяризация мембраны вызывает дополнительное увеличение ее проницаемости для Na + , открываются все новые и новые m - ворота Na + - каналы, так что ток Na + имеет характер регенеративного процесса (сам себя усиливает). Как только ПП становится равным нулю, фаза деполяризации заканчивается.

2.Фаза инверсии. Вход Na + в клетку продолжается, т. к. m - ворота Na + - каналы еще открыты, поэтому внутри клетки заряд становится положительным, а снаружи – отрицательным. Теперь электрический градиент препятствует входу Na + в клетку, однако, из-за того, что концентрационный градиент сильнее электрического, Na + все же проходит в клетку. В тот момент, когда ПД достигает максимального значения, происходит закрытие h – ворот Na + - каналов (эти ворота чувствительны к величине положительного заряда в клетке) и поступление Na + в клетку прекращается. Одновременно открываются ворота K + - каналов. K + транспортируется из клетки согласно химическому градиенту (на нисходящей фазе инверсии – еще и по электрическому градиенту). Выход положительных зарядов из клетки приводит к уменьшению ее заряда. K + с небольшой скоростью может выходить из клетки также через неуправляемые K + - каналы, которые всегда открыты. Все рассмотренные процессы являются регенеративными. Амплитуда ПД складывается из величины ПП и величины фазы инверсии. Фаза инверсии заканчивается, когда электрический потенциал снова становится равным нулю.

3.Фаза реполяризации. Связана с тем, что проницаемость мембраны для K + еще высока, и он выходит из клетки по градиенту концентрации, несмотря на противодействие электрического градиента (клетка внутри снова имеет отрицательный заряд). Выходом K + обусловлена вся нисходящая часть пика ПД. Нередко в конце ПД наблюдается замедление реполяризации, кто связано с закрытием значительной части ворот K + - каналов, а также – с возрастанием противоположно направленного электрического градиента.

«Мембранный потенциал»

Выполнила Четверикова Р

Студентка 1 курса

биолого-почвенного факультета

Введение

Немного истории

Электричество в клетке

Мембранный потенциал

Потенциал действия

Порог раздражения

Характерные свойства потенциала действия

Заключение

Введение

Современная наука развивается стремительно, и чем больше мы движемся по пути прогресса, тем больше убеждаемся в том, что для решения каких-либо научных задач необходимо объединять усилия и достижения сразу нескольких отраслей науки.

Ранее господствовала концепция витализма, согласно которым биологические явления принципиально непостижимы на основе физики и химии, так как существует некая «жизненная сила», или энтелехия, не подлежащие физическому истолкованию. В 20 веке великий физик Бор рассматривал проблему взаимоотношения биологии и физики на основе концепции дополнительности, частным случаем которой является принцип неопределенности квантовой механики.

Бор считал, что ни один результат биологического исследования не может быть однозначно описан иначе как на основе понятий физики и химии. Развитие молекулярной биологии привело к атомистическому истолкованию основных явлений жизни - таких как наследственность и изменчивость. В последние десятилетия успешно развивается и физическая теория целостных биологических систем, основанная на идеях синергетики. Эрвин Шредингер пришел к оптимистическому, хотя и не вполне успокоительному выводу: «Хотя современные физика и химия не могут объяснить процессы, происходящие в живом организме, нет никаких оснований сомневаться в возможности их научного объяснения». Сегодня имеются все основания утверждать, что современная физика не встречается с границами своей применимости к рассмотрению биологических явлений. Трудно думать, что такие границы обнаружатся в будущем.

Напротив, развитие биофизики как части современной физики свидетельствует о ее неограниченных возможностях.

На этом примере можно наглядно проследить, как достижения физики помогли ученым понять такое сложное явление.

Немного истории

Электричество у живых организмов человек обнаружил еще в глубокой древности. Вернее сказать, почувствовал, не подозревая при этом о его существовании. Этого понятия тогда не существовало. Например, древние греки остерегались встречаться в воде с рыбой, которая, как писал великий ученый Аристотель, "заставляет цепенеть животных". Рыба, наводившая страх на людей, была электрическим скатом и носила имя "торпедо". И только двести лет назад ученые поняли наконец природу этого явления.

Ученые давно хотели понять, какова же природа сигналов, перетекающих по нервам. Среди множества теорий возникавших в середине XVIII века, под влиянием всеобщей увлеченности электричеством, появилась теория о том, что по нервам передается ""электрический флюид"".

Идея летала в воздухе. Луиджи Гальвани, изучая грозовые разряды, использовал нервно-мышечный препарат лягушки. Подвесив его на медном крючке на ограждении балкона, Гальвани заметил, что когда лапки лягушки касались железного ограждения, происходило мышечное сокращение. На основании этого Гальвани делает вывод, что в биологическом объекте существует электрический сигнал. Однако, современник Гальвани - Алессандро Вольта исключил биологический объект и показал, что электрический ток может быть получен при контакте набора металлов, разделенных электролитом(вольтов столб). Так был открыт химический источник тока(названный, однако, позже, в честь его научного противника гальваническим элементом).

Этот спор был началом электробиологии. И вот через полвека немецкий физиолог Э. Дюбуа-Реймон подтвердил открытие Гальвани, продемонстрировав наличие электрических полей в нервах с помощью усовершенствованной электроизмерительной аппаратуры. Ответ на вопрос, как появляется электричество в клетке, был найден еще через полвека.

Электричество в клетке

В 1890 году Вильгельм Оствальд, занимавшийся полупроницаемыми искусственными пленками предположил, что полупроницаемость может быть причиной не только осмоса, но и электрических явлений. Осмос возникает тогда, когда мембрана избирательно проницаема, т.е. пропускает одни частицы и не пропускает другие. Чаще всего проницаемось мембраны зависит от размера частицы. Такими частицами могут быть и ионы. Тогда мембрана будет пропускать ионы только одного знака, например, положительного. Действительно, если посмотреть на формулу Нернста для диффузионного потенциала Vд возникающего на границе двух растворов с концентрациями электролита С1 и С2:

где u - скорость более быстрого иона, v - скорость более медленного иона, R - универсальная газовая постоянная, F - число Фарадея, T - температура, и предположить, что мембрана для анионов не проницаема, то есть v = 0, то можно видеть, что должны появляться большие значения для Vд

(2)

Потенциал на мембране, разделяющей два раствора

Таким образом, Оствальд объединил формулу Нернста и знание о полупроницаемых мембранах. Он предположил, что свойствами такой мембраны объясняются потенциалы мышц и нервов и действие электрических органов рыб.

Мембранный потенциал (потенциал покоя)

Под мембранным потенциалом понимают разность потенциалов между внутренней (цитоплазматической) и наружной поверхностями мембраны


С помощью электрофизиологических исследований было доказано, что в состоянии физиологического покоя, на наружной поверхности мембраны имеется положительный заряд, а на внутренней поверхности - отрицательный.

Юлиус Бернштейн создал теорию, согласно которой разноимённость зарядов определяется различной концентрацией ионов натрия, калия, хлора внутри и за пределами клетки. Внутри клетки в 30-50 раз выше концентрация ионов калия, в 8-10 раз ниже концентрация ионов натрия и в 50 раз меньше ионов хлора. Согласно законам физики, если бы живая система не регулировалась, то концентрация этих ионов сравнялась бы с обеих сторон мембраны и мембранный потенциал бы исчезал. Но этого не происходит, т.к. мембрана клетки - это активная транспортная система. В мембране имеются специальные каналы для того или иного иона, каждый канал специфичен и транспорт ионов внутри и за пределы клетки является в значительной мере активным. В состоянии относительного физиологического покоя натриевые каналы закрыты, а калиевые и хлорные - открыты. Это приводит к тому, что калий выходит из клетки, а хлор заходит в клетку, в результате этого увеличивается количество положительных зарядов на поверхности клетки и уменьшается количество зарядов внутри клетки. Таким образом, на поверхности клетки сохраняется положительный заряд, а внутри - отрицательный. Такое распределение электронных зарядов обеспечивает сохранение мембранного потенциала.

