Биографии Характеристики Анализ

Функции коры головного мозга человека кратко. Кора головного мозга, зоны коры головного мозга

Слой серого вещества, покрывающий мозговые полушария большого мозга. Кора головного мозга подразделяется на четыре доли: лобные, затылочные, височные и теменные. Часть коры, покрывающая большую часть поверхности полушарий мозга, называется неокортексом, так как она сформировалась на заключительных стадиях человеческой эволюции. Неокортекс можно подразделить на зоны в соответствии с их функциями. Разные части неокортекса связаны с сенсорными и моторными функциями; соответствующие участки коры головного мозга участвуют в планировании движений (лобные доли) или связаны с памятью и восприятием (затылочные доли).

Кора головного мозга

Специфика. Верхний слой полушарий головного мозга, состоящий прежде всего из нервных клеток с вертикальной ориентацией (пирамидныe клетки), а также из пучков афферентных (центростремительных) и эфферентных (центробежных) нервные волокон. В нейроанатомическом плане характеризуется наличием горизонтальных слоев, отличающихся шириной, плотностью, формами и размерами входящих в них нервных клеток.

Структура. Кору головного мозга разделяют на ряд областей, например в наиболее распространенной классификации цитоархитектонических формаций К.Бродмана в коре головного мозга человека выделено 11 областей и 52 поля. На основе данных филогенеза, выделяют новую кору, или неокортекс, старую, или архикортекс, и древнюю, или палеокортекс. По функциональному критерию, выделяют три типа областей: сенсорные зоны, которые обеспечивают прием и анализ афферентных сигналов, идущих от специфических релейных ядер таламуса, моторные, которые имеют двусторонние внутрикорковые связи со всеми сенсорными областями для взаимодействия сенсорных и моторных зон, и ассоциативные, не имеющие прямые афферентные или эфферентные связи с периферией, но связанные с сенсорными и моторными зонами.

КОРА ГОЛОВНОГО МОЗГА

Поверхность, покрывающая серое вещество, которое образует самый верхний уровень головного мозга. В эволюционном смысле это самое новое нервное образование, и приблизительно 9-12 миллиардов его клеток отвечают за основные сенсорные функции, моторную координацию и контроль, участие в регуляции интегративного, координированного поведения и, что наиболее важно, за так называемые "высшие психические процессы" речи, мышления, решения задач и т.д.

КОРА ГОЛОВНОГО МОЗГА

англ. cerebral cortex) - поверхностный слой, покрывающий полушария головного мозга, образован преимущественно вертикально ориентированными нервными клетками (нейронами) и их отростками, а также пучками афферентных (центростремительных) и эфферентных (центробежных) нервных волокон. Помимо этого в состав коры входят клетки нейро-глии.

Характерная особенность структуры К. г. м. - горизонтальная слоистость, обусловленная упорядоченным расположением тел нервных клеток и нервных волокон. В К. г. м. выделяют 6 (по данным некоторых авторов, 7) слоев, отличающихся по ширине, плотности расположения, форме и размерам составляющих их нейронов. Из-за преимущественно вертикальной ориентации тел и отростков нейронов, а также пучков нервных волокон К. г. м. имеет вертикальную исчерченность. Для функциональной организации К. г. м. большое значение имеет вертикальное, колонкообразное расположение нервных клеток.

Основным типом нервных клеток, входящих в состав К. г. м., являются пирамидные клетки. Тело этих клеток напоминает конус, от вершины которого отходит один толстый и длинный, апикальный дендрит; направляясь к поверхности К. г. м., он истончается и веерообразно делится на более тонкие конечные ветви. От основания тела пирамидной клетки отходят более короткие ба-зальные дендриты и аксон, направляющийся в белое вещество, расположенное под К. г. м., или ветвящийся в пределах коры. Дендриты пирамидных клеток несут на себе большое количество выростов, т. н. шипиков, которые принимают участие в формировании синаптических контактов с окончаниями афферентных волокон, приходящих в К. г. м. из др. отделов коры и подкорковых образований (см. Синапсы). Аксоны пирамидных клеток образуют основные эфферентные пути, идущие из К. г. м. Размеры пирамидных клеток варьируют от 5-10 мк до 120-150 мк (гигантские клетки Беца). Помимо пирамидных нейронов в состав К. г. м. входят звездчатые, веретенообразные и некоторые др. типы интернейронов, участвующих в приеме афферентных сигналов и формировании функциональных межнейронных связей.

Основываясь на особенностях распределения в слоях коры различных по величине и форме нервных клеток и волокон, всю территорию К. г. м. подразделяют на ряд областей (напр., затылочная, лобная, височная и др.), а последние - на более дробные цитоархитектонические поля, отличающиеся по своей клеточной структуре и функциональному значению. Общепринята классификация цитоархитектонических формаций К. г. м., предложенная К. Бродманом, который разделил всю К. г. м. человека на 11 областей и 52 поля.

Исходя из данных филогенеза, К. г. м. подразделяют на новую (неокортекс), старую (архикор-текс) и древнюю (палеокортекс). В филогенезе К. г. м. происходит абсолютное и относительное увеличение территорий новой коры при относительном уменьшении площади древней и старой. У человека на долю новой коры приходится 95,6%, в то время как древняя занимает 0,6%, а старая - 2,2% всей корковой территории.

Функционально в коре выделяют 3 типа областей: сенсорные, моторные и ассоциативные.

Сенсорные (или проекционные) корковые зоны осуществляют прием и анализ афферентных сигналов по волокнам, идущим из специфических релейных ядер таламуса. Сенсорные зоны локализованы в определенных областях коры: зрительная расположена в затылочной (поля 17, 18, 19), слуховая в верхних отделах височной области (поля 41, 42), соматосенсорная, анализирующая им-пульсацию, поступающую с рецепторов кожи, мышц, суставов, - в области постцентральной извилины (поля 1, 2, 3). Обонятельные ощущения связаны с функцией филогенетически более старых отделов коры (палеокортекс) - гиппокампо-ва извилина.

Моторная (двигательная) область - поле 4 по Бродману - находится на прецентральной извилине. Для двигательной коры характерно наличие в слое V гигантских пирамидных клеток Беца, аксоны которых образуют пирамидный тракт - основной двигательный тракт, нисходящий до моторных центров мозгового ствола и спинного мозга и обеспечивающий корковый контроль произвольных мышечных сокращений. Моторная кора имеет двусторонние внутрикорковые связи со всеми сенсорными областями, что обеспечивает тесное взаимодействие сенсорных и моторных зон.

Ассоциативные области. Кора больших полушарий человека характеризуется наличием обширной территории, не имеющей прямых афферентных и эфферентных связей с периферией. Эти области, связанные через обширную систему ассоциативных волокон с сенсорными и моторными зонами, получили название ассоциативных (или третичных) корковых зон. В задних отделах коры они расположены между теменными, затылочными и височными сенсорными областями, а в передних отделах они занимают основную поверхность лобных долей. Ассоциативная кора либо отсутствует, либо слабо развита у всех млекопитающих до приматов. У человека заднеассоциативная кора занимает примерно половину, а лобные области четверть всей поверхности коры. По строению они отличаются особенно мощным развитием верхних ассоциативных слоев клеток в сравнении с системой афферентных и эфферентных нейронов. Их особенностью является также наличие полисенсорных нейронов - клеток, воспринимающих информацию из различных сенсорных систем.

В ассоциативной коре расположены и центры, связанные с речевой деятельностью (см. Брока центр и Вернике центр). Ассоциативные области коры рассматриваются как структуры, ответственные за синтез поступающей информации, и как аппарат, необходимый для перехода от наглядного восприятия к абстрактным символическим процессам.

Клинические нейропсихологические исследования показывают, что при поражении заднеассо-циативных областей нарушаются сложные формы ориентации в пространстве, конструктивная деятельность, затрудняется выполнение всех интеллектуальных операций, которые осуществляются с участием пространственного анализа (счет, восприятие сложных смысловых изображений). При поражении речевых зон нарушается возможность восприятия и воспроизведения речи. Поражение лобных отделов коры приводит к невозможности осуществления сложных программ поведения, требующих выделения значимых сигналов на основе прошлого опыта и предвидения будущего. См. Блоки мозга, Кортпикализация, Мозг, Нервная система, Развитие коры головного мозга, Синдромы нейро-психологические. (Д. А. Фарбер.)

Шошина Вера Николаевна

Терапевт, образование: Северный медицинский университет. Стаж работы 10 лет.

Написано статей

Головной мозг современного человека и его сложное строение является наибольшим достижением этого вида и его преимуществом, отличием от других представителей живого мира.

Кора головного мозга – это очень тонкий слой серого вещества, который не превышает 4,5 мм. Он расположен на поверхности и боковых сторонах больших полушарий, покрывая их сверху и по периферии.

Анатомия коры или кортекса, сложная. Каждый участок выполняет свою функцию и играет огромное значение в осуществлении нервной деятельности. Можно считать этот участок высшим достижением физиологического развития человечества.

Строение и кровоснабжение

Кора головного мозга – это слой клеток серого вещества, составляющий примерно 44% от общего объема полушария. Площадь коры среднестатистического человека – около 2200 квадратных сантиметров. Особенности строения в виде чередующихся борозд и извилин призваны максимально увеличить размеры кортекса и в то же время компактно уместить в пределах черепной коробки.

Интересно, что рисунок извилин и борозд столь же индивидуален, как и отпечатки папиллярных линий на пальцах человека. Каждая особь индивидуальна по рисунку и .

