Биографии Характеристики Анализ

Матрицы как решать примеры. Хосин Канри

1-й курс, высшая математика, изучаем матрицы и основные действия над ними. Здесь мы систематизируем основные операции, которые можно проводить с матрицами. С чего начать знакомство с матрицами? Конечно, с самого простого - определений, основных понятий и простейших операций. Заверяем, матрицы поймут все, кто уделит им хотя бы немного времени!

Определение матрицы

Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.

Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A , матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n , где m – количество строк, а n – количество столбцов.

Элементы, для которых i=j (a11, a22, .. ) образуют главную диагональ матрицы, и называются диагональными.

Что можно делать с матрицами? Складывать/вычитать , умножать на число , умножать между собой , транспонировать . Теперь обо всех этих основных операциях над матрицами по порядку.

Операции сложения и вычитания матриц

Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы . Приведем пример. Выполним сложение двух матриц A и В размером два на два.

Вычитание выполняется по аналогии, только с противоположным знаком.

На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:

Операция умножения матриц

Перемножить между собой удастся не все матрицы. Например, у нас есть две матрицы - A и B. Их можно умножить друг на друга только в том случае, если число столбцов матрицы А равно числу строк матрицы В. При этом каждый элемент получившейся матрицы, стоящий в i-ой строке и j-м столбце, будет равен сумме произведений соответствующих элементов в i-й строке первого множителя и j-м столбце второго . Чтобы понять этот алгоритм, запишем, как умножаются две квадратные матрицы:

И пример с реальными числами. Умножим матрицы:

Операция транспонирования матрицы

Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:

Определитель матрицы

Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!

Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.

Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.

А если матрица три на три? Тут уже посложнее, но справиться можно.

Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

К счастью, вычислять определители матриц больших размеров на практике приходится редко.

Здесь мы рассмотрели основные операции над матрицами. Конечно, в реальной жизни можно ни разу так и не встретить даже намека на матричную систему уравнений или же наоборот - столкнуться с гораздо более сложными случаями, когда придется действительно поломать голову. Именно для таких случаев и существует профессиональный студенческий сервис . Обращайтесь за помощью, получайте качественное и подробное решение, наслаждайтесь успехами в учебе и свободным временем.

Матричным уравнением называется уравнение вида

A X = B

X A = B ,

где A и B - известные матрицы, X - неизвестная матрица, которую требуется найти.

Как решить матричное уравнение в первом случае? Для того, чтобы решить матричное уравнение вида A X = B , обе его части следует умножить на обратную к A матрицу слева:

По определению обратной матрицы, произведение обратной матрицы на данную исходную матрицу равно единичной матрице: , поэтому

.

Так как E - единичная матрица, то E X = X . В результате получим, что неизвестная матрица X равна произведению матрицы, обратной к матрице A , слева, на матрицу B :

Как решить матричное уравнение во втором случае? Если дано уравнение

X A = B ,

то есть такое, в котором в произведении неизвестной матрицы X и известной матрицы A матрица A находится справа, то нужно действовать аналогично, но меняя направление умножения на матрицу, обратную матрице A , и умножать матрицу B на неё справа:

,

Как видим, очень важно, с какой стороны умножать на обратную матрицу, так как . Обратная к A матрица умножается на матрицу B с той стороны, с которой матрица A умножается на неизвестную матрицу X . То есть с той стороны, где в произведении с неизвестной матрицей находится матрица A .

Как решить матричное уравнение в третьем случае? Встречаются случаи, когда в левой части уравнения неизвестная матрица X находится в середине произведения трёх матриц. Тогда известную матрицу из правой части уравнения следует умножить слева на матрицу, обратную той, которая в упомянутом выше произведении трёх матриц была слева, и справа на матрицу, обратную той матрице, которая располагалась справа. Таким образом, решением матричного уравнения

A X B = C ,

является

.

Решение матричных уравнений: примеры

Пример 1. Решить матричное уравнение

.