молекулярный биология мембрана потенциал

Потенциал действия



Это приводит к тому, что на внутренней поверхности мембраны накапливаются положительные заряды, а на наружной - отрицательные заряды. Такое перераспределение зарядов называется деполяризацией.

В этом состоянии клеточная мембрана существует недолго (0,1-5 м.с.). Для того, чтобы клетка опять стала способной к возбуждению, её мембрана должна реполяризироваться, т.е. вернуться в состояние потенциала покоя. Для возвращения клетки к мембранному потенциалу, необходимо «откачать» катионы натрия и калия против градиента концентрации. Такую работу выполняет натриево-каливый насос, который восстанавливает исходное состояние концентрации катионов натрия и калия, т.е. восстанавливается мембранный потенциал.

Порог раздражения

Для возникновения деполяризации и последующего возбуждения раздражитель должен иметь определённую величину. Минимальная сила действующего раздражителя, способного вызвать возбуждение, называется порогом раздражения. Величина выше пороговой называется сверхпороговой, а ниже пороговой - подпороговой. Возбудимые образования подчиняются закону «всё или ничего», это значит, что при нанесении раздражения по силе, равной пороговой, возникает максимальное возбуждение. Раздражение ниже подпороговой силы не вызывает раздражение.

Для характеристики силы действующего раздражителя от времени его действия, выводят кривую, которая отражает, сколько времени должен действовать пороговый или сверхпороговый раздражитель, чтобы вызвать возбуждение. Действие раздражителя пороговой силы вызовет возбуждение только в том случае, если данный раздражитель будет действовать определенное время. Минимальная сила тока или возбуждения, которые должны действовать на возбудимые образования, чтобы вызвать раздражение называется реобазой. Минимальное время, в течении которого должен действовать раздражитель силой одной реобазы, чтобы вызвать возбуждение называется минимальным полезным временем.

Величина порога раздражения зависит не только от длительности действующего стимула, но и от крутизны нарастания. При уменьшении крутизны нарастания раздражителя ниже определённой величины, возбуждения не возникает, до какой бы силы мы не довели раздражитель. Это происходит потому, что в месте нанесения раздражителя постоянно повышается порог, и до какой бы величины не довели раздражитель, возбуждения не возникает. Такое явление-приспособление возбудимого образования к медленно нарастающей силе раздражителя называется аккомодацией.

Разные возбудимые образования имеют разную скорость аккомодации, поэтому чем выше скорость аккомодации, тем крутизна нарастания раздражителя выше.

Этот же закон работает не только для электростимуляторов, но и для других (химических, механических раздражителей/стимуляторов).

Характерные свойства потенциала действия

Полярный закон раздражения.

Это закон впервые был открыт П.Ф. Флюгером. Он установил, что постоянный ток обладает полярным действием на возбудимую ткань. Это выражается в том, что в момент замыкания цепи, возбуждение возникает только под катодом, а в момент размыкания - под анодом. Причем под анодом, при размыкании цепи, возбуждение значительно выше, чем при замыкании под катодом. Это обусловлено тем, что положительно заряженный электрод (анод) вызывает гиперполяризацию мембраны, когда поверхности касаются катода(отрицательно заряженного), он вызывает деполяризацию.

Закон «всё, или ничего»

Согласно этому закону, раздражитель подпороговой силы не вызывает возбуждения (ничего); при пороговом раздражении, возбуждение принимает максимальную величину (всё). Дальнейшёё увеличение силы раздражителя не усиливает возбуждения.

Долгое время полагали, что этот закон является общим принципом возбудимой ткани. При этом считали, что «ничего» - это полное отсутствие возбуждения, а «всё», - это полное проявление возбудимого образования, т.е. его способность к возбуждению.

Однако, с помощью микроэлектронных исследований было доказано, что даже при действии подпорогового раздражителя в возбудимом образовании происходит перераспределения ионов между наружной и внутренней поверхностями мембраны. Если с помощью фармакологического препарата повысить проницаемость мембраны для ионов натрия или снизить проницаемость для ионов калия, то амплитуда потенциалов действия повышается. Таким образом, можно заключить, что этот закон должен рассматриваться лишь, как правило, характеризующее особенности возбудимого образования.

Проведение возбуждения. Возбудимость.

В демиелинизированных и миелинезированных волокнах возбуждение передается по-разному, это обусловлено анатомическими особенностями данных волокон. Миелинизированные нервные волокна имеют перехваты Ранвье. Передача сигналов через такие волокна осуществляется с помощью перехватов Ранвье. Сигнал проскакивает через миелинизированные участки, и тем самым, проведение возбуждения по ним происходит быстрее, чем в немиелинизированных участках, возврат импульса обратно невозможен, поскольку в предыдущем перехвате повышается порог раздражений.

Возбудимость - это способность такни на раздражение или возбуждение и, следовательно, возникновением потенциала действия. Чем порог раздражения выше, тем возбуждение выше, и наоборот.

Величина порога раздражения находится в обратной зависимости от длительности (t) действия стимула и крутизны нарастания его силы


Таким образом, мы видим, что без помощи физики не удалось бы открыть тайну электричества в живых организмах, передачу нервных импульсов, мембранный потенциал - одни из важнейших аспектов современной биологии.

Установлено, что наиболее важными ионами, определяющими мембранные потенциалы клеток, являются неорганические ионы К + , Na + , СГ, а также в ряде случаев Са 2 + . Хорошо известно, что концентрации этих ионов в цитоплазме и в межклеточной жидкости различаются в десятки раз.

Из табл. 11.1 видно, что концентрация ионов К + внутри клетки в 40-60 раз выше, чем в межклеточной жидкости, тогда как для Na + и СГ распределение концентраций противоположное. Неравномерное распределение концентраций этих ионов по обе стороны мембраны обеспечивается как их различной проницаемостью, так и сильным электрическим полем мембраны, которое определяется ее потенциалом покоя.

Действительно, в состоянии покоя суммарный поток ионов через мембрану равен нулю, и тогда из уравнения Не- рнста - Планка следует, что

Таким образом, в покое градиенты концентрации - и

электрического потенциала -- на мембране направлены

противоположно друг другу и поэтому в покоящейся клетке высокая и постоянная разность концентраций основных ионов обеспечивает поддержание на мембране клетки электрического напряжения, которое и называют равновесным мембранным потенциалом.

В свою очередь возникающий на мембране потенциал покоя препятствует выходу ионов из клетки К + и чрезмерному входу в нее СГ, поддерживая тем самым их концентрационные градиенты на мембране.

Полное выражение для мембранного потенциала, учитывающее потоки диффузии этих трех видов ионов, было получено Гольдманом, Ходжкиным и Катцем:

где Р к, P Na , Р С1 - проницаемость мембраны для соответствующих ионов.

Уравнение (11.3) с высокой точностью определяет мембранные потенциалы покоя различных клеток. Из него следует, что для мембранного потенциала покоя важны не абсолютные величины проницаемостей мембраны для различных ионов, а их отношения, так как, разделив обе части дроби под знаком логарифма, например, на Р к, мы перейдем к относительным проницаемостям ионов.

В тех случаях, когда проницаемость одного из этих ионов значительно больше, чем других, уравнение (11.3) переходит в уравнение Нернста (11.1) для этого иона.