Кора полушарий из следующих поверхностей:

  1. Верхнелатеральная. Она примыкает к внутренней стороне костей черепа (свода).
  2. Нижняя. Ее передние и средние отделы находятся на внутренней поверхности основания черепа, а задние опираются о намет мозжечка.
  3. Медиальная. Она направлена к продольной щели мозга.

Наиболее выступающие места носят название полюсов – лобного, затылочного и височного.

Кора больших полушарий симметрично делится на доли:

  • лобная;
  • височная;
  • теменная;
  • затылочная;
  • островковая.

В строении выделяются следующие слои коры человеческого головного мозга:

  • молекулярный;
  • наружный зернистый;
  • слой пирамидальных нейронов;
  • внутренний зернистый;
  • ганглионарный, внутренний пирамидный или слой клеток Беца;
  • слой мультиформатных, полиморфных или веретенообразных клеток.

Каждый слой не является отдельным независимым образованием, а представляет собой единую слаженно функционирующую систему.

Функциональные области

Нейростимуляция выявила, что кортекс подразделяется на следующие отделы коры головного мозга:

  1. Сенсорные (чувствительные, проекционные). Они получают входящие сигналы от рецепторов, находящихся в различных органах и тканях.
  2. Двигательные, отправляемые исходящие сигналы к эффекторам.
  3. Ассоциативные, обрабатывающие и сохраняющие информацию. Они оценивают ранее полученные данные (опыт) и выдают ответ с их учетом.

Структурно-функциональная организация коры головного мозга включает в себя следующие элементы:

  • зрительная, расположенная в затылочной доле;
  • слуховая, занимающая височную долю и часть теменной;
  • вестибулярная в меньшей степени изучена и пока еще представляет проблему для исследователей;
  • обонятельная находится на нижней ;
  • вкусовая размещается в височных отделах мозга;
  • соматосенсорная кора выступает в виде двух областей – I и II, расположенных в теменной доле.

Столь сложное строение кортекса говорит о том, что малейшее нарушение приведет к последствиям, отразившимся на множестве функций организма и вызовет патологии разной интенсивности, зависящие от глубины поражения и расположения участка.

Как связана кора с другими отделами мозга

Все зоны коры человеческого головного мозга не существуют обособленно, они взаимосвязаны и образуют неразрывные двусторонние цепи с расположенными глубже мозговыми структурами.

Наиболее важной и значимой оказывается связь кортекса и таламуса. При травме черепа повреждения оказываются намного значительнее, если вместе с корой травмированным оказывается и таламус. Травмы только кортекса выявляются намного меньшими, и имеют менее значительные последствия для организма.

Почти все связи от разных частей коры проходят через таламус, что дает основание объединять эти части головного мозга в таламокортикальную систему. Прерывание связей таламуса и кортекса приводит к утрате функций соответствующей части коры.

Пути от сенсорных органов и рецепторов к кортесу также пролегают через таламус, за исключением некоторых обонятельных путей.

Интересные факты о коре головного мозга

Человеческий мозг – уникальное творение природы, которое сами владельцы, то есть люди, до сих пор не научились полностью понимать. Не совсем справедливо сравнивать его с компьютером, потому что сейчас даже самые современные и мощные компьютеры не могут справляться с объемами задач, выполняемых мозгов в течение секунды.

Мы привыкли не обращать внимание на привычные функции мозга, связанные с поддержанием нашей ежедневной жизнедеятельности, но произойди в этом процессе хоть мельчайший сбой, сразу бы ощутили его «на своей шкуре».

«Маленькие серые клеточки», как говорил незабвенный Эркюль Пуаро, или с точки зрения науки – кора мозга – это орган, до сих пор остающийся загадкой для ученых. Мы выяснили очень многое, например, знаем, что величина мозга никак не влияет на уровень интеллекта, ведь у признанного гения – Альберта Эйнштейна – мозг имел массу ниже средней, около 1230 граммов. В то же время есть существа, имеющие мозг сходной структуры и даже большего размера, но так и не достигшие уровня развития человека.

Яркий пример – харизматичные и умные дельфины. Кое-кто считает, что когда-то в глубочайшей древности древо жизни раскололось на две ветви. По одному пути прошли наши предки, а по другому – дельфинов, то есть у нас с ними, возможно, были общие предки.

Особенностью коры головного мозга является ее незаменимость. Хотя мозг способен адаптироваться к травмам и даже частично или полностью восстанавливать свою функциональность, при потере части коры утраченные функции не восстанавливаются. Мало того, ученые смогли сделать вывод о том, что эта часть во многом обуславливает личность человека.

При травме лобной доли или наличия здесь опухоли, после операции и удаления уничтоженного участка кортекса больной радикально меняется. То есть перемены касаются не только его поведения, но и личности в целом. Отмечены случаи, когда хороший добрый человек превращался в настоящее чудовище.

Некоторые психологи и криминалисты на основании этого сделали вывод, что внутриутробное повреждение коры головного мозга, особенно его лобной доли, приводит к рождению детей с асоциальным поведением, с социопатическими наклонностями. У таких малышей высокий шанс стать преступником и даже маньяком.

Патологии КГМ и их диагностика

Все нарушения строения и функционирования головного мозга и его коры можно разделить на врожденные и приобретенные. Часть из таких поражений несовместима с жизнью, например, анэнцефалия – полное отсутствие мозга и акрания – отсутствие черепных костей.

Другие заболевания оставляют шанс на выживание, но сопровождаются нарушениями умственного развития, например, энцефалоцеле, при котором часть мозговых тканей и его оболочек выпячивается наружу через отверстие в черепе. В эту же группу попадает и – недоразвитый маленький мозг, сопровождающийся разными формами задержки психического (олигофрения, идиотия) и физического развития.

Более редким вариантом патологии является макроцефалия, то есть увеличение головного мозга. Патология проявляется умственной отсталостью и судорогами. При нем увеличение мозга может быть частичным, то есть гипертрофия асимметричная.

Патологии, при которых поражается кора головного мозга, представлены следующими заболеваниями:

  1. Голопрозэнцефалия – состояние, при котором полушария не разделены и не существует полноценного деления на доли. Дети при такой болезни рождаются мертвыми или погибают в первые сутки после родов.
  2. Агирия – недоразвитость извилин, при котором нарушаются функции коры. Атрофия сопровождается множественными расстройствами и приводит к смерти младенца в течение первых 12 месяцев жизни.
  3. Пахигирия – состояние, при котором первичные извилины увеличены в ущерб остальным. Борозды при этом короткие и выпрямленные, строение коры и подкорковых структур нарушено.
  4. Микрополигирия, при которой мозг покрыт мелкими извилинами, а кора имеет не 6 нормальных слоев, а всего 4. Состояние бывает диффузным и локальным. Незрелость приводит к развитию плегий и парезов мышц, эпилепсии, которая развивается в первый же год, умственной отсталости.
  5. Фокальная корковая дисплазия сопровождается наличием в височной и лобной доле патологических участков с огромными нейронами и ненормальными . Неправильное строение клеток приводит к возникновению повышенной возбудимости и приступам, сопровождающимся специфическими движениями.
  6. Гетеротопия – скопление нервных клеток, которые в процессе развития не достигли своего места в коре. Одиночное состояние может проявиться после десятилетнего возраста, большие скопления вызывают приступы типа эпилептических припадков и олигофрению.

Приобретенные заболевания в основном являются следствиями перенесенных серьезных воспалений, травм, а также появляются после развития или удаления опухоли – доброкачественной или злокачественной. При таких состояниях, как правило, прерывается импульс, исходящий от коры в соответствующие органы.

Наиболее опасным считается так называемый префронтальный синдром. Эта область – фактически проекция всех органов человека, поэтому повреждения лобной доли приводит к , памяти, речи, движений, мышления, а также к частичной или полной деформации и изменению личности больного.

Ряд патологий, сопровождающихся внешними изменениями или отклонениями в поведении, диагностировать достаточно легко, другие требуют более тщательного изучения, а удаленные опухоли подвергаются гистологическому исследованию, чтобы исключить злокачественную природу.

Тревожными показаниями для проведения процедуры является наличие в семье врожденных патологий или заболеваний, гипоксия плода в беременности, асфиксия в родах, родовая травма.

Методы диагностики врожденных отклонений

Современная медицина помогает препятствовать рождению детей с тяжелейшими пороками развития коры головного мозга. Для этого выполняется скрининг в первом триместре беременности, который позволяет выявить патологии строения и развития мозга на самых ранних стадиях.

У родившегося крохи с подозрением на патологии проводится нейросонография через «родничок», а детей постарше и взрослых обследуют путем проведения . Этот способ позволяет не только обнаружить дефект, но и визуализировать его размеры, форму и расположение.

Если в семье встречались наследственные проблемы, связанные со строением и функционированием коры и всего мозга, требуется консультация генетика и проведение специфических обследований и анализов.

Знаменитые «серые клеточки» – величайшее достижение эволюции и высшее благо для человека. Вызвать повреждения могут не только наследственные заболевания и травмы, но и приобретенные патологии, спровоцированные самим человеком. Врачи призывают беречь здоровье, отказаться от вредных привычек, позволять своему телу и мозгу отдыхать и не давать разуму лениться. Нагрузки полезны не только мышцам и суставам – они не позволяют нервным клеткам стареть и выходить из строя. Тот, кто учится, работает и загружает свой мозг, меньше страдает от его износа и позже приходит к и утрате умственных способностей.

