Биографии Характеристики Анализ

Какие свойства функции бывают. Основные элементарные функции и их свойства

Приведены справочные данные по показательной функции - основные свойства, графики и формулы. Рассмотрены следующие вопросы: область определения, множество значений, монотонность, обратная функция, производная, интеграл, разложение в степенной ряд и представление посредством комплексных чисел.

Определение

Показательная функция - это обобщение произведения n чисел, равных a :
y(n) = a n = a·a·a···a ,
на множество действительных чисел x :
y(x) = a x .
Здесь a - фиксированное действительное число, которое называют основанием показательной функции .
Показательную функцию с основанием a также называют экспонентой по основанию a .

Обобщение выполняется следующим образом.
При натуральном x = 1, 2, 3,... , показательная функция является произведением x множителей:
.
При этом она обладает свойствами (1.5-8) (), которые следуют из правил умножения чисел. При нулевом и отрицательных значениях целых чисел , показательную функцию определяют по формулам (1.9-10). При дробных значениях x = m/n рациональных чисел, , ее определяют по формуле(1.11). Для действительных , показательную функцию определяют как предел последовательности:
,
где - произвольная последовательность рациональных чисел, сходящаяся к x : .
При таком определении, показательная функция определена для всех , и удовлетворяет свойствам (1.5-8), как и для натуральных x .

Строгая математическая формулировка определения показательной функции и доказательство ее свойств приводится на странице «Определение и доказательство свойств показательной функции ».

Свойства показательной функции

Показательная функция y = a x , имеет следующие свойства на множестве действительных чисел () :
(1.1) определена и непрерывна, при , для всех ;
(1.2) при a ≠ 1 имеет множество значений ;
(1.3) строго возрастает при , строго убывает при ,
является постоянной при ;
(1.4) при ;
при ;
(1.5) ;
(1.6) ;
(1.7) ;
(1.8) ;
(1.9) ;
(1.10) ;
(1.11) , .

Другие полезные формулы.
.
Формула преобразования к показательной функции с другим основанием степени:

При b = e , получаем выражение показательной функции через экспоненту:

Частные значения

, , , , .

На рисунке представлены графики показательной функции
y(x) = a x
для четырех значений основания степени : a = 2 , a = 8 , a = 1/2 и a = 1/8 . Видно, что при a > 1 показательная функция монотонно возрастает. Чем больше основание степени a , тем более сильный рост. При 0 < a < 1 показательная функция монотонно убывает. Чем меньше показатель степени a , тем более сильное убывание.

Возрастание, убывание

Показательная функция, при является строго монотонной, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

y = a x , a > 1 y = a x , 0 < a < 1
Область определения - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений 0 < y < + ∞ 0 < y < + ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 нет нет
Точки пересечения с осью ординат, x = 0 y = 1 y = 1
+ ∞ 0
0 + ∞

Обратная функция

Обратной для показательной функции с основанием степени a является логарифм по основанию a .

Если , то
.
Если , то
.

Дифференцирование показательной функции

Для дифференцирования показательной функции, ее основание нужно привести к числу e , применить таблицу производных и правило дифференцирования сложной функции.

Для этого нужно использовать свойство логарифмов
и формулу из таблицы производных :
.

Пусть задана показательная функция:
.
Приводим ее к основанию e :

Применим правило дифференцирования сложной функции . Для этого вводим переменную

Тогда

Из таблице производных имеем (заменим переменную x на z ):
.
Поскольку - это постоянная, то производная z по x равна
.
По правилу дифференцирования сложной функции:
.

Производная показательной функции

.
Производная n-го порядка:
.
Вывод формул > > >

Пример дифференцирования показательной функции

Найти производную функции
y = 3 5 x

Решение

Выразим основание показательной функции через число e .
3 = e ln 3
Тогда
.
Вводим переменную
.
Тогда

Из таблицы производных находим:
.
Поскольку 5ln 3 - это постоянная, то производная z по x равна:
.
По правилу дифференцирования сложной функции имеем:
.