Из табл. 11.1 видно, что мембранный потенциал покоя клеток близок к потенциалу Нернста для ионов К + и СВ, но значительно отличается от него по Na + . Это свидетельствует

0 том, что в покое мембрана хорошо проницаема для ионов К + и СГ, тогда как для ионов Na + ее проницаемость очень низка.

Несмотря на то что равновесный потенциал Нернста для СГ наиболее близок к потенциалу покоя клетки, последний имеет преимущественно калиевую природу. Это обусловлено тем, что высокая внутриклеточная концентрация К + не может существенно уменьшиться, так как ионы К + должны уравновешивать внутри клетки объемный отрицательный заряд анионов. Внутриклеточные анионы представляют собой в основном крупные органические молекулы (белки, остатки органических кислот ит.п.), которые не могут пройти через каналы в клеточной мембране. Концентрация этих анионов в клетке практически постоянна и их суммарный отрицательный заряд препятствует значительному выходу калия из клетки, поддерживая вместе с Na-K-насосом его высокую внутриклеточную концентрацию . Однако основная роль в первоначальном установлении внутри клетки высокой концентрации ионов калия и низкой концентрации ионов натрия принадлежит Na-K-насосу.

Распределение ионов С1 устанавливается в соответствии с мембранным потенциалом, поскольку в клетке нет специальных механизмов поддержания концентрации СГ. Поэтому вследствие отрицательного заряда хлора его распределение оказывается обратным по отношению к распределению калия на мембране (см. табл. 11.1). Таким образом, концентрационные диффузии К + из клетки и С1 в клетку практически уравновешиваются мембранным потенциалом покоя клетки.

Что касается Na + , то в покое его диффузия направлена в клетку под действием как градиента концентрации, так и электрического поля мембраны и вход Na + в клетку ограничивается в покое только малой проницаемостью мембраны для натрия (закрыты натриевые каналы). Действительно, Ходжкин и Катц экспериментально установили, что в состоянии покоя проницаемости мембраны аксона кальмара для К + , Na + и СГ относятся как 1: 0,04: 0,45. Таким образом, в состоянии покоя клеточная мембрана малопроницаема только для Na + , а для СГ она проницаема почти так же хорошо, как и для К + . В нервных клетках проницаемость для СГ обычно ниже, чем для К + , но в мышечных волокнах проницаемость для СГ даже несколько преобладает.

Несмотря на малую проницаемость клеточной мембраны для Na + в покое, существует, хотя и весьма малый, пассивный перенос Na + в клетку. Этот ток Na + должен был бы приводить к снижению разности потенциалов на мембране и к выходу К + из клетки, что вело бы в конечном итоге к выравниванию концентраций Na + и К + по обе стороны мембраны. Этого не происходит благодаря работе Na + - К + -насоса, компенсирующего токи утечки Na + и К + и поддерживающего таким образом нормальные значения внутриклеточных концентраций этих ионов и, следовательно, нормальную величину потенциала покоя клетки.

Для большинства клеток мембранный потенциал покоя составляет (-бО)-(-ЮО) мВ. На первый взгляд может показаться, что это малая величина, но надо учесть, что толщина мембраны тоже мала (8-10 нм), так что напряженность электрического поля в клеточной мембране огромна и составляет около 10 млн вольт на 1 м (или 100 кВ на 1 см):

Воздух, например, не выдерживает такой напряженности электрического поля (электрический пробой в воздухе наступает при 30 кВ/см), а мембрана выдерживает. Это нормальное условие ее деятельности, поскольку именно такое электрическое поле необходимо для поддержания разности концентраций ионов натрия, калия и хлора на мембране.

Величина потенциала покоя, различная у клеток, может изменяться при изменении условий их жизнедеятельности. Так, нарушение биоэнергетических процессов в клетке, сопровождающееся падением внутриклеточного уровня макро- эргических соединений (в частности, АТФ), прежде всего исключает компоненту потенциала покоя, связанную с работой Ма + -К + -АТФ-азы.

Повреждение клетки приводит обычно к повышению проницаемости клеточных мембран, в результате чего различия в проницаемости мембраны для ионов калия и натрия уменьшаются; потенциал покоя при этом уменьшается, что может вызвать нарушение ряда функций клетки, например возбудимости.

  • Поскольку внутриклеточная концентрация калия поддерживается почти постоянной, то даже относительно небольшие изменения внеклеточной концентрации К* могут оказывать заметное влияние на потенциалпокоя и на деятельность клетки. Подобные изменения концентрации К"в плазме крови происходят при некоторых патологиях (например, припочечной недостаточности).

text_fields

text_fields

arrow_upward

Мембранным потенциалом покоя (МПП) или потенциалом покоя (ПП) называют разность потенци­алов покоящейся клетки между внутренней и наружной сторонами мембраны. Внутренняя сторона мембраны клетки заряжена отрица­тельно по отношению к наружной. Принимая потенциал наружного раствора за нуль, МПП записывают со знаком «минус». Величина МПП зависит от вида ткани и варьирует от -9 до -100 мв. Сле­довательно, в состоянии покоя клеточная мембрана поляризована. Уменьшение величины МПП называют деполяризацией, увеличение - гиперполяризацией, восстановление исходного значения МПП - ре поляризацией мембраны.

Основные положения мембранной теории происхождения МПП сводятся к следующему. В состоянии покоя клеточная мембрана хорошо проницаема для ионов К + (в ряде клеток и для СГ), менее проницаема для Na + и практически непроницаема для внутриклеточ­ных белков и других органических ионов. Ионы К + диффундируют из клетки по концентрационному градиенту, а непроникающие анионы остаются в цитоплазме, обеспечивая появление разности по­тенциалов через мембрану.

Возникающая разность потенциалов препятствует выходу К + из клет­ки и при некотором ее значении наступает равновесие между выходом К + по концентрационному градиенту и входом этих катионов по воз­никшему электрическому градиенту. Мембранный потенциал, при ко­тором достигается это равновесие, называется равновесным потенци­ алом. Его величина может быть рассчитана из уравнения Нернста:

где Е к - равновесный потенциал для К + ; R - газовая постоянная; Т - абсолютная температура; F - число Фарадея; п - валентность К + (+1), [К н + ] - [К + вн ] - наружная и внутренняя концентрации К + —

Если перейти от натуральных логарифмов к десятичным и под­ставить в уравнение числовые значения констант, то уравнение примет вид:

В спинальных нейронах (табл. 1.1) Е к = -90 мв. Величина МПП, измеренная с помощью микроэлектродов заметно ниже — 70 мв.

Таблица 1.1 . Концентрация некоторых ионов внутри и снаружи спинальных мотонейронов млекопитающих

Ион

Концентрация

(ммоль/л Н 2 О)

Разновесный потенциал (мв)

внутри клетки

снаружи клетки

Na + 15,0 150,0
К + 150,0 5,5
Сl — 125,0

Мембранный потенциал покоя = -70 мв

Если мембранный потенциал клетки имеет калиевую природу, то, в соответствии с уравнением Нернста, его величина должна линейно снижаться с уменьшением концентрационного градиента этих ионов, например, при повышении концентрации К + во внеклеточной жид­кости. Однако линейная зависимость величины МПП (Мембранный потенциал покоя) от градиента концентрации К + существует только при концентрации К + во вне­клеточной жидкости выше 20 мМ. При меньших концентрациях К + снаружи клетки кривая зависимости Е м от логарифма отношения концентрации калия снаружи и внутри клетки отличается от теоре­тической. Объяснить установленные отклонения экспериментальной зависимости величины МПП и градиента концентрации К + теорети­чески рассчитанной по уравнению Нернста можно, допустив, что МПП возбудимых клеток определяется не только калиевым, но и натриевым, и хлорным равновесным потенциалами. Рассуждая ана­логично с предыдущим, можно записать:

Величины натриевого и хлорного равновесных потенциалов для спинальных нейронов (табл. 1.1) равны соответственно +60 и -70 мв. Значение Е Cl равно величине МПП. Это свидетельствует о пассив­ном распределении ионов хлора через мембрану в соответстии с химическим и электрическим градиентами. Для ионов натрия химический и электрический градиенты направлены внутрь клетки.