Ретикулярная формация ствола мозга занимает центральное положение в продолговатом мозге, варолиевом мосту, среднем и промежуточном мозге.

Нейроны ретикулярной формации не имеют непосредственных контактов с рецепторами организма. Нервные импульсы при возбуждении рецепторов поступают к ретикулярной формации по коллатералям волокон вегетативной и соматической нервной системы.

Физиологическая роль . Ретикулярная формация ствола мозга оказывает восходящее влияние на клетки коры головного мозга и нисходящее на мотонейроны спинного мозга. Оба эти влияния ретикулярной формации могут быть активирующими или тормозными.

Афферентная импульсация к коре головного мозга поступает по двум путям: специфическому и неспецифическому. Специфический нервный путь обязательно проходит через зрительные бугры и несет нервные импульсы к определенным зонам коры головного мозга, в результате осуществляется какая-либо специфическая деятельность. Например, при раздражении фоторецепторов глаз импульсы через зрительные бугры поступают в затылочную область коры головного мозга и у человека возникают зрительные ощущения.

Неспецифический нервный путь обязательно проходит через нейроны ретикулярной формации ствола мозга. Импульсы к ретикулярной формации поступают по коллатералям специфического нервного пути. Благодаря многочисленным синапсам на одном и том же нейроне ретикулярной формации могут сходиться (конвергировать) импульсы различных значений (световые, звуковые и т. д.), при этом они теряют свою специфичность. От нейронов ретикулярной формации эти импульсы поступают не в какую-то определенную область коры головного мозга, а веерообразно распространяются по ее клеткам, повышая их возбудимость и облегчая тем самым выполнение специфической функции.

В опытах на кошках с вживленными в область ретикулярной формации ствола мозга электродами было показано, что раздражение ее нейронов вызывает пробуждение спящего животного. При разрушении ретикулярной формации животное впадает в длительное сонное состояние. Эти данные свидетельствуют о важной роли ретикулярной формации в регуляции состояния сна и бодрствования. Ретикулярная формация не только оказывает влияние на кору головного мозга, но также посылает в спинной мозг к его двигательным нейронам тормозящие и возбуждающие импульсы. Благодаря этому она участвует в регуляции тонуса скелетной мускулатуры.

В спинном мозге, как уже указывалось, также имеются нейроны ретикулярной формации. Полагают, что они поддерживают на высоком уровне активность нейронов спинного мозга. Функциональное состояние самой ретикулярной формации регулируется корой головного мозга.

Мозжечок

Особенности строения мозжечка . Связи мозжечка с другими отделами центральной нервной системы . Мозжечок - это непарное образование; он располагается позади продолговатого мозга и варолиева моста, граничит с четверохолмиями, сверху прикрыт затылочными долями больших полушарий, В мозжечке различают среднюю часть - червь и расположенные по бокам от него два полушария . Поверхность мозжечка состоит из серого вещества, называемого корой, которая включает тела нервных клеток. Внутри мозжечка располагается белое вещество , представляющее собой отростки этих нейронов.

Мозжечок имеет обширные связи с различными отделами центральной нервной системы за счет трех пар ножек. Нижние ножки соединяют мозжечок со спинным и продолговатым мозгом, средние - с варолиевым мостом и через него с двигательной областью коры головного мозга, верхние -со средним мозгом и гипоталамусом.

Функции мозжечка были изучены на животных, у которых мозжечок удаляли частично или полностью, а также путем регистрации его биоэлектрической активности в покое и при раздражении.

При удалении половины мозжечка отмечается повышение тонуса мышц-разгибателей, поэтому конечности животного вытягиваются, наблюдаются изгиб туловища и отклонение головы в оперированную сторону, иногда качательные движения головой. Часто движения совершаются по кругу в оперированную сторону («манежные движения»). Постепенно отмеченные нарушения сглаживаются, однако сохраняется некоторая неловкость движений.

При удалении всего мозжечка наступают более выраженные двигательные расстройства. В первые дни после операции животное лежит неподвижно с запрокинутой головой и вытянутыми конечностями. Постепенно тонус мышц-разгибателей ослабевает, появляется дрожание мышц, особенно шейных. В дальнейшем двигательные функции частично восстанавливаются. Однако до конца жизни животное остается двигательным инвалидом: при ходьбе такие животные широко расставляют конечности, высоко поднимают лапы, т. е. у них нарушена координация движений.

Двигательные расстройства при удалении мозжечка были описаны известным итальянским физиологом Лючиани. Основными из них являются: а т о н и я - исчезновение или ослабление мышечного тонуса; а с т е н и я -снижение силы мышечных сокращений. Для такого животного характерно быстро наступающее мышечное утомление; а с т а з и я - потеря способности к слитным тетаническим сокращениям, У животных наблюдаются дрожательные движения конечностей и головы. Собака после удаления мозжечка не может сразу поднять лапы, животное делает ряд колебательных движений лапой, перед тем как ее поднять. Если поставить такую собаку, то тело ее и голова все время качаются из стороны в сторону.

В результате атонии, астении и астазии у животного нарушается координация движений: отмечаются шаткая походка, размашистые, неловкие, неточные движения. Весь комплекс двигательных расстройств при поражении мозжечка получил название мозжечковой атаксии .

Подобные нарушения наблюдаются и у человека при поражении мозжечка.

Через некоторое время после удаления мозжечка, как уже указывалось, все двигательные расстройства постепенно сглаживаются. Если у таких животных удалить моторную область коры головного мозга, то двигательные нарушения вновь усиливаются. Следовательно, компенсация (восстановление) двигательных расстройств при поражении мозжечка осуществляется при участии коры головного мозга, ее моторной области.

Исследованиями Л. А. Орбели было показано, что при удалении мозжечка наблюдается не только падение мышечного тонуса (атония), но и неправильное его распределение (дистония). Л. Л. Орбели установил, что мозжечок влияет и на состояние рецепторного аппарата, а также на вегетативные процессы. Мозжечок оказывает адаптационно-трофическое влияние на все отделы мозга через симпатическую нервную систему, он регулирует обмен веществ в головном мозге и тем самым способствует приспособлению нервной системы к изменяющимся условиям существования.

Таким образом, основными функциями мозжечка являются координация движений, нормальное распределение мышечного тонуса и регуляция вегетативных функций. Свое влияние мозжечок реализует через ядерные образования среднего и продолговатого мозга, через двигательные нейроны спинного мозга. Большая роль в этом влиянии принадлежит двусторонней связи мозжечка с моторной зоной коры головного мозга и ретикулярной формацией ствола мозга.

Особенности строения коры больших полушарий головного мозга.

Кора больших полушарий головного мозга в филогенетическом отношении является высшим и наиболее молодым отделом центральной нервной системы.

Кора мозга состоит из нервных клеток, их отростков и нейроглии. У взрослого человека толщина коры в большинстве областей составляет около 3 мм. Площадь коры больших полушарий благодаря многочисленным складкам и бороздам составляет 2500 см 2 . Для большинства участков коры головного мозга характерно шестислойное расположение нейронов. Кора больших полушарий состоит из 14-17 млрд. клеток. Клеточные структуры коры головного мозга представлены пирамидными, веретенообразными и звездчатыми нейронами.

Звездчатые клетки выполняют главным образом афферентную функцию. Пирамидные и веретенообразные клетки - это преимущественно эфферентные нейроны.

В коре больших полушарий имеются высокоспециализированные нервные клетки, воспринимающие афферентные импульсы от определенных рецепторов (например, от зрительных, слуховых, тактильных и т. д.). Имеются также нейроны, которые возбуждаются нервными импульсами, идущими от разных рецепторов организма. Это так называемые полисенсорные нейроны.

Отростки нервных клеток коры головного мозга связывают ее различные отделы между собой или устанавливают контакты коры больших полушарий с нижележащими отделами центральной нервной системы. Отростки нервных клеток, соединяющие между собой различные участки одного и того же полушария называются ассоциативными , связывающие чаще всего одинаковые участки двух полушарий - комиссуральными и обеспечивающие контакты коры головного мозга с другими отделами центральной нервной системы и через них со всеми органами и тканями тела - проводящими (центробежными). Схема этих путей приведена на рисунке.

Схема хода нервных волокон в больших полушариях головного мозга.

1 - короткие ассоциативные волокна; 2 - длинные ассоциативные волокна; 3 - комиссуральные волокна; 4 - центробежные волокна.

Клетки нейроглии выполняют ряд важных функций: они являются опорной тканью, участвуют в обмене веществ головного мозга, регулируют кровоток внутри мозга, выделяют нейросекрет, который регулирует возбудимость нейронов коры головного мозга.

Функции коры головного мозга.

1) Кора головного мозга осуществляет взаимодействие организма с окружающей средой за счет безусловных и условных рефлексов;

2) она является основой высшей нервной деятельности (поведения) организма;

3) за счет деятельности коры головного мозга осуществляются высшие психические функции: мышление и сознание;

4) кора головного мозга регулирует и объединяет работу всех внутренних органов и регулирует такие интимные процессы, как обмен веществ.

Таким образом, с появлением коры головного мозга она начинает контролировать все процессы, протекающие в организме, а также всю деятельность человека, т. е. происходит кортиколизация функций. И. П. Павлов, характеризуя значение коры головного мозга, указывал, что она является распорядителем и распределителем всей деятельности животного и человеческого организма.