Ответ

Интеграл

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z :
f(z) = a z
где z = x + iy ; i 2 = - 1 .
Выразим комплексную постоянную a через модуль r и аргумент φ :
a = r e i φ
Тогда


.
Аргумент φ определен не однозначно. В общем виде
φ = φ 0 + 2 πn ,
где n - целое. Поэтому функция f(z) также не однозначна. Часто рассматривают ее главное значение
.

Разложение в ряд


.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Функция y=x^2 называется квадратичной функцией. Графиком квадратичной функции является парабола. Общий вид параболы представлен на рисунке ниже.

Квадратичная функция

Рис 1. Общий вид параболы

Как видно из графика, он симметричен относительно оси Оу. Ось Оу называется осью симметрии параболы. Это значит, что если провести на графике прямую параллельную оси Ох выше это оси. То она пересечет параболу в двух точках. Расстояние от этих точек до оси Оу будет одинаковым.

Ось симметрии разделяет график параболы как бы на две части. Эти части называются ветвями параболы. А точка параболы которая лежит на оси симметрии называется вершиной параболы. То есть ось симметрии проходит через вершину параболы. Координаты этой точки (0;0).

Основные свойства квадратичной функции

1. При х =0, у=0, и у>0 при х0

2. Минимальное значение квадратичная функция достигает в своей вершине. Ymin при x=0; Следует также заметить, что максимального значения у функции не существует.

3. Функция убывает на промежутке (-∞;0] и возрастает на промежутке .

Областью значений функции явл. промежуток [ 1; 3].

1. При x = -3, x =- 1, x = 1,5, х=4,5 значение функции равно нулю.

Значение аргумента, при котором значение функции равно нулю, называют нулем функции.

//т.е. для данной функции числа -3;-1;1,5; 4,5 являются нулями.

2. На промежутках [ 4,5; 3) и (1; 1,5) и (4,5;5,5] график функции f расположен над осью абсцисс, а на промежутках (-3; -1) и (1,5; 4,5) под осью абсцисс, это объясняется так -на промежутках [ 4,5; 3) и (1; 1,5) и (4,5;5,5] функция принимает положительные значения, а на промежутках (-3; -1) и (1,5; 4,5) отрицательные.

Каждый из указанных промежутков (там где функция принимает значения одного и того же знака) называют промежутком знакопостоянства функции f.//т.е. например, если взять промежуток (0; 3), то он не является промежутком знакопостоянства данной функции.

В математике принято при поиске промежутков знакопостоянства функции указывать промежутки максимальной длины. //Т.е. промежуток (2; 3) является промежутком знакопостоянства функции f, но в ответ следует включить промежуток [ 4,5; 3), содержащий промежуток (2; 3).

3. Если перемещаться по оси абсцисс от 4,5 до 2, то можно заметить, что график функции идет вниз, то есть значения функции уменьшаются. //В математике принято говорить, что на промежутке [ 4,5; 2] функция убывает.

С увеличением x от 2 до 0 график функции идет вверх, т.е. значения функции увеличиваются. //В математике принято говорить, что на промежутке [ 2; 0] функция возрастает.

Функцию f называют , если для любых двух значений аргумента x1 и x2 из этого промежутка таких, что x2 > x1, выполняется неравенство f (x2) > f (x1). // или Функцию называют возрастающей на некотором промежутке , если для любых значений аргумента из этого промежутка большему значению аргумента соответствует большее значение функции.//т.е. чем больше х, тем больше у.

Функцию f называют убывающей на некотором промежутке , если для любых двух значений аргумента x1 и x2 из этого промежутка таких, что x2 > x1, выполняется неравенство f(x2)убывающей на некотором промежутке, если для любых значений аргумента из этого промежутка большему значению аргумента соответствует меньшее значение функции. //т.е. чем больше х, тем меньше у.

Если функция возрастает на всей области определения, то ее называют возрастающей .

Если функция убывает на всей области определения, то ее называют убывающей .

Пример 1. график возрастающей и убывающей функций соотвественно.

Пример 2.

Определить явл. ли линейная функция f (x) = 3x + 5 возрастающей или убывающей?

Доказательство. Воспрользуемся определениями. Пусть х1 и x2 произвольные значения аргумента, причем x1 < x2., например х1=1, х2=7

Функции и их свойства

Функция - одно из важнейших математических понятий. Функцией называют такую зависимость переменной у от переменной х, при которой каждому значению переменной х соответствует единственное значение перемен­ной у.