Вклад каждого из равновесных потенциалов в величину МПП определяется соотношением между проницаемостью клеточной мем­браны для каждого из этих ионов. Расчет величины мембранного потенциала производится с помощью уравнения Гольдмана:

Е m - мембранный потенциал; R - газовая постоянная; Т - аб­солютная температура; F - число Фарадея; Р K , P Na и Р Cl - константы проницаемости мембраны для К + Na + и Сl, соответственно; + н ], [ K + вн , [ Na + н [ Na + вн ], [Сl — н ] и[Сl — вн ]- концентрации K + , Na + и Сl снаружи (н) и внутри (вн) клетки.

Подставляя в это уравнение полученные в экспериментальных ис­следованиях концентрации ионов и величину МПП, можно пока­зать, что для гигантского аксона кальмара должно быть следующее соотношение констант проницаемости Р к: P Na: Р С1 = I: 0,04: 0,45. Очевидно, что, поскольку мембрана проницаема для ионов натрия (Р N a =/ 0) и равновесный потенциал для этих ионов имеет знак «плюс», то вход последних внутрь клетки по химическому и элект­рическому градиентам будет уменьшать электроотрицательность ци­топлазмы, т.е. увеличивать МПП (Мембранный потенциал покоя).

При повышении концентрации ионов калия в наружном растворе выше 15 мМ МПП увеличивается и соотношение констант прони­цаемости меняется в сторону более значительного превышения» Р к над P Na и Р С1 . Р к: P Na: Р С1 = 1: 0.025: 0,4. В таких условиях МПП определяется почти исключительно градиентом ионов калия, поэто­му экспериментальная и теоретическая зависимости величины МПП от логарифма отношения концентраций калия снаружи и внутри клетки начинают совпадать.

Таким образом, наличие стационарной разности потенциалов меж­ду цитоплазмой и наружной средой в покоящейся клетке обуслов­лено существующими концентрационными градиентами для К + , Na + и Сl и различной проницаемостью мембраны для этих ионов. Основную роль в генерации МПП играет диффузия ионов калия из клетки в наружный наствор. Наряду с этим, МПП определяется также натриевым и хлорным равновесными потенциалами и вклад каждого из них определяется отношениями между проницаемостями плазматической мембраны клетки для данных ионов.

Все факторы, перечисленные выше, составляют так называемую ионную компоненту МПП (Мембранный потенциал покоя). Поскольку, ни калиевый, ни натриевый равновесные потенциалы не равны МПП. клетка должна поглощать Na + и терять К + . Постоянство концентраций этих ионов в клетке поддерживается за счет работы Na + К + -АТФазы.

Однако роль этого ионного насоса не ограничивается поддержа­нием градиентов натрия и калия. Известно, что натриевый насос электрогенен и при его функционировании возникает чистый поток положительных зарядов из клетки во внеклеточную жидкость, обу­славливающий увеличение электроотрицательности цитоплазмы по отношению к среде. Электрогенность натриевого насоса была выяв­лена в опытах на гигантских нейронах моллюска. Электрофорети-ческая инъекция ионов Na + в тело одиночного нейрона вызывала гиперполяризацию мембраны, во время которой МПП был значи­тельно ниже величины калиевого равновесного потенциала. Указан­ная гиперполяризация ослаблялась при снижении температур рас­твора, в котором находилась клетка, и подавлялась специфическим ингибитором Na + , К + -АТФазы уабаином.

Из сказанного следует, что МПП может быть разделен на две компоненты - «ионную» и «метаболическую». Первая компонента зависит от концентрационных градиентов ионов и мембранных проницаемостей для них. Вторая, «метаболическая», обусловлена актив­ным транспортом натрия и калия и оказывает двоякое влияние на МПП. С одной стороны, натриевый насос поддерживает концент­рационные градиенты между цитоплазмой и внешней средой. С другой, будучи электрогенным, натриевый насос оказывает прямое влияние на МПП. Вклад его в величину МПП зависит от плотности «насосного» тока (ток на единицу плошади поверхности мембраны клетки) и сопротивления мембраны.

Мембранный потенциал действия

text_fields

text_fields

arrow_upward

Если на нерв или мышцу на­нести раздражение выше порога возбуждения, то МПП нерва или мышцы быстро уменьшится и на короткий промежуток времени (миллисекунда) произойдет перезарядка мембраны: ее внутренняя сторона станет заряженной положительно относительно наружной. Это кратковременное изменение МПП, происходящее при возбуж­дении клетки, которое на экране осциллографа имеет форму оди­ночного пика, называется мембранным потенциалом действия (МПД).

МПД в нервной и мышечной тканях возникает при снижении абсолютной величины МПП (деполяризации мембраны) до некото­рого критического значения, называемого порогом генерации МПД. В гигантских нервных волокнах кальмара МПД равен — 60 мВ. При деполяризации мембраны до -45 мВ (порог генерации МПД) воз­никает МПД (рис. 1.15).

Рис. 1.15 Потенциал действия нервного волокна (А) и изменение проводимости мембраны для ионов натрия и калия (Б).

Во время возникновения МПД в аксоне кальмара сопротивление мембраны уменьшается в 25 раз, с 1000 до 40 Ом.см 2 , тогда как электрическая емкость не изменяется. Указанное снижение сопро­тивления мембраны обусловлено увеличением ионной проницаемости мембраны при возбуждении.

По своей амплитуде (100-120 мВ) МПД (Мембранный потенциал действия) на 20-50 мВ превышает величину МПП (Мембранный потенциал покоя). Другими словами, внутренняя сторона мембраны на короткое время становится заряженной положительно по отношению к наружной, - «овершут» или реверсия заряда.

Из уравнения Гольдмана следует, что лишь увеличение проница­емости мембраны для ионов натрия может привести к таким изме­нениям мебранного потенциала. Значение Е к всегда меньше, чем величина МПП, поэтому повышение проницаемости мембраны для К + будет увеличивать абсолютное значение МПП. Натриевый равно­весный потенциал имеет знак «плюс», поэтому резкое увеличение проницаемости мембраны для этих катионов приводит к перезарядке мембраны.

Во время МПД увеличивается проницаемость мембраны для ионов натрия. Расчеты показали, что если в состоянии покоя соотношение констант проницаемости мембраны для К + , Na + и СГ равно 1:0,04:0,45, то при МПД — Р к: P Na: Р = 1: 20: 0,45. Сле­довательно, в состоянии возбуждения мембрана нервного волокна не просто утрачивает свою избирательную ионную проницаемость, а, напротив, из избирательно проницаемой в покое для ионов калия она становится избирательно проницаемой для ионов натрия. Уве­личение натриевой проницаемости мембраны связано с открыванием потенциал-зависимых натриевых каналов.

Механизм, который обеспечивает открывание и закрывание ион­ных каналов, получил название ворот канала. Принято различать активационные (m) и инактивационные (h) ворота. Ионный канал может находиться в трех основных состояниях: закрытом (m-ворота закрыты; h-открыты), открытом (m- и h-ворота открыты) и инактивированном (m-ворота открыты, h- ворота закрыты) (рис 1.16).