Функциональное значение различных областей коры головного мозга . Локализация функций в коре головного мозга . Роль отдельных областей коры головного мозга впервые была изучена в 1870 г. немецкими исследователями Фричем и Гитцигом. Они показали, что раздражение различных участков передней центральной извилины и собственно лобных долей вызывает сокращение определенных групп мышц на противоположной раздражению стороне. В дальнейшем была выявлена функциональная неоднозначность различных областей коры. Было обнаружено, что височные доли коры головного мозга связаны со слуховыми функциями, затылочные - со зрительными функциями и т.д. Эти исследования позволили сделать вывод, что разные участки коры больших полушарий ведают определенными функциями. Было создано учение о локализации функций в коре головного мозга.

По современным представлениям, различают три типа зон коры головного мозга: первичные проекционные зоны, вторичные и третичные (ассоциативные).

Первичные проекционные зоны - это центральные отделы ядер анализаторов. В них расположены высокодифференцированные и специализированные нервные клетки, к которым поступают импульсы от определенных рецепторов (зрительных, слуховых, обонятельных и др.). В этих зонах происходит тонкий анализ афферентных импульсов различного значения. Поражение указанных зон ведет к расстройствам чувствительных или двигательных функций.

Вторичные зоны - периферические отделы ядер анализаторов. Здесь происходит дальнейшая обработка информации, устанавливаются связи между различными по характеру раздражителями. При поражении вторичных зон возникают сложные расстройства восприятий.

Третичные зоны (ассоциативные ) . Нейроны этих зон могут возбуждаться под влиянием импульсов, идущих от рецепторов различного значения (от рецепторов слуха, фоторецепторов, рецепторов кожи и т. д.). Это так называемые полисенсорные нейроны, за счет которых устанавливаются связи между различными анализаторами. Ассоциативные зоны получают переработанную информацию от первичных и вторичных зон коры больших полушарий. Третичные зоны играют большую роль в формировании условных рефлексов, они обеспечивают сложные формы познания окружающей действительности.

Значение различных областей коры головного мозга . В коре большого мозга выделяют сенсорные, моторные области

Сенсорные области коры . (проекционная кора, корковые отделы анализаторов). Это зоны, в которые проецируются сенсорные раздражители. Они расположены преимущественно в теменной, височной и затылочной долях. Афферентные пути в сенсорную кору поступают преимущественно от релейных сенсорных ядер таламуса – вентральных задних, латерального и медиального. Сенсорные области коры образованы проекционными и ассоциативными зонами основных анализаторов.

Область кожной рецепции (мозговой конец кожного анализатора) представлена в основном задней центральной извилиной. Клетки этой области воспринимают импульсы от тактильных, болевых и температурных рецепторов кожи. Проекция кожной чувствительности в пределах задней центральной извилины аналогична таковой для двигательной зоны. Верхние участки задней центральной извилины связаны с рецепторами кожи нижних конечностей, средние - с рецепторами туловища и рук, нижние - с рецепторами кожи головы и лица. Раздражение этой.области у человека во время нейрохирургических операций вызывает ощущения прикосновения, покалывания, онемения, при этом никогда не наблюдается выраженных болевых ощущений.

Область зрительной рецепции (мозговой конец зрительного анализатора) расположена в.затылочных долях коры головного мозга обоих полушарий. Эту область следует рассматривать как проекцию сетчатой оболочки глаза.

Область слуховой рецепции (мозговой конец слухового анализатора) локализуется в височных долях коры головного мозга. Сюда поступают нервные импульсы от рецепторов улитки внутреннего уха. При повреждении этой зоны может возникнуть музыкальная и словесная глухота, когда человек слышит, но не понимает значения слов; Двустороннее поражение слуховой области приводит к полной глухоте.

Область вкусовой рецепции (мозговой конец вкусового анализатора) расположена в нижних долях центральной извилины. Эта область получает нервные импульсы от вкусовых рецепторов слизистой оболочки полости рта.

Область обонятельной рецепции (мозговой конец обонятельного анализатора) располагается в передней части грушевидной доли коры головного мозга. Сюда поступают нервные импульсы от обонятельных рецепторов слизистой оболочки носа.

В коре больших полушарий обнаружено несколько зон, ведающих функцией речи (мозговой конец речедвигательного анализатора). В лобной области левого полушария (у праворуких) располагается моторный центр речи (центр Брока). При его поражении речь затруднена или даже невозможна. В височной области находится сенсорный центр речи (центр Вернике). Повреждение этой области приводит к расстройствам восприятия речи: больной не понимает значение слов, хотя способность произносить слова сохранена. В затылочной доле коры головного Мозга имеются зоны, обеспечивающие восприятие письменной (зрительной) речи. При поражении этих областей больной не понимает написанного.

В теменной области коры больших полушарий не обнаружены мозговые концы анализаторов, ее относят к ассоциативным зонам. Среди нервных клеток теменной области найдено большое количество полисенсорных нейронов, которые способствуют установлению связей между различными анализаторами и играют большую роль в формировании рефлекторных дуг условных рефлексов

Моторные области коры Представление о роли двигательной коры большого мозга двояко. С одной стороны, было показано, что электрическое раздражение некоторых корковых зон у животных вызывает движение конечностей противоположной стороны тела, что говорило о том, что кора непосредственно участвует в реализации двигательных функций. В то же время признано, что двигательная область является анализаторной, т.е. представляет собой корковый отдел двигательного анализатора.

Мозговой отдел двигательного анализатора представлен передней центральной извилиной и расположенными вблизи нее участками лобной области. При ее раздражении возникают разнообразные сокращения скелетной мускулатуры на противоположной стороне. Установлено соответствие между определенными зонами передней центральной извилины и скелетной мускулатурой. В верхних участках этой зоны проецируется мускулатура ног, в средних - туловища, в нижних - головы.

Особый интерес представляет собственно лобная область, которая достигает у человека наибольшего развития. При поражении лобных областей у человека нарушаются сложные двигательные функции, обеспечивающие трудовую деятельность и речь, а также приспособительные, поведенческие реакции организма.

Любая функциональная зона коры головного мозга находится и в анатомическом, и в функциональном контакте с другими зонами коры больших полушарий, с подкорковыми ядрами, с образованиями промежуточного мозга и ретикулярной формации, что обеспечивает совершенство выполняемых ими функций.

1. Структурно-функциональные особенности ЦНС в антенатальном периоде.

У плода количество нейронов ДНС достигает максимума к 20-24-й неделе и остается в постнатальном периоде без резкого снижения до пожилого возраста. Нейроны имеют малые размеры и суммарную площадь синаптической мембраны.

Аксоны развиваются раньше дендритов, отростки нейронов интенсивно растут и ветвятся. Наблюдается увеличение длины, диаметра и миелинизации аксонов к концу антенатального периода.

Филогенетически старые пути миелинизируются раньше, чем филогенетически новые; например, вестибулоспинал ьные пути с 4-го месяца внугриугробного развития, руброспинальные пути с 5-8-го месяца, пирамидные пути после рождения.

Nа- и К-каналы равномерно распределены в мембране миелиновых и немиелиновых волокон.

Возбудимость, проводимость, лабильность нервных волокон значительно ниже, чем у взрослых людей.

Синтез большинства медиаторов начинается в период внутриутробного развития. Гамма-аминомасляная кислота в антенатальном периоде является возбуждающим медиатором и через Са2-механизм оказывает морфогенные эффекты - ускоряет рост аксонов и дендрвтов, синаптогенез, экспрессию питорецепторов.

К моменту рождения заканчивается процесс дифференциации нейронов ядер продолговатого и среднего мозга, моста.

Имеется структурно-функциональная незрелость глиальных клеток.

2. Особенности ЦНС в периоде новорожденности.

> Возрастает степень миелинизации нервных волокон, их количество составляет 1/з уровня взрослого организма (например, полностью миелинизирован руброспинальный путь).

> Уменьшается проницаемость клеточных мембран для ионов. Нейроны имеют более низкую амплитуду МП - около 50 мВ (у взрослых примерно 70 мВ).

> На нейронах синапсов меньше, чем у взрослых, мембрана нейрона имеет рецепторы к синтезируемым медиаторам (ацетилхолину, ГАМ К, серотонину, норадреналину в дофамину). Содержание медиаторов в нейронах мозга новорожденных низкое в составляет 10-50% медиаторов у взрослых.

> Отмечается развитие шипикового аппарата нейронов и аксошипиковых синапсов; ВПСП и ТПСП имеют большую длительность и меньшую амплитуду, чем у взрослых. Количество тормозных синапсов на нейронах меньше, чем у взрослых.

> Повышается возбудимость корковых нейронов.

> Исчезает (точнее, резко уменьшается) митотическая активность и возможность регенерации нейронов. Продолжается пролиферация и функциональное созревание глиоцитов.

З. Особенности ЦНС в грудном возрасте.

Созревание ЦНС быстро прогрессирует. Наиболее интенсивная миелинизация нейронов ЦНС происходит в конце первого года после рождения (например, к 6 мес завершается миелинизация нервных волокон полушарий мозжечка).

Возрастает скорость проведения возбуждения по аксонам.

Наблюдается уменьшение продолжительности ПД нейронов, укорачиваются абсолютная и относительная рефрактерные фазы (длительность абсолютной рефрактерности 5-8 мс, относительной 4О-бО мс в раннем постнатальном онтогенезе, у взрослых соответственно 0,5-2,О и 2-10 мс).

Кровоснабжение мозга у детей относительно больше, чем у взрослых.

4. Особенности развития ЦНС в другие возрастные периоды.