Переменную х называют независимой переменной или аргументом. Переменную у называют зависимой переменной. Говорят также, что переменная у явля­ется функцией от переменной х. Значения зависи­мой переменной называют значениями функции.

Если зависимость переменной у от переменной х является функцией, то коротко это записывают так: y = f ( x ). (Читают: у равно f от х .) Символом f ( x ) обозначают значение функции, соответствую­щее значению аргумента, равному х .

Все значения независимой переменной образу­ют область определения функции . Все значения, которые принимает зависимая переменная, образу­ют область значений функции .

Если функция задана формулой и ее область оп­ределения не указана, то считают, что область оп­ределения функции состоит из всех значений аргу­мента, при которых формула имеет смысл.

Способы задания функции:

1.аналитический способ (функция задается с помощью математической формулы;

2.табличный способ (функция задается с помощью таблицы)

3.описательный способ (функция задается словесным описанием)

4.графический способ (функция задается с помощью графика).

Графиком функции называют множество всех точек координатной плоскос­ти, абсциссы которых равны значениям аргу­мента, а ординаты - соответствующим значениям функции.

ОСНОВНЫЕ СВОЙСТВА ФУНКЦИЙ

1. Нули функции

Нуль функции – такое значение аргумента, при котором значение функции равно нулю .

2. Промежутки знакопостоянства функции

Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.

3. Возрастание (убывание) функции.

Возрастающая в некотором промежутке функ­ция - функция, у которой большему значению аргу­мента из этого промежутка соответствует большее значение функции.

Функция у = f ( x ) назы­вается возрастающей на ин­тервале (а; b ), если для лю­бых x 1 и x 2 из этого интерва­ла таких, что x 1 < x 2 , спра­ведливо неравенство f ( x 1 )< f ( x 2 ).

Убывающая в некотором промежутке функ­ция - функция, у которой большему значению аргу­мента из этого промежутка соответствует меньшее значение функции.

Функция у = f ( x ) назы­вается убывающей на интер­вале (а; b ) , если для любых x 1 и x 2 из этого интервала таких, что x 1 < x 2 , справед­ливо неравенство f ( x 1 )> f ( x 2 ).

4. Четность (нечетность) функции

Четная функция - функция, у которой область определения симметрична относительно начала коор­динат и для любого х из области определения выпол­няется равенство f (- x ) = f ( x ) . График четной функ­ции симметричен относительно оси ординат.

Например, у = х 2 - четная функция.

Нечетная функция - функция, у которой об­ласть определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f (- x ) = - f (x ). График нечет­ной функции симметричен относительно начала координат.

Например: у = х 3 - нечетная функция .

Функция общего вида не является четной или нечетной (у = х 2 ).

Свойства некоторых функций и их графики

1. Линейной функцией называется функция вида , где k и b – числа.

Область определения линейной функции – множество R действительных чисел.

Графиком линейной функции у = kx + b ( k 0) является прямая проходящая через точку (0; b ) и параллельная прямой у = kx .

Прямая, не параллельная оси Оу, является графиком линейной функции.

Свойства линейной функции.

1. При k > 0 функция у = kx + b

2. При k < 0 функция у = kx + b убывающая в области определения.

y = kx + b ( k 0 ) является вся числовая прямая, т.е. множество R действительных чисел.

При k = 0 множество значений функции у = kx + b состоит из од­ного числа b .

3. При b = 0 и k = 0 функция не является ни четной, ни нечетной.

При k = 0 линейная функция имеет вид у = b и при b 0 она явля­ется четной.

При k = 0 и b = 0 линейная функция имеет вид у = 0 и являете одновременно четной и нечетной.

Графиком линейной функции у = b является прямая, проходящая через точку (0; b ) и параллельная оси Ох. Заметим, что при b = 0 график функции у = b совпадаете осью Ох .

5. При k > 0 имеем, что у > 0, если и у < 0, если . При k < 0 имеем, что у > 0, если и у < 0, если .

2. Функция y = x 2

R действитель­ных чисел.

Придавая переменной х несколько значений из области опреде­ления функции и вычисляя соответствующие значения у по формуле y = x 2 , изображаем график функции.