Рис. 1.16 Схема положения активационных (m) и инактивационных (h) ворот натриевых каналов, соответствующие закрытому (покой, А), открытому (активация, Б) и инактивированному (В) состояниям.

Деполяризация мембраны, вызываемая раздражающим стимулом, например, электрическим током, открывает m-ворота натриевых ка­налов (переход из состояния А в Б) и обеспечивает появление направленного внутрь потока положительных зарядов - ионов натрия. Это ведет к дальнейшей деполяризации мембраны, что, в свою очередь, увеличивает число открытых натриевых каналов и, следовательно, повышает натриевую проницаемость мембраны. Воз­никает «регенеративная» деполяризация мембраны, в результате ко­торой потенциал внутренней стороны мембраны стремится достичь величины натриевого равновесного потенциала.

Причиной прекращения роста МПД (Мембранный потенциал действия) и реполяризации мембраны клетки является:

а) Увеличение деполяризации мембраны, т.е. когда Е м -» E Na , в результате чего снижается электрохимический градиент для ионов натрия, равный Е м -> E Na . Другими словами, уменьшается сила, «толкающая» натрий внутрь клетки;

б) Деполяризация мембра­ны порождает процесс инактивации натриевых каналов (закрывание h-ворот; состояние В канала), который тормозит рост натриевой проницаемости мембраны и ведет к ее снижению;

в) Деполяризация мембраны увеличивает ее проницаемость для ионов калия. Выходя­щий калиевый ток стремится сместить мембранный потенциал в сторону калиевого равновесного потенциала.

Снижение электрохимического потенциала для ионов натрия и инактивация натриевых каналов уменьшает величину входящего на­триевого тока. В определенный момент времени величина входящего тока натрия сравнивается с возросшим выходящим током - рост МПД прекращается. Когда суммарный выходящий ток превышает входящий, начинается реполяризация мембраны, которая также имеет регенеративный характер. Начавшаяся реполяризация ведет к закры­ванию активационных ворот (m), что уменьшает натриевую прони­цаемость мембраны, ускоряет реполяризацию, а последняя увеличи­вает число закрытых каналов и т.д.

Фаза реполяризации МПД в некоторых клетках (например, в кардиомиоцитах и ряде гладкомышечных клеток) может замедляться, формируя плато ПД, обусловленное сложными изменениями во вре­мени входящих и выходящих токов через мембрану. В последей­ствии МПД может возникнуть гиперполяризация или/и деполяриза­ция мембраны. Это так называемые следовые потенциалы. Следовая гиперполяризация имеет двоякую природу: ионную и метаболичес­ кую. Первая связана с тем, что калиевая проницаемость в нервном волокне мембраны остается некоторое время (десятки и даже сотни миллисекунд) повышенной после генерации МПД и смещает мем­бранный потенциал в сторону калиевого равновесного потенциала. Следовая гиперполяризация после ритмической стимуляции клеток связана преимущественно с активацией электрогенного натриевого насоса, вследствие накопления ионов натрия в клетке.

Причиной деполяризации, развивающейся после генерации МПД (Мембранный потенциал действия), является накопление ионов калия у наружной поверхности мембра­ны. Последнее, как это следует из уравнения Гольдмана, ведет к увеличению МПП (Мембранный потенциал покоя).

С инактивацией натриевых каналов связано важное свойство нервного волокна, называемое рефрактерностью .

Во время абсо­ лютного рефрактерного периода нервное волокно полностью утра­чивает способность возбуждаться при действии раздражителя любой силы.

Относительная рефрактерность , следующая за абсолютной, ха­рактеризуется более высоким порогом возникновения МПД (Мембранный потенциал действия).

Представление о мембранных процессах, происходящих во время возбуждения нервного волокна, служит базой для понимания и яв­ления аккомодации. В основе аккомодации ткани при малой кру­тизне нарастания раздражающего тока лежит повышение порога воз­буждения, опережающее медленную деполяризацию мембраны. По­вышение порога возбуждения почти целиком определяется инакти­вацией натриевых каналов. Роль повышения калиевой проницаемос­ти мембраны в развитии аккомодации состоит в том, что оно при­водит к падению сопротивления мембраны. Вследствие снижения сопротивления скорость деполяризации мембраны становится еще медленнее. Скорость аккомодации тем выше, чем большее число натриевых каналов при потенциале покоя находится в инактивированном состоянии, чем выше скорость развития инактивации и чем выше калиевая проницаемость мембраны.

Проведение возбуждения

text_fields

text_fields

arrow_upward

Проведение возбуждения по нервному волокну осуществляется за счет локальных токов между возбужден­ным и покоящимися участками мембраны. Последовательность со­бытий в этом случае представляется в следующем виде.

При нанесении точечного раздражения на нервное волокно в со­ответствующем участке мембраны возникает потенциал действия. Внутренняя сторона мембраны в данной точке оказывается заря­женной положительно по отношению к соседней, покоящейся. Между точками волокна, имеющими различный потенциал, возни­кает ток (локальный ток), направленный от возбужденного (знак (+) на внутренней стороне мембраны) к невозбужденному (знак (-) на внутренней стороне мембраны) к участку волокна. Этот ток оказы­вает деполяризующее влияние на мембрану волокна в покоящемся участке и при достижении критического уровня деполяризации мем­браны в данном участке возникает МПД (Мембранный потенциал действия). Этот процесс последова­тельно распространяется по всем участкам нервного волокна.

В некоторых клетках (нейронах, гладких мышцах) МПД имеет не натриевую природу, а обусловлен входом ионов Ca 2+ по потенциал-зависимым кальциевым каналам. В кардиомиоцитах генерация МПД связана с входящими натриевым и натрий-кальциевым токами.

  • управляемые. По механизму управления: электро-, хемо- и механоуправляемые;
  • неуправляемые. Не имеют воротного механизма и всегда открыты, ионы идут постоянно, но медленно.

Потенциал покоя — это разность электрических потенциалов между наружной и внутренней средой клетки.

Механизм формирования потенциалов покоя. Непосредственная причина потенциала покоя — это неодинаковая концентрация анионов и катионов внутри и вне клетки. Во-первых, такое расположение ионов обосновано разницей проницаемости. Во-вторых, ионов калия выходит из клетки значительно больше, чем натрия.

Потенциал действия — это возбуждение клетки, быстрое колебание мембранного потенциала вследствие диффузии ионов в клетку и из клетки.

При действии раздражителя на клетки возбудимой ткани сначала очень быстро активируются и инактивируются натриевые каналы, затем с некоторым опозданием активируются и инактивируются калиевые каналы.

Вследствие этого ионы быстро диффундируют в клетку или из нее согласно электрохимическому градиенту. Это и есть возбуждение. По изменению величин и знака заряда клетки выделяют три фазы:

  • 1-я фаза — деполяризация. Уменьшение заряда клетки до нуля. Натрий движется к клетке согласно концентрационному и электрическому градиенту. Условие движения: открыты ворота натриевого канала;
  • 2-я фаза — инверсия. Изменение знака заряда на противоположный. Инверсия предполагает две части: восходящую и нисходящую.

Восходящая часть. Натрий продолжает двигаться в клетку согласно концентрационному градиенту, но вопреки электрическому градиенту (он препятствует).

Нисходящая часть. Калий начинает выходить из клетки согласно концентрационному и электрическому градиенту. Открыты ворота калиевого канала;

  • 3-я фаза — реполяризация. Калий продолжает выходить из клетки согласно концентрационному, но вопреки электрическому градиенту.