A X = B A и неизвестной матрицы X матрица A B A A .

A :

.

A :

.

A :

Теперь у нас есть всё, чтобы найти матрицу, обратную матрице A :

.

Наконец, находим неизвестную матрицу:

Решить матричное уравнение самостоятельно, а затем посмотреть решение

Пример 3. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид X A = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A B на матрицу, обратную матрице A A .

Сначала найдём определитель матрицы A :

.

Найдём алгебраические дополнения матрицы A :

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

A :

.

Находим неизвестную матрицу:

До сих пор мы решали уравнения с матрицами второго порядка, а теперь настала очередь матриц третьего порядка.

Пример 4. Решить матричное уравнение

.

Решение. Это уравнение первого вида: A X = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A находится слева. Поэтому решение следует искать в виде , то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A слева. Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

Найдём алгебраические дополнения матрицы A :

Составим матрицу алгебраических дополнений:

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

.

Находим матрицу, обратную матрице A , и делаем это легко, так как определитель матрицы A равен единице:

.

Находим неизвестную матрицу:

Пример 5. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид X A = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A находится справа. Поэтому решение следует искать в виде , то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A справа. Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

Найдём алгебраические дополнения матрицы A :

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A .

ОПРЕДЕЛЕНИЕ МАТРИЦЫ. ВИДЫ МАТРИЦ

Матрицей размером m ×n называется совокупность m·n чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов. Эту таблицу обычно заключают в круглые скобки. Например, матрица может иметь вид:

Для краткости матрицу можно обозначать одной заглавной буквой, например, А или В .

В общем виде матрицу размером m ×n записывают так

.

Числа, составляющие матрицу, называются элементами матрицы . Элементы матрицы удобно снабжать двумя индексами a ij : первый указывает номер строки, а второй – номер столбца. Например, a 23 – элемент стоит во 2-ой строке, 3-м столбце.

Если в матрице число строк равно числу столбцов, то матрица называется квадратной , причём число ее строк или столбцов называется порядком матрицы. В приведённых выше примерах квадратными являются вторая матрица – её порядок равен 3, и четвёртая матрица – её порядок 1.

Матрица, в которой число строк не равно числу столбцов, называется прямоугольной . В примерах это первая матрица и третья.

Различаются также матрицы, имеющие только одну строку или один столбец.

Матрица, у которой всего одна строка , называется матрицей – строкой (или строковой), а матрица, у которой всего один столбец, матрицей – столбцом .

Матрица, все элементы которой равны нулю, называется нулевой и обозначается (0), или просто 0. Например,

.

Главной диагональю квадратной матрицы назовём диагональ, идущую из левого верхнего в правый нижний угол.

Квадратная матрица, у которой все элементы, лежащие ниже главной диагонали, равны нулю, называется треугольной матрицей.

.

Квадратная матрица, у которой все элементы, кроме, быть может, стоящих на главной диагонали, равны нулю, называется диагональной матрицей. Например, или .

Диагональная матрица, у которой все диагональные элементы равны единице, называется единичной матрицей и обозначается буквой E. Например, единичная матрица 3-го порядка имеет вид .

ДЕЙСТВИЯ НАД МАТРИЦАМИ

Равенство матриц . Две матрицы A и B называются равными, если они имеют одинаковое число строк и столбцов и их соответствующие элементы равны a ij = b ij . Так если и , то A=B , если a 11 = b 11 , a 12 = b 12 , a 21 = b 21 и a 22 = b 22 .

Транспонирование . Рассмотрим произвольную матрицу A из m строк и n столбцов. Ей можно сопоставить такую матрицу B из n строк и m столбцов, у которой каждая строка является столбцом матрицы A с тем же номером (следовательно, каждый столбец является строкой матрицы A с тем же номером). Итак, если , то .

Эту матрицу B называют транспонированной матрицей A , а переход от A к B транспонированием .