График функции y = x 2 называется параболой.

Свойства функции у = х 2 .

1. Если х = 0, то у = 0, т.е. парабола имеет с осями координат общую точку (0; 0) - начало координат.

2. Если х ≠ 0 , то у > 0, т.е. все точки параболы, кроме начала координат, лежат над осью абсцисс.

3. Множеством значений функции у = х 2 является промежуток функция у = х 2 убывает.

х

3.Фунуция

Область определения этой функции - промежуток функция y = | x | убывает.

7. Наименьшее значение функция принимает в точке х, оно равно 0. Наибольшего значения не существует.

6. Функция

Область определения функции: .

Область значений функции: .

График - гипербола.

1. Нули функции.

у ≠ 0, нулей нет.

2. Промежутки знакопостоянства,

Если k > 0, то у > 0 при х > 0; у < 0 при х < О.

Если k < 0, то у < 0 при х > 0; у > 0 при х < 0.

3. Промежутки возрастания и убывания.

Если k > 0, то функция убывает при .

Если k < 0, то функция возрастает при .

4. Четность (нечетность) функции.

Функция нечетная.

Квадратный трехчлен

Уравнение вида ax 2 + bx + c = 0, где a , b и с - некоторые числа, причем а≠ 0, называется квадратным.

В квадратном уравнении ax 2 + bx + c = 0 ко­эффициент а называется первым коэффициентом, b - вторым коэффициентам, с - свободным чле­ном.

Формула корней квадратного уравнения име­ет вид:

.

Выражение называется дискриминан­том квадратного уравнения и обозначается через D .

Если D = 0, то существует только одно чи­сло, удовлетворяющее уравнению ax 2 + bx + c = 0. Однако условились говорить, что в этом случае ква­дратное уравнение имеет два равных действитель­ных корня, а само число называют двукрат­ным корнем.

Если D < 0, то квадратное уравнение не имеет действительных корней.

Если D > 0, то квадратное уравнение имеет два различных действительных корня.

Пусть дано квадратное уравнение ax 2 + bx + c = 0. Так как а≠ 0, то, разделив обе части данного уравнения на а, получим уравнение . Полагая и , приходим к уравнению , в котором первый коэффициент равен 1. Такое уравнение называется приведенным.

Формула корней приведенного квадратного уравнения имеет вид:

.

Уравнения вида

а x 2 + bx = 0, ax 2 + с = 0, а x 2 = 0

называются неполными квадратными уравнениями. Неполные квадратные уравнения решаются разложением левой части уравнения на множители.

Теорема Виета .

Сумма корней квадратного уравнения равна взятому с противоположным зна­ком отношению второго коэффициента к первому, а произведение корней - отношению свободного члена к первому коэффициенту, т.е.

Обратная теорема.

Если сумма каких-нибудь двух чисел х 1 и х 2 равна , а их произ­ведение равно , то эти числа являются корнями квадратного уравнения ах 2 + b х + с = 0.

Функция вида ах 2 + b х + с называется квадратным трехчленом. Корни этой функции являются корнями соответствующего квадратного уравнения ах 2 + b х + с = 0.

Если дискриминант квадратного трехчлена больше нуля, то этот трехчлен можно представить в виде:

ах 2 + b х + с =а(х-х 1 )(х-х 2 )

где х 1 и х 2 - корни трехчлена

Если дискриминант квадратного трехчлена равен нулю, то этот трехчлен можно представить в виде:

ах 2 + b х + с =а(х-х 1 ) 2

где х 1 - корень трехчлена.

Например, 2 - 12х + 12 = 3(х - 2) 2 .

Уравнение вида ах 4 + b х 2 + с = 0 называет­ся биквадратным. С помощью замены переменной по формуле х 2 = y оно приводится к квадратному уравнению а y 2 + by + с = 0.

Квадратичная функция

Квадратичной функцией называется функция, которую можно записать формулой вида y = ax 2 + bx + c , где x – независимая переменная, a , b и c – некоторые числа, причем a 0.

Свойства функции и вид ее графика определяются, в основном, значениями коэффициента a и дискриминанта .