Критерии возбудимости

При развитии потенциала действия происходит изменение возбудимости ткани. Это изменение протекает по фазам. Состояние исходной поляризации мембраны характерно отражает мембранный потенциал покоя, которому соответствует исходное состояние возбудимости а, следовательно, исходное состояние возбудимой клетки. Это нормальный уровень возбудимости. Период предспайка — период самого начала потенциала действия. Возбудимость ткани слегка повышена. Эта фаза возбудимости — первичная экзальтация (первичная супернормальная возбудимость). Во время развития предспайка мембранный потенциал приближается к критическому уровню деполяризации и для достижения этого уровня сила раздражителя может быть меньше пороговой.

В период развития спайка (пикового потенциала) идет лавинообразное поступление ионов натрия внутрь клетки, в результате чего происходит перезарядка мембраны, и она утрачивает способность отвечать возбуждением на раздражители сверхпороговой силы. Эта фаза возбудимости получила название абсолютной рефрактерности, т.е. абсолютной невозбудимости, которая длится до конца перезарядки мембраны. Абсолютная рефрактерность мембраны возникает в связи с тем, что натриевые каналы полностью открываются, а затем инактивируются.

После окончания фазы перезарядки возбудимость ее постепенно восстанавливается до исходного уровня — это фаза относительной рефрактерности, т.е. относительной невозбудимости. Она продолжается до восстановления заряда мембраны до величины, соответствующей критическому уровню деполяризации. Поскольку в этот период мембранный потенциал покоя еще не восстановлен, то возбудимость ткани понижена, и новое возбуждение может возникнуть только при действии сверхпорогового раздражителя. Снижение возбудимости в фазу относительной рефрактерности связано с частичной инактивацией натриевых каналов и активацией калиевых каналов.

Следующему периоду соответствует повышенный уровень возбудимости: фаза вторичной экзальтации или вторичной супернормальной возбудимости. Так как мембранный потенциал в эту фазу ближе к критическому уровню деполяризации, по сравнению с состоянием покоя исходной поляризации, то порог раздражения снижен, т.е. возбудимость клетки повышена. В эту фазу новое возбуждение может возникнуть при действии раздражителей подпороговой силы. Натриевые каналы в эту фазу инактивированы не полностью. Мембранный потенциал увеличивается — возникает состояние гиперполяризации мембраны. Удаляясь от критического уровня деполяризации, порог раздражения слегка повышается, и новое возбуждение может возникнуть только при действии раздражителей сверхпороговой величины.

Механизм возникновения мембранного потенциала покоя

Каждая клетка в состоянии покоя характеризуется наличием трансмембранной разности потенциалов (потенциала покоя). Обычно разность зарядов между внутренней и внешней поверхностями мембран составляет от -80 до -100 мВ и может быть измерена с помощью наружного и внутриклеточного микроэлектродов (рис. 1).

Разность потенциалов между наружной и внутренней сторонами мембраны клетки в состоянии ее покоя называют мембранным потенциалом (потенциалом покоя).

Создание потенциала покоя обеспечивается двумя основными процессами — неравномерным распределением неорганических ионов между внутри- и внеклеточным пространством и неодинаковой проницаемостью для них клеточной мембраны. Анализ химического состав вне- и внутриклеточной жидкости свидетельствует о крайне неравномерном распределении ионов (табл. 1).

В состоянии покоя внутри клетки много анионов органических кислот и ионов К+, концентрация которых в 30 раз больше, чем снаружи; ионов Na+, наоборот, снаружи клетки в 10 раз больше, чем внутри; СI- также больше снаружи.

В покое мембрана нервных клеток наиболее проницаема для К+, менее — для СI- и очень мало проницаема для Na+/ Проницаемость мембраны нервного волокна для Na+ B покое в 100 раз меньше, чем для K+. Для многих анионов органических кислот мембрана в покое совсем непроницаема.

Рис. 1. Измерение потенциала покоя мышечного волокна (А) с помощью внутриклеточного микроэлектрода: М — микрозлектрод; И — индифферентный электрод. Луч на экране осциллографа (В) показывает, что до прокола мембраны микроэлектродом разность потенциалов между М и И была равна нулю. В момент прокола (показан стрелкой) обнаружена разность потенциалов, указывающая, что внутренняя сторона мембраны заряжена отрицательно по отношению к ее наружной поверхности (по Б.И. Ходорову)

Таблица. Внутри- и внеклеточные концентрации ионов мышечной клетки теплокровного животного, ммоль/л (по Дж. Дудел)

Внутриклеточная концентрация

Внеклеточная концентрация

А- (анионы органических соединений)

В силу градиента концентраций К+ выходит на наружную поверхность клетки, вынося свой положительный заряд. Высокомолекулярные анионы не могут следовать за К+ из-за непроницаемости для них мембраны. Ион Na+ также не может возместить ушедшие ионы калия, ибо проницаемость мембраны для него значительно меньше. СI- по градиенту концентраций может перемешаться только внутрь клетки, увеличивая тем самым отрицательный заряд внутренней поверхности мембраны. Вследствие такого перемещения ионов возникает поляризация мембраны, когда наружная ее поверхность заряжается положительно, а внутренняя — отрицательно.

Электрическое поле, которое создастся на мембране, активно вмешивается в распределение ионов между внутренним и наружным содержимым клетки. По мере возрастания положительного заряда на наружной поверхности клетки иону К+ как положительно заряженному становится все труднее перемещаться изнутри наружу. Он движется как бы в гору. Чем больше величина положительного заряда на наружной поверхности, тем меньшее количество ионов К+ может выходить на поверхность клетки. При определенной величине потенциала на мембране количество ионов К+, пересекающих мембрану в том и другом направлении, оказывается равным, т.е. концентрационный градиент калия уравновешивается имеющимся на мембране потенциалом. Потенциал, при котором диффузионный поток ионов становится равным потоку одноименных ионов, идущих в обратном направлении, называют потенциалом равновесия для данного иона. Для ионов К+ потенциал равновесия равен -90 мВ. В миелинизированных нервных волокнах величина потенциала равновесия для ионов СI- близка к значению мембранного потенциала покоя (-70 мВ). Поэтому, несмотря на то что концентрация ионов СI- снаружи волокна больше, чем внутри его, не отмечается их одностороннего тока в соответствии с градиентом концентраций. В этом случае разность концентраций сбалансирована потенциалом, имеющимся на мембране.

Ион Na+ по градиенту концентраций должен был бы входить внутрь клетки (его потенциал равновесия составляет +60 мВ), и наличие отрицательного заряда внутри клетки не должно было бы препятствовать этому потоку. В этом случае входящий Na+ нейтрализовал бы отрицательные заряды внутри клетки. Однако этого в действительности не происходит, так как мембрана в покое малопроницаема для Na+.

Важнейшим механизмом, поддерживающим низкую внутриклеточную концентрацию ионов Na+ и высокую концентрацию ионов К+, является натрий-калиевый насос (активный транспорт). Известно, что в клеточной мембране имеется система переносчиков, каждый из которых связывается стремя находящимися внутри клетки ионами Na+ и выводит их наружу. С наружной стороны переносчик связывается с двумя находящимися вне клетки ионами К+ которые переносятся в цитоплазму. Энергообеспечение работы систем переносчиков обеспечивается АТФ. Функционирование насоса по такой системе приводит к следующим результатам:

  • поддерживается высокая концентрация ионов К+ внутри клетки, что обеспечивает постоянство величины потенциала покоя. Вследствие того что за один цикл обмена ионов из клетки выводится на один положительный ион больше, чем вводится, активный транспорт играет роль в создании потенциала покоя. В этом случае говорят об электрогенном насосе, поскольку он сам создает небольшой, но постоянный ток положительных зарядов из клетки, а потому вносит прямой вклад в формирование отрицательного потенциала внутри нее. Однако величина вклада электрогенного насоса в общее значение потенциала покоя обычно невелика и составляет несколько милливольт;
  • поддерживается низкая концентрация ионов Na + внутри клетки, что, с одной стороны, обеспечивает работу механизма генерации потенциала действия, с другой — обеспечивает сохранение нормальных осмолярности и объема клетки;
  • поддерживая стабильный концентрационный градиент Na + , натрий-калиевый насос способствует сопряженному К+, Na+ -транспорту аминокислот и Сахаров через клеточную мембрану.