1) Структурно-функциональные изменения в нервных волокнах:

Увеличение диаметров осевых цилиндров (к 4-9 годам). Миелинизация во всех периферических нервных волокнах близка к завершению к 9 годам, а пирамидных путей заканчивается к 4 годам;

Ионные каналы концентрируются в области перехватов Ранвье, расстояние между перехватами увеличивается. Непрерывное проведение возбуждения сменяется сальтаторным, скорость его проведения после 5-9 лет почти не отличается от скорости у взрослых (50-70 м/с);

Отмечается низкая лабильность нервных волокон у детей первых лет жизни; с возрастом она увеличивается (у детей 5- 9 лет приближается к норме взрослых - 300- 1 000 импульсов).

2) Структурно-функциональные изменения в синапсах:

Значительное созревание нервных окончаний (нервно-мышечных синапсов) происходит к 7-8 годам;

Увеличиваются терминальные разветвления аксона и суммарная площадь его окончаний.

Профильный материал для студентов педиатрического факультета

1. Развитие головного мозга в постнатальном периоде.

В постнатальном периоде ведущую роль в развитии головного мозга играют потоки афферентной импульсации по различным сенсорным системам (роль информационно обогащенной внешней среды). Отсутствие этих внешних сигналов, особенно в критические периоды, может приводить замедлению соэреваняя, недоразвитию функции или даже к ее отсутствию

Критический период в постнатального развитии характеризуется интенсивным морфофункциональным созреванием головного мозга и пиком образования НОВЫХ связей между нейронами.

Общей закономерностью развития мозга человека является гетерохронность созрсвания: фвлогенетически более старые отделы развиваются раньше, чем более молодые.

Продолговатый мозг новорожденного в функциональном отношении развит больше, чем другие отделы: действуют ПОЧТИ все его центры - дыхания, регуляции сердца и сосудов, сосания, глотания, кашля, чиханья, несколько позже начинает Функционировать Центр жевания В регуляции мышечного тонуса снижена активность вестибулярных ядер (снижен тонус Разгибателей) К 6 годам в этих Центрах завершаются дифференцировка нейронов миелинизация волокон, совершенствуется координационная деятельность Центров

Средний мозг у новорожденных в функциональном отношении является менее созревшим. Например, ориентировочный рефлекс и деятельность центров, управляющих движением глаз и ИХ осуществляются в грудном возрасте. Функция Черного вещества в составе стриопаллидарной системы достигает совершенства к 7 годам.

Мозжечок у новорожденного в структурно-функциональном отношении развит недостаточно в течение грудного возраста происходит его усиленный рост и дифференцировка нейронов, увеличиваются связи Мозжечка с другими моторными центрами. Функциональное созревание Мозжечка в основном начинается с 7 лет и завершается к 16 годам.

Созревание промежуточного мозга включает развитие сенсорных ядер таламуса и центров гипоталамуса

Функция сенсорных ядер таламуса осуществляется уже у Новорожденного, что Позволяет Ребенку различать вкусовые, температурные, тактильные и болевые ощущения. Функции неспецифических ядер таламуса и восходящей активирующей ретикулярной формации ствола мозга в первые месяцы жизни развиты слабо, что обусловливает короткое время его бодрствования в течение суток. Ядра таламуса окончательно функционально развиваются к 14 годам.

Центры гипоталамуса у новорожденного развиты слабо, что приводит к несовершенству процессов терморегуляции, регуляции водно-электролитного и других видов обмена, потребностно-мотивационной сферы. Большинство гипоталамических центров функционально созревают к 4 годам. Наиболее поздно (к 16 годам) начинают функционировать половые гипоталамические центры.

К моменту рождения базальные ядра имеют разную степень функциональной активности. Филогенетически более старая структура - бледный шар - функционально хорошо сформирована, тогда как функция полосатого тела проявляется к концу 1 года. В связи с этим движения новорожденных и грудных детей генерализованы, плохо координированы. По мере развития стриопалидарной системы ребенок выполняет все более точные и координированные движения, создает двигательные программы произвольных движений. Структурно-функциональное созревание базальных ядер завершается к 7 годам.

Кора больших полушарий в раннем онтогенезе в структурно-функциональном отношении созревает более поздно. Наиболее рано развивается моторная и сенсорная кора, созревание которых заканчивается на З-м году жизни (слуховой и зрительной коры несколько позже). Критический период в развитии ассоциативной коры наступает в возрасте 7 лет в продолжается до пубертатного периода. В это же время интенсивно формируются корково-подкорковые взаимосвязи. Кора больших полушарий обеспечивает кортикализацию функций организма, регуляцию произвольных движений, создание в реализацию двигательных стереотипов, высшие психофизиологические процессы. Подробно созревание и реализация функций коры больших полушарий изложены в профильных материалах для студентов педиатрического факультета в теме 11, т. 3, темах 1-8.

Гематоликворный и гематоэнцефалический барьеры в постнатальном периоде имеют ряд особенностей.

В раннем постнатальном периоде в сосудистых сплетениях желудочков головного мозга формируются крупные вены, Которые могут депонировать значительное количество крови 14 тем самым участвовать в регуляции внутричерепного давления.


30.07.2013

Образована нейронами, представляет собой слой серого вещества, который покрывает полушария большого мозга. Её толщина 1,5 - 4,5 мм, площадь у взрослого 1700 – 2200 см 2 . Миелинизированные волокна, образующие белое вещество конечного мозга, соединяют кору с остальными отделами могза . Приблизительно 95 процентов поверхности полушарий является неокортексом или новой корой, которая филогенетически считается самым поздним образованием головного мозга. Архиокортекс (старая кора) и палеокортекс (древняя кора) имеют более примитивное строение, для них характерно нечёткое разделение на слои (слабая стратификация).

Строение коры.

Неокортекс образован шестью слоями клеток: молекулярной пластинкой, наружной зернистой пластинкой, наружной пирамидной пластинкой, внутренней зернистой и пирамидной пластинками, мультиформной пластинкой. Каждый слой отличается наличием нервных клеток определённого размера и формы.

Первый слой – молекулярная пластинка, которая образована небольшим количеством горизонтально ориентированных клеток. Содержит ветвящиеся дендриты пирамидных нейронов нижележащих слоёв.

Второй слой – наружная зернистая пластинка, состоящая из тел звездчатых нейронов и пирамидных клеток. Сюда же относится и сеть тонких нервных волокон.

Третий слой – наружная пирамидная пластинка состоит из тел пирамидных нейронов и отростков, которые не образуют длинных проводящих путей.

Четвёртый слой – внутренняя зернистая пластинка образована плотно расположенными звездчатыми нейронами. К ним прилегают таламокортикальные волокна. К этому слою относятся пучки миелиновых волокон.

Пятый слой – внутренняя пирамидная пластинка сформирована в основном крупными пирамидными клетками Беца.

Шестой слой – мультиформная пластинка, состоящая из большого числа мелких полиморфных клеток. Данный слой плавно переходит в белое вещество больших полушарий.

Бороздами кора головного мозга каждого из полушарий делится на четыре доли.

Центральная борозда начинается на внутренней поверхности, спускается вниз полушария и отделяет лобную долю от теменной. Латеральная борозда берёт начало от нижней поверхности полушария, косо поднимается к верху и заканчивается на середине верхнелатеральной поверхности. Теменно-затылочная борозда локализуется в задней части полушария.

Лобная доля.

Лобная доля имеет следующие структурные элементы: лобный полюс, предцентральную извилину, верхнюю лобную извилину, среднюю лобную извилину, нижнюю лобную извилину, покрышечную часть, треугольную и глазничную часть. Предцентральная извилина является центром всех двигательных актов: начиная от элементарных функций и заканчивая сложными комплексными действиями. Чем богаче и дифференцированнее действие, тем большую зону занимает данный центр. Интеллектуальная активность контролируется латеральными отделами. Медиальная и орбитальная поверхность отвечают за эмоциональное поведение и вегетативную активность.

Теменная доля.

В её пределах различают постцентральную извилину, внутритеменную борозду, парацентральную дольку, верхнюю и нижнюю теменные дольки, надкраевую и угловую извилины. Соматическая чувствительная кора головного мозга располагается в постцентральной извилине, существенной особенностью расположения функций здесь является соматотопическое расчленение. Всю оставшуюся теменную долю занимает ассоциативная кора. Она отвечает за распознавание соматической чувствительности и её взаимосвязь с различными формами сенсорной информации.

Затылочная доля.

Является самой малой по размерам и включает полулунную и шпорную борозды, поясную извилину и участок клиновидной формы. Здесь располагается корковый центр зрения. Благодаря чему человек может воспринимать зрительные образы, распознавать и оценивать их.

Височная доля.

На боковой поверхности можно выделить три височные извилины: верхнюю, среднюю и нижнюю, также несколько поперечных и две затылочно-височных извилин. Здесь, кроме того, находится извилина гиппокампа, которая считается центром вкуса и обоняния. Поперечные височные извилины являются зоной контролирующей слуховое восприятие и интерпретацию звуков.

Лимбический комплекс.

Объединяет группу структур, которые находятся в краевой зоне коры больших полушарий и зрительного бугра промежуточного мозга. Это лимбическая кора головного мозга, зубчатая извилина, миндалевидное тело, перегородочный комплекс, сосцевидные тела, передние ядра, обонятельные луковицы, пучки соединительных миелиновых волокон. Главная функция этого комплекса – это контроль эмоций, поведения и стимулов, а также функций памяти.

Основные нарушения функций коры.