Свойства квадратичной функции

Область определения: R ;

Область значений:

при а > 0 [- D /(4 a ); ∞)

при а < 0 (-∞; - D /(4 a )];

Четность, нечетность:

при b = 0 функция четная

при b 0 функция не является ни четной, ни нечетной

при D > 0 два нуля: ,

при D = 0 один нуль:

при D < 0 нулей нет

Промежутки знакопостоянства:

если, а > 0, D > 0, то

если, а > 0, D = 0, то

e сли а > 0, D < 0, то

если а < 0, D > 0, то

если а < 0, D = 0, то

если а < 0, D < 0, то

- Промежутки монотонности

при а > 0

при а < 0

Графиком квадратичной функции является парабола – кривая, симметричная относительно прямой , проходящей через вершину параболы (вершиной параболы называется точка пересечения параболы с осью симметрии).

Чтобы построить график квадратичной функции, нужно:

1) найти координаты вершины параболы и отметить ее в ко­ординатной плоскости;

2) построить еще несколько точек, принадлежащих пара­боле;

3) соединить отмеченные точки плавной линией.

Координаты вершины параболы определяются по формулам:

; .

Преобразование графиков функции

1. Растяжение графика у = х 2 вдоль оси у в |а| раз (при |а| < 1 - это сжатие в 1/ |а| раз).

Если, а < 0, произвести, кроме того, зеркальное отражение графика отно­сительно оси х (ветви параболы будут направлены вниз).

Результат: график функции у = ах 2 .

2. Параллельный перенос графика функ­ции у = ах 2 вдоль оси х на | m | (вправо при

m > 0 и влево при т < 0).

Результат: график функции у = а(х - т) 2 .

3. Параллельный перенос графика функ­ции вдоль оси у на | n | (вверх при п > 0 и вниз при п < 0).

Результат: график функции у = а(х - т) 2 + п.

Квадратичные неравенства

Неравенства вида ах 2 + b х + с > 0 и ах 2 + bх + с < 0, где х - переменная, a , b и с - некоторые числа, причем, а≠ 0, называют неравенствами второй степе­ни с одной переменной.

Решение неравенства второй степени с одной пе­ременной можно рассматривать как нахождение промежутков, в которых соответствующая квадра­тичная функция принимает положительные или от­рицательные значения.

Для решения неравенств вида ах 2 + bх + с > 0 и ах 2 + bх + с < 0 поступают следующим образом:

1) находят дискриминант квадратного трехчлена и выясня­ют, имеет ли трехчлен корни;

2) если трехчлен имеет корни, то отмечают их на оси х и че­рез отмеченные точки проводят схематически параболу, вет­ви которой направлены вверх при а > 0 или вниз при а < 0; если трехчлен не имеет корней, то схематически изобража­ют параболу, расположенную в верхней полуплоскости при а > 0 или в нижней при а < 0;

3) находят на оси х промежутки, для которых точки парабо­лы расположены выше оси х (если решают неравенство ах 2 + bх + с > 0) или ниже оси х (если решают неравенство ах 2 + bх + с < 0).

Пример:

Решим неравенство .

Рассмотрим функцию

Ее графиком является парабола, ветви которой направлены вниз (т. к. ).

Выясним, как расположен график относительно оси х. Решим для этого уравнение . Получим, что х = 4. Уравнение имеет единственный корень. Значит, парабола касается оси х.

Изобразив схематически параболу, най­дем, что функция принимает отрицательные значе­ния при любом х, кроме 4.

Ответ можно записать так: х - любое число, не равное 4.

Решение неравенств методом интервалов

схема решения

1. Найти нули функции, стоящей в левой части неравенства.

2. Отметить положение нулей на числовой оси и определить их кратность (если k i четное, то нуль четной кратности, если k i нечетное - то нечетной).

3. Найти знаки функции в промежутках между ее нулями, на­чиная с крайнего правого промежутка: в этом промежутке функция в левой части неравенства всегда положительна для приведенного вида неравенств. При переходе справа налево через нуль функции от одного промежутка к сосед­нему следует учитывать:

если нуль нечетной кратности, знак функции изменяется,

если нуль четной кратности, знак функции сохраняется.

4. Записать ответ.

Пример:

(х + 6) (х + 1) (х - 4) < 0.