Таким образом, возникновение трансмембранной разности потенциалов (потенциала покоя) обусловлено высокой проводимостью клеточной мембраны в состоянии покоя для ионов К + , СI-, ионной асимметрией концентраций ионов К + и ионов СI-, работой систем активного транспорта (Na+/K+ -АТФаза), которые создают и поддерживают ионную асимметрию.

Потенциал действия нервного волокна, нервный импульс

Потенциал действия - это кратковременное колебание разности потенциалов мембраны возбудимой клетки, сопровождающееся изменением ее знака заряда.

Потенциал действия является основным специфическим признаком возбуждения. Его регистрация свидетельствует о том, что клетка или ее структуры ответили на воздействие возбуждением. Однако, как уже отмечалось, ПД в некоторых клетках может возникать спонтанно (самопроизвольно). Такие клетки содержатся в водителях ритма сердца, стенках сосудов, нервной системе. ПД используется как носитель информации, передающий ее в виде электрических сигналов (электрическая сигнализации) по афферентным и эфферентным нервным волокнам, проводящей системе сердца, а также для инициирования сокращения мышечных клеток.

Рассмотрим причины и механизм генерации ПД в афферентных нервных волокнах, образующих первично воспринимающие сенсорные рецепторы. Непосредственной причиной возникновения (генерации) ПД в них является рецепторный потенциал.

Если измерять разность потенциалов на мембране ближайшего к нервному окончанию перехвата Ранвье, то в промежутках между воздействиями на капсулу тельца Пачини она остается неизменной (70 мВ), а во время воздействия деполяризуется почти одновременно с деполяризацией рецепторной мембраны нервного окончания.

При увеличении силы давления на тельце Пачини, вызывающей возрастание рецепторного потенциала до 10 мВ, в ближайшем перехвате Ранвье обычно регистрируется быстрое колебание мембранного потенциала, сопровождающееся перезарядкой мембраны — потенциал действия (ПД), или нервный импульс (рис. 2). Если сила давления на тельце возрастет еще больше, амплитуда рецепторного потенциала увеличивается и в нервном окончании генерируется уже ряд потенциалов действия с определенной частотой.

Рис. 2. Схематическое представление механизма преобразования рецепторного потенциала в потенциал действия (нервный импульс) и распространения импульса по нервному волокну

Суть механизма генерации ПД состоит в том, что рецепторный потенциал вызывает возникновение локальных круговых токов между деполяризованной рецепторной мембраной немиелинизированной части нервного окончания и мембраной первого перехвата Ранвье. Эти токи, носителями которых являются ионы Na+, К+, СI- и другие минеральные ионы, «протекают» не только вдоль, но и поперек мембраны нервного волокна в области перехвата Ранвье. В мембране перехватов Ранвье в отличие от рецепторной мембраны самого нервного окончания имеется большая плотность ионных потенциалзависимых натриевых и калиевых каналов.

При достижении на мембране перехвата Ранвье величины деполяризации около 10 мВ происходит открытие быстрых потенциалзависимых натриевых каналов и через них в аксоплазму по электрохимическому градиенту устремляется поток ионов Na+. Он обусловливает быструю деполяризацию и перезарядку мембраны перехвата Ранвье. Однако одновременно с открытием быстрых потенциалзависимых натриевых каналов в мембране перехвата Ранвье открываются медленные потенциалзависимые калиевые каналы и из аксоилазмы начинают выходить ионы К+ Их выход запаздывает по отношению ко входу ионов Na+. Таким образом, входящие с большой скоростью в аксоплазму ионы Na+ быстро деполяризуют и перезаряжают на короткое время (0,3-0,5 мс) мембрану, а выходящие ионы К+ восстанавливают исходное распределение зарядов на мембране (реполяризуют мембрану). В результате во время механического воздействия на тельце Пачини силой, равной или превышающей пороговую, на мембране ближайшего перехвата Ранвье наблюдается кратковременное колебание потенциала в виде быстрой деполяризации и реполяризации мембраны, т.е. генерируется ПД (нервный импульс).

Поскольку непосредственной причиной генерации ПД является рецепторный потенциал, то его в этом случае еще называют генераторным потенциалом. Число генерируемых в единицу времени одинаковых по амплитуде и длительности нервных импульсов пропорционально амплитуде рецепторного потенциала, а следовательно, силе давления на рецептор. Процесс преобразования информации о силе воздействия, заложенной в амплитуде рецепторного потенциала, в число дискретных нервных импульсов получил название дискретного кодирования информации.

Более подробно ионные механизмы и временная динамика процессов генерации ПД изучены в экспериментальных условиях при искусственном воздействии на нервное волокно электрическим током различной силы и длительности.

Природа потенциала действия нервного волокна (нервного импульса)

Мембрана нервного волокна в точке локализации раздражающего электрода отвечает на воздействие очень слабого тока, еще не достигшего порогового значения. Этот ответ получил название локального, а колебание разности потенциалов на мембране — локального потенциала.

Локальный ответ на мембране возбудимой клетки может предшествовать возникновению потенциала действия или возникать как самостоятельный процесс. Он представляет собой кратковременное колебание (деполяризация и реполяризация) потенциала покоя, не сопровождающееся перезарядкой мембраны. Деполяризация мембраны при развитиии локального потенциала обусловлена опережающим входом в аксоплазму ионов Na+, а реполяризация — запаздывающим выходом из аксоплазмы ионов К+.

Если воздействовать на мембрану электрическим током возрастающей силы, то при се величине, называемой пороговой, деполяризация мембраны может достигнуть критического уровня — Е к, при котором происходит открытие быстрых потенциалзависимых натриевых каналов. В результате через них происходит лавинообразно нарастающее поступление в клетку ионов Na+. Вызываемый процесс деполяризации приобретает самоускоряющийся характер, и локальный потенциал перерастает в потенциал действия.

Уже упоминалось, что характерным признаком ПД является кратковременная инверсия (перемена) знака заряда на мембране. Снаружи она на короткое время (0,3-2 мс) становится заряженной отрицательно, а внутри — положительно. Величина инверсии может составлять до 30 мВ, а величина всего потенциала действия — 60-130 мВ (рис. 3).