Основные расстройства, которым подвергается кора головного мозга , делят на очаговые и диффузные. Из очаговых наиболее часто встречаются:

Афазия – расстройство или полная утрата речевой функции;

Аномия – неспособность называть различные объекты;

Дизартрия – расстройство артикуляции;

Просодия – нарушение ритмики речи и расстановки ударений;

Апраксия – неспособность выполнить привычные движения;

Агнозия – утрата способности узнавать предметы при помощи зрения или осязания;

Амнезия – нарушение памяти, которое выражается незначительной или полной неспособности воспроизводить информацию, полученную человеком в прошлом.

К диффузным расстройствам относят: оглушение, сопор, кому, делирий и деменцию.

Кора головного мозга - высший отдел центральной нервной системы, обеспечивающий функционирование организма как единого целого при его взаимодействии с окружающей средой.

головного мозга (кора большого мозга, новая кора) представляет собой слой серого вещества, состоящего из 10-20 млрд и покрывающего большие полушария (рис. 1). Серое вещество коры составляет более половины всего серого вещества ЦНС. Суммарная площадь серого вещества коры — около 0,2 м 2 , что достигается извилистой складчатостью ее поверхности и наличием борозд разной глубины. Толщина коры в ее разных участках колеблется от 1,3 до 4,5 мм (в передней центральной извилине). Нейроны коры располагаются в шести слоях, ориентированных параллельно ее поверхности.

В участках коры, относящихся к , имеются зоны с трехслойным и пятислойным расположением нейронов в структуре серого вещества. Эти участки филогенетически древней коры занимают около 10% поверхности полушарий мозга, остальные 90% составляют новую кору.

Рис. 1. Моля латеральной поверхности коры большого мозга (по Бродману)

Строение коры головного мозга

Кора большого мозга имеет шестислойное строение

Нейроны разных слоев различаются по цитологическим признакам и функциональным свойствам.

Молекулярный слой — самый поверхностный. Представлен небольшим числом нейронов и многочисленными ветвящимися дендритами пирамидных нейронов, лежащих в более глубоких слоях.

Наружный зернистый слой сформирован плотно расположенными многочисленными мелкими нейронами разной формы. Отростки клеток этого слоя образуют кортикокортикальные связи.

Наружный пирамидальный слой состоит из пирамидных нейронов средней величины, отростки которых также участвуют в образовании кортикокортикальных связей между соседними областями коры.

Внутренний зернистый слой подобен второму слою по виду клеток и расположению волокон. В слое проходят пучки волокон, связывающие различные участки коры.

К нейронам этого слоя проводятся сигналы от специфических ядер таламуса. Слой очень хорошо представлен в сенсорных областях коры.

Внутренний пирамидный слои образован средними и крупными пирамидными нейронами. В двигательной области коры эти нейроны особенно крупные (50-100 мкм) и получили название гигантских, пирамидных клеток Беца. Аксоны этих клеток формируют быстропроводящие (до 120 м/с) волокна пирамидного тракта.

Слой полиморфных клеток представлен преимущественно клетками, аксоны которых образуют кортикоталамические пути.

Нейроны 2-го и 4-го слоев коры участвуют в восприятии, переработке поступающих к ним сигналов от нейронов ассоциативных областей коры. Сенсорные сигналы из переключающих ядер таламуса поступают преимущественно к нейронам 4-го слоя, выраженность которого наибольшая в первичных сенсорных областях коры. К нейронам 1-го и других слоев коры поступают сигналы из других ядер таламуса, базальных ганглиев, ствола мозга. Нейроны 3-го, 5-го и 6-го слоев формируют эфферентные сигналы, посылаемые в другие области коры и по нисходящим путям в нижележащие отделы ЦНС. В частности, нейроны 6-го слоя формируют волокна, следующие в таламус.

В нейронном составе и цитологических особенностях разных участков коры имеются значительные отличия. По этим отличиям Бродман разделил кору на 53 цитоархитектонических поля (см. рис. 1).

Расположение многих из этих нолей, выделенных на основе гистологических данных, совпадает по топографии с расположением корковых центров, выделенных на основе выполняемых ими функций. Используются и другие подходы деления коры на области, например, на основе содержания в нейронах определенных маркеров, по характеру нейронной активности и другим критериям.

Белое вещество полушарий головного мозга образовано нервными волокнами. Выделяют ассоциативные волокна, подразделяемые на дугообразные волокна, но которым сигналы передаются между нейронами рядом лежащих извилин и длинные продольные пучки волокон, доставляющие сигналы к нейронам более удаленных участков одноименного полушария.

Комиссуральные волокна - поперечные волокна, передающие сигналы между нейронами левого и правого полушарий.

Проекционные волокна - проводят сигналы между нейронами коры и других отделов мозга.

Перечисленные виды волокон участвуют в создании нейронных цепей и сетей, нейроны которых расположены на значительных расстояниях друг от друга. В коре имеется также особый вид локальных нейронных цепей, образованных рядом расположенными нейронами. Эти нейронные структуры получили название функциональных кортикальных колонок. Нейронные колонки образованы группами нейронов, расположенных друг над другом перпендикулярно поверхности коры. Принадлежность нейронов к одной и той же колонке можно определить по повышению их электрической активности на раздражение одного и того же рецептивного поля. Такая активность регистрируется при медленном перемещении регистрирующего электрода в коре в перпендикулярном направлении. Если регистрировать электрическую активность нейронов, расположенных в горизонтальной плоскости коры, то отмечается повышение их активности при раздражении различных рецептивных полей.

Диаметр функциональной колонки составляет до 1 мм. К нейронам одной функциональной колонки поступают сигналы от одного и того же афферентного таламокортикального волокна. Нейроны соседних колонок связаны друг с другом отростками, с помощью которых обмениваются информацией. Наличие в коре таких взаимосвязанных функциональных колонок увеличивает надежность восприятия и анализа информации, поступающей к коре.

Эффективность восприятия, обработки и использования информации корой для регуляции физиологических процессов обеспечивается также соматотопическим принципом организации сенсорных и моторных полей коры. Суть такой организации заключается в том, что в определенной (проекционной) области коры представлены не любые, а топографически очерченные участки рецептивного поля поверхности тела, мышц, суставов или внутренних органов. Так, например, в соматосенсорной коре поверхность тела человека спроецирована в виде схемы, когда в определенной точке коры представлены рецептивные поля конкретной области поверхности тела. Строгим топографическим образом в первичной моторной коре представлены эфферентные нейроны, активация которых вызывает сокращение определенных мышц тела.

Полям коры присущ также экранный принцип функционирования. При этом рецепторный нейрон посылает сигнал не на одиночный нейрон или в одиночную точку коркового центра, а на сеть или ноле нейронов, связанных отростками. Функциональными ячейками этого поля (экрана) являются колонки нейронов.

Кора мозга, формируясь на поздних этапах эволюционного развития высших организмов, в определенной мере подчинила себе все нижележащие отделы ЦНС и способна корригировать их функции. В то же время функциональная активность коры больших полушарий определяется притоком к ней сигналов от нейронов ретикулярной формации ствола мозга и сигналов от рецептивных полей сенсорных систем организма.

Функциональные области коры мозга

По функциональному признаку в коре выделяют сенсорные, ассоциативные и двигательные области.

Сенсорные (чувствительные, проекционные) области коры

Они состоят из зон, содержащих нейроны, активация которых афферентными импульсами от сенсорных рецепторов или прямым воздействием раздражителей вызывает появление специфических ощущений. Эти зоны имеются в затылочной (поля 17-19), теменной (ноля 1-3) и височной (поля 21-22, 41-42) областях коры.

В сенсорных зонах коры выделяют центральные проекционные поля, обеспечивающие топкое, четкое восприятие ощущений определенных модальностей (свет, звук, прикосновение, тепло, холод) и вторичные проекционные ноля. Функцией последних является обеспечение понимания связи первичного ощущения с другими предметами и явлениями окружающего мира.

Зоны представительства рецептивных полей в сенсорных зонах коры в значительной мере перекрываются. Особенность нервных центров в области вторичных проекционных полей коры — их пластичность, которая проявляется возможностью перестройки специализации и восстановления функций после повреждения какого-либо из центров. Эти компенсаторные возможности нервных центров особенно выражены в детском возрасте. В то же время повреждение центральных проекционных полей после перенесенных заболевании, сопровождается грубым нарушением функций чувствительности и часто невозможностью ее восстановления.

Зрительная кора

Первичная зрительная кора (VI, поле 17) располагается по обеим сторонам шпорной борозды на медиальной поверхности затылочной доли головного мозга. В соответствии с выявлением па неокрашенных срезах зрительной коры чередующихся белых и темных полос ее называют также стриарной (полосатой) корой. К нейронам первичной зрительной коры посылают зрительные сигналы нейроны латерального коленчатого тела, которые получают сигналы от ганглиозных клеток сетчатки. Зрительная кора каждого полушария получает визуальные сигналы от ипсилатеральной и контралатеральной половин сетчатки обоих глаз и их поступление к нейронам коры организовано по соматотопическому принципу. Нейроны, к которым поступают зрительные сигналы от фоторецепторов, топографически расположены в зрительной коре подобно рецепторам в сетчатке глаза. При этом область желтого пятна сетчатки имеет относительно большую зону представительства в коре, чем другие области сетчатки.