Найден нули функции. Они равны: х 1 = -6; х 2 = -1; х 3 = 4.

Отметим на координатной прямой нули функции f ( x ) = (х + 6) (х + 1) (х - 4).

Найдем знаки этой функции в каждом из промежутков (-∞; -6), (-6; -1), (-1; 4) и

Из рисунка видно, что множеством решений неравенства является объединение промежутков (-∞; -6) и (-1; 4).

Ответ: (-∞ ; -6) и (-1; 4).

Рассмотренный способ решения неравенств на­зывают методом интервалов.

Нули функции
Нулём функции называется то значение х , при котором функция обращается в 0, то есть f(x)=0.

Нули – это точки пересечения графика функции с осью Ох.

Четность функции
Функция называется чётной, если для любого х из области определения выполняется равенство f(-x) = f(x)

Четная функция симметрична относительно оси Оу

Нечетность функции
Функция называется нечётной, если для любого х из области определения выполняется равенство f(-x) = -f(x).

Нечетная функция симметрична относительно начала координат.
Функция которая не является ни чётной,ни нечётной называется функцией общего вида.

Возрастание функции
Функция f(x) называется возрастающей, если большему значению аргумента соответствует большее значение функции, т.е.

Убывание функции
Функция f(x) называется убывающей, если большему значению аргумента соответствует меньшее значение функции, т.е.

Промежутки, на которых функция либо только убывает, либо только возрастает, называются промежутками монотонности . Функция f(x) имеет 3 промежутка монотонности:

Находят промежутки монотонности с помощью сервиса Интервалы возрастания и убывания функции

Локальный максимум
Точка х 0 называется точкой локального максимума, если для любого х из окрестности точки х 0 выполняется неравенство: f(x 0) > f(x)

Локальный минимум
Точка х 0 называется точкой локального минимума, если для любого х из окрестности точки х 0 выполняется неравенство: f(x 0) < f(x).

Точки локального максимума и точки локального минимума называются точками локального экстремума.

точки локального экстремума.

Периодичность функции
Функция f(x) называется периодичной, с периодом Т , если для любого х выполняется равенство f(x+T) = f(x) .

Промежутки знакопостоянства
Промежутки, на которых функция либо только положительна, либо только отрицательна, называются промежутками знакопостоянства.

Непрерывность функции
Функция f(x) называется непрерывной в точке x 0 , если предел функции при x → x 0 равен значению функции в этой точке, т.е. .

Точки разрыва
Точки, в которых нарушено условие непрерывности называются точками разрыва функции.

x 0 - точка разрыва.

Общая схема для построения графиков функций

1. Найти область определения функции D(y).

2. Найти точки пересечения графика функций с осями координат.

3. Исследовать функцию на четность или нечетность.

4. Исследовать функцию на периодичность.

5. Найти промежутки монотонности и точки экстремума функции.

6. Найти промежутки выпуклости и точки перегиба функции.

7. Найти асимптоты функции.

8. По результатам исследования построить график.

Пример: Исследовать функцию и построить ее график: y = x 3 – 3x

1) Функция определена на всей числовой оси, т. е. ее область определения D(y) = (-∞; +∞).

2) Найдем точки пересечения с осями координат:

с осью ОХ: решим уравнение x 3 – 3x = 0

с осью ОY: y(0) = 0 3 – 3*0 = 0

3) Выясним, не является ли функция четной или нечетной:

y(-x) = (-x) 3 – 3(-x) = -x 3 + 3x = - (x 3 – 3x) = -y(x)

Отсюда следует, что функция является нечетной.

4) Функция непериодична.

5) Найдем промежутки монотонности и точки экстремума функции: y’ = 3x 2 - 3.

Критические точки: 3x 2 – 3 = 0, x 2 =1, x= ±1.

y(-1) = (-1) 3 – 3(-1) = 2

y(1) = 1 3 – 3*1 = -2

6) Найдем промежутки выпуклости и точки перегиба функции: y’’ = 6x

Критические точки: 6x = 0, x = 0.

y(0) = 0 3 – 3*0 = 0

7) Функция непрерывна, асимптот у нее нет.

8) По результатам исследования построим график функции.