Таким образом, транспонирование – это перемена ролями строк и столбцов матрицы. Матрицу, транспонированную к матрице A , обычно обозначают A T .

Связь между матрицей A и её транспонированной можно записать в виде .

Например. Найти матрицу транспонированную данной.

Сложение матриц. Пусть матрицы A и B состоят из одинакового числа строк и одинакового числа столбцов, т.е. имеют одинаковые размеры . Тогда для того, чтобы сложить матрицы A и B нужно к элементам матрицы A прибавить элементы матрицы B , стоящие на тех же местах. Таким образом, суммой двух матриц A и B называется матрица C , которая определяется по правилу, например,

Примеры. Найти сумму матриц:

Легко проверить, что сложение матриц подчиняется следующим законам: коммутативному A+B=B+A и ассоциативному (A+B )+C =A +(B+C ).

Умножение матрицы на число. Для того чтобы умножить матрицу A на число k нужно каждый элемент матрицы A умножить на это число. Таким образом, произведение матрицы A на число k есть новая матрица, которая определяется по правилу или .

Для любых чисел a и b и матриц A и B выполняются равенства:

Примеры.

Умножение матриц. Эта операция осуществляется по своеобразному закону. Прежде всего, заметим, что размеры матриц–сомножителей должны быть согласованы. Перемножать можно только те матрицы, у которых число столбцов первой матрицы совпадает с числом строк второй матрицы (т.е. длина строки первой равна высоте столбца второй). Произведением матрицы A не матрицу B называется новая матрица C=AB , элементы которой составляются следующим образом:

Таким образом, например, чтобы получить у произведения (т.е. в матрице C ) элемент, стоящий в 1-ой строке и 3-м столбце c 13 , нужно в 1-ой матрице взять 1-ую строку, во 2-ой – 3-й столбец, и затем элементы строки умножить на соответствующие элементы столбца и полученные произведения сложить. И другие элементы матрицы-произведения получаются с помощью аналогичного произведения строк первой матрицы на столбцы второй матрицы.

В общем случае, если мы умножаем матрицу A = (a ij) размера m ×n на матрицу B = (b ij) размера n ×p , то получим матрицу C размера m ×p , элементы которой вычисляются следующим образом: элемент c ij получается в результате произведения элементов i -ой строки матрицы A на соответствующие элементы j -го столбца матрицы B и их сложения.

Из этого правила следует, что всегда можно перемножать две квадратные матрицы одного порядка, в результате получим квадратную матрицу того же порядка. В частности, квадратную матрицу всегда можно умножить саму на себя, т.е. возвести в квадрат.

Другим важным случаем является умножение матрицы–строки на матрицу–столбец, причём ширина первой должна быть равна высоте второй, в результате получим матрицу первого порядка (т.е. один элемент). Действительно,

.

Примеры.

Таким образом, эти простые примеры показывают, что матрицы, вообще говоря, не перестановочны друг с другом, т.е. A∙B B∙A . Поэтому при умножении матриц нужно тщательно следить за порядком множителей.

Можно проверить, что умножение матриц подчиняется ассоциативному и дистрибутивному законам, т.е. (AB)C=A(BC) и (A+B)C=AC+BC .

Легко также проверить, что при умножении квадратной матрицы A на единичную матрицу E того же порядка вновь получим матрицу A , причём AE=EA=A .

Можно отметить следующий любопытный факт. Как известно произведение 2-х отличных от нуля чисел не равно 0. Для матриц это может не иметь места, т.е. произведение 2-х не нулевых матриц может оказаться равным нулевой матрице.

Например , если , то

.

ПОНЯТИЕ ОПРЕДЕЛИТЕЛЕЙ

Пусть дана матрица второго порядка – квадратная матрица, состоящая из двух строк и двух столбцов .