Нейроны первичной зрительной коры ответственны за зрительное восприятие, которое на основе анализа входных сигналов проявляется их способностью обнаруживать зрительный стимул, определять его специфическую форму и ориентацию в пространстве. Упрощенно можно представить сенсорную функцию зрительной коры в решении задачи и ответе на вопрос, что представляет собой зрительный объект.

В анализе других качеств зрительных сигналов (например, расположения в пространстве, движения, связи с другими событиями и т.д.) принимают участие нейроны полей 18 и 19 экстрастриарной коры, расположенных но соседству с нолем 17. Информация о сигналах, поступивших в сенсорные зрительные зоны коры, передастся для дальнейшего анализа и использования зрения для выполнения других функций мозга в ассоциативные области коры и другие отделы мозга.

Слуховая кора

Расположена в латеральной борозде височной доли в области извилины Гешля (AI, поля 41-42). К нейронам первичной слуховой коры поступают сигналы от нейронов медиальных коленчатых тел. Волокна слуховых путей, проводящие звуковые сигналы в слуховую кору, организованы тонотопически, и это позволяет нейронам коры получать сигналы от определенных слуховых рецепторных клеток кортиева органа. Слуховая кора регулирует чувствительность слуховых клеток.

В первичной слуховой коре формируются звуковые ощущения и проводится анализ отдельных качеств звуков, позволяющий ответить на вопрос, что представляет собой воспринятый звук. Первичная слуховая кора играет важную роль в анализе коротких звуков, интервалов между звуковыми сигналами, ритма, звуковой последовательности. Более сложный анализ звуков осуществляется в ассоциативных областях коры, смежных с первичной слуховой. На основе взаимодействия нейронов этих областей коры осуществляется бинауральный слух, определяются характеристики высоты, тембра, громкости звука, принадлежность звука, формируется представление о трехмерном звуковом пространстве.

Вестибулярная кора

Располагается в верхней и средней височных извилинах (поля 21-22). К ее нейронам поступают сигналы от нейронов вестибулярных ядер ствола мозга, связанных афферентными связями с рецепторами полукружных каналов вестибулярного аппарата. В вестибулярной коре формируется ощущение о положении тела в пространстве и ускорении движений. Вестибулярная кора взаимодействует с мозжечком (через височно-мостомозжечковый путь), участвует в регуляции равновесия тела, приспособлении позы к осуществлению целенаправленных движений. На основе взаимодействия этой области с соматосенсорной и ассоциативными областями коры происходит осознание схемы тела.

Обонятельная кора

Расположена в области верхней части височной доли (крючок, ноля 34, 28). Кора включает ряд ядер и относится к структурам лимбической системы. Ее нейроны расположены в трех слоях и получают афферентные сигналы от митральных клеток обонятельной луковицы, связанных афферентными связям с обонятельными рецепторными нейронами. В обонятельной коре проводится первичный качественный анализ запахов и формируется субъективное ощущение запаха, его интенсивности, принадлежности. Повреждение коры ведет к снижению обоняния или к развитию аносмии — потере обоняния. При искусственном раздражении этой области возникают ощущения различных запахов по типу галлюцинаций.

Вкусовая кора

Расположена в нижней части соматосенсорной извилины, непосредственно кпереди от области проекции лица (поле 43). Ее нейроны получают афферентные сигналы от релейных нейронов таламуса, которые связаны с нейронами ядра одиночного тракта продолговатого мозга. К нейронам этого ядра поступают сигналы непосредственно от чувствительных нейронов, образующих синапсы на клетках вкусовых луковиц. Во вкусовой коре проводится первичный анализ вкусовых качеств горького, соленого, кислого, сладкого и на основе их суммации формируется субъективное ощущение вкуса, его интенсивности, принадлежности.

Сигналы запахов и вкуса достигают нейронов передней части островковой коры, где на основе их интеграции формируется новое, более сложное качество ощущений, определяющее наше отношение к источникам запаха или вкуса (например, к пище).

Соматосенсорная кора

Занимает область постцентральной извилины (SI, поля 1-3), включая парацентральную дольку на медиальной стороне полушарий (рис. 9.14). В соматосенсорную область поступают сенсорные сигналы от нейронов таламуса, связанных спиноталамическими путями с рецепторами кожи (тактильная, температурная, болевая чувствительность), проприорецепторами (мышечных веретен, суставных сумок, сухожилий) и интерорецепторами (внутренних органов).

Рис. 9.14. Важнейшие центры и области коры большого мозга

Из-за перекреста афферентных путей в соматосенсорную зону левого полушария приходит сигнализация от правой стороны тела, соответственно в правое полушарие — от левой стороны тела. В этой сенсорной области коры соматотопически представлены все части тела, но при этом наиболее важные рецептивные зоны пальцев рук, губ, кожи лица, языка, гортани занимают относительно большие площади, чем проекции таких поверхностей тела, как спина, передняя часть туловища, ноги.

Расположение представительства чувствительности частей тела вдоль постцентральной извилины часто называют «перевернутый гомункулюс», так как проекция головы и шеи находится в нижней части постцентральной извилины, а проекция каудальной части туловища и ног — в верхней части. При этом чувствительность голеней и стоп проецируется на кору пара- центральной дольки медиальной поверхности полушарий. Внутри первичной соматосенсорной коры имеется определенная специализация нейронов. Например, нейроны поля 3 получают преимущественно сигналы от мышечных веретен и механорецепторов кожи, поля 2 — от рецепторов суставов.

Кору постцентральной извилины относят к первичной соматосенсорной области (SI). Ее нейроны посылают обработанные сигналы к нейронам вторичной соматосенсорной коры (SII). Она располагается кзади от постцентральной извилины в теменной коре (поля 5 и 7) и принадлежит к ассоциативной коре. Нейроны SII не получают прямых афферентных сигналов от нейронов таламуса. Они связаны с нейронами SI и нейронами других областей коры мозга. Это позволяет проводить здесь интегральную оценку сигналов, попадающих в кору по спиноталамическому пути с сигналами, поступающими из других (зрительной, слуховой, вестибулярной и т.д.) сенсорных систем. Важнейшей функцией этих полей теменной коры является восприятие пространства и трансформация сенсорных сигналов в координаты моторных. В теменной коре формируется стремление (намерение, побуждение) осуществить моторное действие, что является основой для начала планирования в ней предстоящей моторной активности.

Интеграция различных сенсорных сигналов связана с формированием различных ощущений, адресуемых к разным частям тела. Эти ощущения используются как для формирования психических, так и других ответных реакций, примерами которых могут быть движения при одновременном участии мышц обеих сторон тела (например, перемещение, ощупывание обеими руками, хватание, однонаправленное движение обеими руками). Функционирование этой области необходимо для узнавания предметов на ощупь и определения пространственного расположения этих предметов.

Нормальная функция соматосенсорных областей коры является важным условием формирования таких ощущений как тепло, холод, боль и их адресации к определенной части тела.

Повреждение нейронов области первичной соматосенсорной коры ведет к снижению различных видов чувствительности на противоположной стороне тела, а локальное повреждение — к потере чувствительности в определенной части тела. Особенно ранимой при повреждении нейронов первичной соматосенсорной коры является дискриминационная чувствительность кожи, а наименее — болевая. Повреждение нейронов вторичной соматосенсорной области коры может сопровождаться нарушением способности распознания предметов на ощупь (тактильная агнозия) и навыков использования предметов (апраксия).

Двигательные области коры

Около 130 лет тому назад исследователи, нанося точечные раздражения на кору мозга электрическим током, обнаружили, что воздействие на поверхность передней центральной извилины вызывает сокращение мышц противоположной стороны тела. Так было обнаружено наличие одной из моторных зон коры мозга. В последующем оказалось, что к организации движений имеют отношение несколько областей коры мозга и его другие структуры, а в областях моторной коры имеются не только двигательные нейроны, но и нейроны, осуществляющие другие функции.

Первичная моторная кора

Первичная моторная кора располагается в передней центральной извилине (MI, поле 4). Ее нейроны получают основные афферентные сигналы от нейронов соматосенсорной коры — полей 1, 2, 5, премоторной коры и таламуса. Кроме того, через вентролатеральный таламус в MI посылают сигналы нейроны мозжечка.

От пирамидных нейронов Ml начинаются эфферентные волокна пирамидного пути. Часть волокон этого пути следует к моторным нейронам ядер черепных нервов ствола мозга (кортикобульбарный тракт), часть — к нейронам стволовых моторных ядер (красное ядро, ядра ретикулярной формации, стволовые ядра, связанные с мозжечком) и часть — к интер- и моторным нейронам спинного мозга (кортикоспинальный тракт).

Имеется соматотопическая организация расположения нейронов в MI, контролирующих сокращение разных мышечных групп тела. Нейроны, контролирующие мышцы ног и туловища, расположены в верхних участках извилины и занимают относительно малую площадь, а контролирующие мышцы рук, особенно пальцев, лица, языка и глотки расположены в нижних участках и занимают большую площадь. Таким образом, в первичной двигательной коре относительно большую площадь занимают те нейронные группы, которые управляют мышцами, осуществляющими разнообразные, точные, мелкие, тонко регулируемые движения.

Поскольку многие нейроны Ml увеличивают электрическую активность непосредственно перед началом произвольных сокращений, то первичной моторной коре отводят ведущую роль в контроле активности моторных ядер ствола и мотонейронов спинного мозга и инициации произвольных, целенаправленных движений. Повреждение поля Ml ведет к парезу мышц и невозможности осуществления тонких произвольных движений.