Таблица. Сравнительная характеристика локального потенциала и потенциала действия

Характеристика

Локальный потенциал

Потенциал действия

Проводимость

Распространяется местно, на 1-2 мм с затуханием (декрементом)

Распространяется без затухания на большие расстояния по всей длине нервного волокна

Закон «силы»

Подчиняется

Не подчиняется

Закон «все или ничего»

Не подчиняется

Подчиняется

Явление суммации

Суммируется, возрастает при повторных частых подпороговых раздражениях

Не суммируется

Величина амплитуды

Способность к возбудимости

Увеличивается

Уменьшается вплоть до полной невозбудимости (рефрактерность)

Величина раздражителя

Подпороговая

Пороговая и сверхпороговая

Потенциал действия в зависимости от характера изменения зарядов на внутренней поверхности мембраны подразделяют на фазы деполяризации, реполяризации и гиперполяризации мембраны. Деполяризацией называют всю восходящую часть ПД, на которой выделяют участки, соответствующие локальному потенциалу (от уровня Е 0 до Е к ), быстрой деполяризации (от уровня Е к до уровня 0 мВ), инверсии знака заряда (от 0 мВ до пикового значения или начала реполяризации). Реполяризацией называют нисходящую часть ПД, которая отражает процесс восстановления исходной поляризации мембраны. Вначале реполяризация осуществляется быстро, но, приближаясь к уровню Е 0 , скорость се может замедляться и этот участок называют следовой отрицательностью (или следовым отрицательным потенциалом). У некоторых клеток вслед за реполяризацией развивается гиперполяризация (возрастание поляризации мембраны). Ее называют следовым положительным потенциалом.

Начальную высокоамплитудную быстропротекающую часть ПД называют также пик, или спайк. Он включает фазы деполяризации и быстрой реполяризации.

В механизме развития ПД важнейшая роль принадлежит потенциалзависимым ионным каналам и неодновременному увеличению проницаемости клеточной мембраны для ионов Na+ и К+. Так, при действии на клетку электрического тока он вызывает деполяризацию мембраны и, когда заряд мембраны уменьшается до критического уровня (Е к), открываются потенциалзависимые натриевые каналы. Как уже упоминалось,эти каналы образованы встроенными в мембрану белковыми молекулами, внутри которых имеются пора и два воротных механизма. Один из воротных механизмов — активационный обеспечивает (при участии сегмента 4) открытие (активацию) канала при деполяризации мембраны, а второй (при участии внутриклеточной петли между 3-м и 4-м доменами) — его инактивацию, развивающуюся при перезарядке мембраны (рис. 4). Поскольку оба этих механизма быстро изменяют положение ворот канала, то потенциалзависимые натриевые каналы являются быстрыми ионными каналами. Это обстоятельство имеет определяющее значение для генерации ПД в возбудимых тканях и для его проведения по мембранам нервных и мышечных волокон.

Рис. 3. Потенциал действия, его фазы и ионные токи (а, о). Описание в тексте

Рис. 4. Положение ворот и состояние активности потенциалзависимых натриевого и калиевого каналов при различных уровнях поляризации мембраны

Чтобы потенциалзависимый натриевый канал мог пропускать внутрь клетки ионы Na+, необходимо открыть лишь активационные ворота, поскольку инактивационные в условиях покоя открыты. Это и происходит, когда деполяризация мембраны достигает уровня Е к (рис. 3, 4).

Открытие активационных ворот натриевых каналов приводит к лавинообразному вхождению натрия внутрь клетки, движимому действием сил его электрохимического градиента. Поскольку ионы Na+ несут положительный заряд, то они нейтрализуют избыток отрицательных зарядов на внутренней поверхности мембраны, снижают разность потенциалов на мембране и деполяризуют ее. Вскоре ионы Na+ придают внутренней поверхности мембраны избыток положительных зарядов, что сопровождается инверсией (сменой) знака заряда с отрицательного на положительный.

Однако натриевые каналы остаются открытыми лишь около 0,5 мс и через этот промежуток времени от момента начала

ПД закрываются инактивационные ворота, натриевые каналы становятся инактивированными и непроницаемыми для ионов Na+, поступление которых внутрь клетки резко ограничивается.

С момента деполяризации мембраны до уровня Е к наблюдаются также активация калиевых каналов и открытие их ворот для ионов К+. Ионы К+ под действием сил концентрационного градиента выходят из клетки, вынося из нее положительные заряды. Однако воротный механизм калиевых каналов является медленно функционирующим и скорость выхода положительных зарядов с ионами К+ из клетки наружу запаздывает по отношению ко входу ионов Na+. Поток ионов К+, удаляя из клетки избыток положительных зарядов, обусловливает восстановление на мембране исходного распределения зарядов или ее реполяризацию, и на се внутренней стороне через мгновение от момента перезарядки восстанавливается отрицательный заряд.

Возникновение ПД на возбудимых мембранах и последующее восстановление исходного потенциала покоя на мембране оказываются возможными потому, что динамика входа в клетку и выхода из клетки положительных зарядов ионов Na+ и К+ различна. Вход иона Na+ по времени опережает выход иона К+. Если бы эти процессы были равновесными, то разность потенциалов на мембране не изменялась бы. Развитие способности к возбуждению и генерации ПД возбудимыми мышечными и нервными клетками было обусловлено формированием в их мембране двух типов разноскоростных ионных каналов — быстрых натриевых и медленных калиевых.

Для генерации одиночного ПД требуется поступление в клетку относительно небольшого числа ионов Na+, которое не нарушает его распределения вне и внутри клетки. При генерации большого числа ПД распределение ионов по обе стороны мембраны клетки могло бы нарушиться. Однако в нормальных условиях это предотвращается работой Na+, К+ -насоса.

В естественных условиях в нейронах ЦНС потенциал действия первично возникает в области аксонного холмика, в афферентных нейронах — в ближайшем к сенсорному рецептору перехвате Ранвье нервного окончания, т.е. в тех участках мембраны, где имеются быстрые селективные потенциалзависимые натриевые каналы и медленные калиевые каналы. В других типах клеток (например, пейсмекерных, гладких миоцитах) в возникновении ПД играют роль не только натриевые и калиевые, но и кальциевые каналы.

Механизмы восприятия и преобразования в ПД сигналов во вторично чувствующих сенсорных рецепторах отличаются от механизмов, разобранных для первично чувствствующих рецепторов. В этих рецепторах восприятие сигналов осуществляется специализированными нейросенсорными (фоторецепторные, обонятельные) или сенсоэпителиальными (вкусовые, слуховые, вестибулярные) клетками. В каждой из этих чувствительных клеток имеется свой, особый механизм восприятия сигналов. Однако во всех клетках энергия воспринимаемого сигнала (раздражителя) преобразуется в колебание разности потенциалов плазматической мембраны, т.е. в рецепторный потенциал.

Таким образом, ключевым моментом в механизмах преобразования сенсорными клетками воспринимаемых сигналов в рецепторный потенциал является изменение проницаемости ионных каналов в ответ на воздействие. Открытие Na+, Са 2+ , К+ -ионных каналов при восприятии и преобразовании сигнала достигается в этих клетках при участии G-белков, вторых внутриклеточных посредников, связывании с лигандами, фосфорилировании ионных каналов. Как правило, возникший в сенсорных клетках рецепторный потенциал вызывает высвобождение из них в синаптическую щель нейромедиатора, который обеспечивает передачу сигнала на постсинаптическую мембрану афферентного нервного окончания и генерацию на его мембране нервного импульса. Эти процессы подробно описаны в главе, посвященной сенсорным системам.

Потенциал действия может быть охарактеризован амплитудой и продолжительностью, которые для одного и того же нервного волокна остаются одинаковыми при распространении ПД по волокну. Поэтому потенциал действия называют дискретным потенциалом.

Между характером воздействия на сенсорные рецепторы и числом ПД, возникших в афферентном нервном волокне в ответ на воздействие, имеется определенная связь. Она заключается в том, что на большие но силе или продолжительности воздействия в нервном волокне формируется большее число нервных импульсов, т.е. при усилении воздействия в нервную систему будут посылаться от рецептора импульсы большей частоты. Процессы преобразования информации о характере воздействия в частоту и другие параметры нервных импульсов, передаваемых в ЦНС, получили название дискретного кодирования информации.