Определителем второго порядка , соответствующим данной матрице, называется число, получаемое следующим образом: a 11 a 22 – a 12 a 21 .

Определитель обозначается символом .

Итак, для того чтобы найти определитель второго порядка нужно из произведения элементов главной диагонали вычесть произведение элементов по второй диагонали.

Примеры. Вычислить определители второго порядка.

Аналогично можно рассмотреть матрицу третьего порядка и соответствующий ей определитель.

Определителем третьего порядка , соответствующим данной квадратной матрице третьего порядка, называется число, обозначаемое и получаемое следующим образом:

.

Таким образом, эта формула даёт разложение определителя третьего порядка по элементам первой строки a 11 , a 12 , a 13 и сводит вычисление определителя третьего порядка к вычислению определителей второго порядка.

Примеры. Вычислить определитель третьего порядка.


Аналогично можно ввести понятия определителей четвёртого, пятого и т.д. порядков, понижая их порядок разложением по элементам 1-ой строки, при этом знаки "+" и "–" у слагаемых чередуются.

Итак, в отличие от матрицы, которая представляют собой таблицу чисел, определитель это число, которое определённым образом ставится в соответствие матрице.

, 2008.

Это первое в России практическое пособие по внедрению Хосин канри – одной из наиболее эффективных систем разработки стратегии и развертывания планов внутри компании. Разработать стратегию компании непросто. Но еще сложнее ее реализовать. Ведь для этого необходимо трансформировать ее в конкретные оперативные планы отдельных сотрудников. Как это сделать? Toyota, Bridgestone и Komatsu используют технику Хосин канри. А эта книга – первое в нашей стране практическое руководство по внедрению этой концепции. Книга сопровождается дополнительными материалами в электронном виде. Материалы содержат пустые таблицы, документы и инструкции к их заполнению, которые потребуются хосин-командам при работе. Все материалы размещены на сайте www.icss.ac.ru/books на странице книги «Хосин канри: как заставить стратегию работать».

Что такое хосин канри

Хосин канри для организации может означать многое. Это и метод стратегического планирования, и инструмент управления комплексными проектами, и система управления качеством, позволяющая учитывать требования и пожелания потребителя при разработке новых продуктов, и операционная система компании, обеспечивающая надежный рост прибыли. Это также метод управления на межфункциональном уровне и интеграции цепи поставок в процессе бережливого производства. Но прежде всего хосин канри – это метод организационного обучения и система создания конкурентоспособных ресурсов .

На японском языке иероглифы в слове «канри» означают управление , контроль . Иероглифы в слове «хосин» можно перевести как направление и сияющая игла , а все вместе – как компас . Как правило, эти иероглифы переводятся как политика , поэтому вы часто можете встретить такой перевод хосин канри: управления политикой или развертывания политики. У большинства англоязычных читателей слово политика немедленно вызывает ассоциации с бюрократическим миром, который не имеет ничего общего с организационным обучением. Поэтому в рамках данного руководства мы будем использовать оригинальный японский термин – хосин канри.

Основы хосин канри - встроенные эксперименты, Х-матрица и формирование команд

В этой главе мы исследуем основы хосин канри. В таблице 1-1 (часть 1 , часть 2) приведена «дорожная карта» - поэтапная схема хосин канри (Исследуй - Планируй - Делай - Проверяй - Воздействуй ), которой будут придерживаться различные рабочие группы (или команды), выполняя практические задания по внедрению хосин канри. Как говорилось во введении, данное пособие построено в соответствии с циклом PDCA (Планируй - Делай - Проверяй - Воздействуй ) и логикой поэтапного процесса хосин канри. На этапе «Исследуй» команда выполняет определенную работу, прежде чем приступать к реализации цикла PDCA в рамках хосин канри. На этапе «Планируй» разрабатывается стратегия или последовательность эксперимента, подбираются и формируются команды, а также распределяются обязанности между четырьмя командами, осуществляющими планирование и внедрение. На этапе «Делай» в процессе управления проектами и организации тренингов для персонала происходят подготовка лидеров и внедрение разработанного плана. Этап «Проверяй» предполагает организацию регулярного контроля и оценки. А этап «Воздействуй» направлен на то, чтобы сделать хосин канри частью корпоративной культуры посредством стандартизации и непрерывного совершенствования.