Вторичная моторная кора

Включает области премоторной и дополнительной моторной коры (МII, поле 6). Премоторная кора расположена в поле 6, на боковой поверхности мозга, кпереди от первичной моторной коры. Ее нейроны получают через таламус афферентные сигналы из затылочной, соматосенсорной, теменной ассоциативной, префронтальной областей коры и мозжечка. Обработанные в ней сигналы нейроны коры посылают по эфферентным волокнам в моторную кору MI, небольшое число — в спинной мозг и большее — в красные ядра, ядра ретикулярной формации, базальные ганглии и мозжечок. Премоторная кора играет основную роль в программировании и организации движений, находящихся под контролем зрения. Кора участвует в организации позы и вспомогательных движений для действий, осуществляемых дистальными мышцами конечностей. Повреждение прсмотор- ной коры часто вызывает тенденцию повторного выполнения начатого движения (персеверация), даже если осуществленное движение достигло цели.

В нижней части премоторной коры левой лобной доли, непосредственно кпереди от участка первичной моторной коры, в которой представлены нейроны, контролирующие мышцы лица, располагается речевая область , или моторный центр речи Брока. Нарушение ее функции сопровождается нарушением артикуляции речи, или моторной афазией.

Дополнительная моторная кора располагается в верхней части поля 6. Ее нейроны получают афферентные сигналы из соматосснсорной, теменной и префронтальной областей коры головного мозга. Обработанные в ней сигналы нейроны коры посылают по эфферентным волокнам в первичную моторную кору MI, спинной мозг, стволовые моторные ядра. Активность нейронов дополнительной моторной коры повышается раньше, чем нейронов коры MIи главным образом в связи с осуществлением сложных движений. При этом возрастание нейронной активности в дополнительной моторной коре не связано с движениями как таковыми, для этого достаточно мысленно представить модель предстоящих сложных движений. Дополнительная моторная кора принимает участие в формировании программы предстоящих сложных движений и в организации моторных реакций на специфичность сенсорных стимулов.

Поскольку нейроны вторичной моторной коры посылают множество аксонов в поле MI, ее считают в иерархии моторных центров организации движений более высокой структурой, стоящей над моторными центрами моторной коры MI. Нервные центры вторичной моторной коры могут оказывать влияние на активность моторных нейронов спинного мозга двумя путями: непосредственно через кортикоспинальный путь и через поле MI. Поэтому их иногда называют супрамоторными полями, в функцию которых входит инструктирование центров поля MI.

Из клинических наблюдений известно, что сохранение нормальной функции вторичной моторной коры важно для осуществления точных движений руки, и особенно для выполнения ритмических движений. Так, например, при их повреждении пианист перестает чувствовать ритм и выдерживать интервал. Нарушается способность к осуществлению противоположных движений руками (манипулирование обоими руками).

При одновременном повреждении моторных зон MI и MII коры утрачивается способность к тонким координированным движениям. Точечные раздражения в этих областях моторной зоны сопровождаются активацией не отдельных мышц, а целой группы мышц, вызывающих направленное движение в суставах. Эти наблюдения послужили поводом для формирования вывода о том, что в моторной коре представлены не столько мышцы, сколько движения.

Префронтальная кора

Располагается в области поля 8. Ее нейроны получают основные афферентные сигналы из затылочной зрительной, теменной ассоциативной коры, верхних холмиков четверохолмия. Обработанные сигналы передаются по эфферентным волокнам в премоторную кору, верхние холмики четверохолмия, стволовые моторные центры. Кора играет определяющую роль в организации движений, находящихся под контролем зрения и принимает непосредственное участие в инициации и контроле движений глаз и головы.

Механизмы, реализующие превращение замысла движения в конкретную моторную программу, в залпы импульсов, посылаемых к определенным мышечным группам, остаются недостаточно понятными. Считается, что замысел движения формируется благодаря функциям ассоциативной и других областей коры, взаимодействующих со многими структурами головного мозга.

Информация о замысле движения передается в двигательные области лобной коры. Двигательная кора через нисходящие пути активирует системы, обеспечивающие выработку и использование новых двигательных программ или использование старых, уже отработанных на практике и хранящихся в памяти. Составной частью этих систем являются базальные ганглии и мозжечок (см. их функции выше). Программы движения, выработанные при участии мозжечка и базальных ганглиев, передаются через таламус в моторные зоны и прежде всего в первичную моторную область коры. Эта область непосредственно инициирует исполнение движений, подключая к нему определенные мышцы и обеспечивая последовательность смены их сокращения и расслабления. Команды коры передаются на моторные центры ствола мозга, спинальные мотонейроны и мотонейроны ядер черепных нервов. Мотонейроны в осуществлении движений выполняют роль конечного пути, через который двигательные команды передаются непосредственно к мышцам. Особенности передачи сигналов от коры к моторным центрам ствола и спинного мозга описаны в главе, посвященной ЦНС (ствол мозга, спинной мозг).

Ассоциативные области коры

У человека ассоциативные области коры занимают около 50% площади всей коры большого мозга. Они располагаются в участках между сенсорными и двигательными областями коры. Ассоциативные области не имеют четких границ со вторичными сенсорными областями как по морфологическим, так и по функциональным признакам. Выделяют теменную, височную и лобную ассоциативные области коры больших полушарий.

Теменная ассоциативная область коры. Располагается в полях 5 и 7 верхней и нижней теменных долек мозга. Область граничит впереди с соматосенсорной корой, сзади — со зрительной и слуховой корой. К нейронам теменной ассоциативной области могут поступать и активировать их зрительные, звуковые, тактильные, проприоцептивные, болевые, сигналы из аппарата памяти и другие сигналы. Часть нейронов является полисенсорной и может повышать свою активность при поступлении к ней соматосенсорных и визуальных сигналов. Однако степень повышения активности нейронов ассоциативной коры на поступление афферентных сигналов зависит от текущей мотивации, внимания субъекта и информации, извлекаемой из памяти. Она остается незначительной, если поступающий из сенсорных областей мозга сигнал для субъекта безразличен, и существенно возрастает, если он совпал с имеющейся мотивацией и привлек его внимание. Например, при предъявлении обезьяне банана активность нейронов ассоциативной теменной коры остается невысокой, если животное сыто, и наоборот, активность резко возрастает у голодных животных, которым нравятся бананы.

Нейроны теменной ассоциативной коры связаны эфферентными связями с нейронами префронтальной, премоторной, моторной областей лобной доли и поясной извилины. Исходя из экспериментальных и клинических наблюдений, принято считать, что одной из функций коры поля 5 является использование соматосенсорной информации для осуществления целенаправленных произвольных движений и манипулирования объектами. Функцией коры поля 7 является интеграция визуальных и соматосенсорных сигналов для координации движений глаз и визуально-ведомых движений руки.

Нарушением этих функций теменной ассоциативной коры при повреждении ее связей с корой лобной доли или заболеванием самой лобной доли, объясняются симптомы последствий заболеваний, локализованных в области теменной ассоциативной коры. Они могут проявляться затруднением в понимании смыслового содержания сигналов (агнозия), примером которого может быть потеря способности распознавания формы и пространственного расположения объекта. Могут нарушаться процессы трансформации сенсорных сигналов в адекватные моторные действия. В последнем случае больной теряет навыки практического использования хорошо знакомых инструментов и предметов (апраксия), и у него может развиться невозможность осуществления визуально-ведомых движений (например, движение руки в направлении предмета).

Лобная ассоциативная область коры. Располагается в префронтальной коре, которая является частью коры лобной доли, локализующейся кпереди от полей 6 и 8. Нейроны лобной ассоциативной коры получают обработанные сенсорные сигналы по афферентным связям от нейронов коры затылочной, теменной, височной долей мозга и от нейронов поясной извилины. Лобная ассоциативная кора получает сигналы о текущем мотивационном и эмоциональном состояниях от ядер таламуса, лимбической и других структур мозга. Кроме того, лобная кора может оперировать абстрактными, виртуальными сигналами. Эфферентные сигналы ассоциативная лобная кора посылает обратно, в структуры мозга, от которых они были получены, в моторные области лобной коры, хвостатое ядро базальных ганглиев и гипоталамус.

Эта область коры играет первостепенную роль в формировании высших психических функций человека. Она обеспечивает формирование целевых установок и программ осознанных поведенческих реакций, узнавание и смысловую оценку предметов и явлений, понимание речи, логическое мышление. После обширных повреждений лобной коры у больных могут развиться апатия, снижение эмоционального фона, критичного отношения к своим собственным поступкам и поступкам окружающих, самодовольство, нарушение возможности использования прошлого опыта для изменения поведения. Поведение больных может стать непредсказуемым и неадекватным.

Височная ассоциативная область коры. Располагается в полях 20, 21, 22. Нейроны коры получают сенсорные сигналы от нейронов слуховой, экстрастриарной зрительной и префронтальной коры, гиппокампа и миндалины.

После двухстороннего заболевания височных ассоциативных областей с вовлечением в патологический процесс гиппокампа или связей с ним у больных могут развиться выраженные нарушения памяти, эмоционального поведения, неспособность сосредоточения внимания (рассеянность). У части людей при повреждении нижневисочной области, где предположительно располагается центр узнавания лица, может развиться зрительная агнозия — неспособность узнавания лиц знакомых людей, предметов, при сохранности зрения.

На границе височной, зрительной и теменной областей коры в нижней теменной и задней части височной доли располагается ассоциативный участок коры, получивший название сенсорного центра речи, или центра Вернике. После его повреждения развивается нарушение функции понимания речи при сохранности речедвигательной функции.