Поэтапная схема хосин канри также указывает на необходимость сформировать команды специалистов, каждая из которых должна отвечать за определенные эксперименты. Таких команд или рабочих групп понадобится несколько. Первая команда, которую вам необходимо создать, - это хосин-команда. Как правило, хосин-команда - это управленческая команда, отвечающая за определенную бизнес-единицу (целую компанию или одно подразделение, филиал, бренд, товарную линию, департамент, рабочий участок или поток ценности). Для удобства изложения мы будем считать управленческую команду командой по управлению хосин, или хосин-командой. Далее в этой главе вы узнаете, как провести отбор участников в хосин-команду.

Вслед за компанией Cybernautx , чей пример мы используем для иллюстрации процесса хосин, будем считать, что управленческая команда отвечает за поток ценности в целом. На самом деле вы можете выбрать любую точку отсчета, соответствующую вашим условиям. Например, командой хосин могут быть партнеры частной акционерной компании, формирующие стратегию увеличения стоимости ее холдингов. Или командой хосин могут быть, как описано в книге «Внедрение системы бережливого менеджмента», директор завода и его непосредственные подчиненные, разрабатывающие программу внедрения TPM (всеобщего ухода за оборудованием). Или же это может быть руководитель отдела с его непосредственными подчиненными, формирующие стратегию усовершенствования отдела. С чего бы вы ни решили начать процесс хосин, в управляющей хосин-команде должна присутствовать основная заинтересованная сторона - представители того бизнес-подразделения, в котором будет разворачиваться хосин или реализовываться формируемая стратегия. Это означает, что команда должна быть многофункциональной (то есть включать в себя представителей различных функциональных подразделений) или - как в примере потока ценности, показанном нами в кейс-исследовании компании Cybernautx, - межорганизационной (то есть включать представителей различных компаний).

Прежде чем формировать команду, компании потребуется исследовать свою бизнес-

среду, чтобы определить проблему или задачу, на решение которой должна быть направлена стратегия. Провести необходимое исследование может хосин-команда или, по вашему выбору, эта функция может быть делегирована специалистам-экспертам. (В нашей книге исследованиями занимается хосин-команда.) После проведенного анализа хосин-команда разрабатывает стратегию и создает Х-матрицу, чтобы компания могла представить свою бизнес-стратегию в экспериментальном формате, включая все семь экспериментов хосин, для решения установленной проблемы или задачи. Разрабатывая стратегию, хосин-команда определяет все стратегически важные элементы, в том числе - первый из семи нижеописанных экспериментов хосин.

Семь экспериментов хосин канри

Конечный результат применения стратегии заранее никому не известен (и этим стратегия похожа на научную гипотезу ), особенно такой динамичной стратегии, которая предполагает совершенствование ваших методов ведения бизнеса. Чтобы узнать, что получится, вам придется ее внедрить. В этом научно-исследовательском контексте ваши планы становятся «экспериментами». Данные «эксперименты», проводимые в контролируемых условиях стандартизированных рабочих процессов , позволяют вовлечь в процесс хосин канри каждого менеджера и каждого работника для проверки гипотезы, т.е. целесообразности избранной вашей компанией стратегии.

Эксперименты хосин канри проводятся сетью рабочих групп, в состав которых входят топ-менеджеры, менеджеры среднего звена и - в обязательном порядке на этапе «Делай» - весь рабочий персонал. У каждого эксперимента цикла PDCA в системе хосин канри - своя задача, которая зависит от продолжительности данного эксперимента и того, как он связан с общими целями организации. В целом чем длиннее цикл, тем выше уровень ответственности в управленческой иерархии. Более того, процесс хосин канри бесконечен. Циклы стратегических улучшений повторяются с периодичностью раз в год. У компаний на начальной стадии преобразований, которые только приступили к внедрению бережливого производства или шести сигм, выполнение первого цикла может занять до 18 месяцев. А компании, движущиеся по этому пути с более высокой скоростью, могут успеть повторить цикл дважды за год, чтобы ускорить процесс организационного обучения.

Как говорилось выше, хосин-команда отвечает за реализацию первых трех экспериментов в системе хосин. На этапе «Планируй» хосин-команда поможет сформировать и распределить обязанности по последним четырем экспериментам между командами трех других типов, каждая из которых будет иметь собственный набор задач по каждому циклу «Планируй - Делай - Проверяй - Воздействуй» . Будет создано несколько тактических команд - приблизительно по одной на каждого члена хосин-команды, много команд оперативных и еще больше команд исполнителей. В финале этапа «Планируй» вы сможете вовлечь в процесс хосин каждого менеджера. В конечном итоге на этапе «Делай» за счет формирования команд исполнителей вы добьетесь участия в процессе хосин всего рабочего коллектива на всех существующих в вашей компании организационных уровнях.

Пусть имеется квадратная матрица n-го порядка

Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е — единичная матрица n-го порядка.

Единичная матрица — такая квадратная матрица, у которой все элементы по главной диагонали, проходящей от левого верхнего угла к правому нижнему углу, — единицы, а остальные — нули, например:

Обратная матрица может существовать только для квадратных матриц т.е. для тех матриц, у которых число строк и столбцов совпадают.

Теорема условия существования обратной матрицы

Для того чтобы матрица имела обратную матрицу необходимо и достаточно, чтобы она была невырожденной.

Матрица А = (А1, А2,...А n) называется невырожденной , если векторы-столбцы являются линейно независимыми. Число линейно независимых векторов-столбцов матрицы называется рангом матрицы . Поэтому можно сказать, что для того, чтобы существовала обратная матрица, необходимо и достаточно, чтобы ранг матрицы равнялся ее размерности, т.е. r = n.

Алгоритм нахождения обратной матрицы

  1. Записать в таблицу для решения систем уравнений методом Гаусса матрицу А и справа (на место правых частей уравнений) приписать к ней матрицу Е.
  2. Используя преобразования Жордана, привести матрицу А к матрице, состоящей из единичных столбцов; при этом необходимо одновременно преобразовать матрицу Е.
  3. Если необходимо, то переставить строки (уравнения) последней таблицы так, чтобы под матрицей А исходной таблицы получилась единичная матрица Е.
  4. Записать обратную матрицу А -1 , которая находится в последней таблице под матрицей Е исходной таблицы.
Пример 1

Для матрицы А найти обратную матрицу А -1

Решение: Записываем матрицу А и справа приписываем единичную матрицу Е. Используя преобразования Жордана, приводим матрицу А к единичной матрице Е. Вычисления приведены в таблице 31.1.

Проверим правильность вычислений умножением исходной матрицы А и обратной матрицы А -1 .

В результате умножения матриц получилась единичная матрица. Следовательно, вычисления произведены правильно.

Ответ:

Решение матричных уравнений

Матричные уравнения могут иметь вид:

АХ = В, ХА = В, АХВ = С,

где А,В,С — задаваемые матрицы, Х- искомая матрица.

Матричные уравнения решаются с помощью умножения уравнения на обратные матрицы.

Например, чтобы найти матрицу из уравнения , необходимо умножить это уравнение на слева.

Следовательно, чтобы найти решение уравнения , нужно найти обратную матрицу и умножить ее на матрицу , стоящие в правой части уравнения.

Аналогично решаются другие уравнения.

Пример 2

Решить уравнение АХ = В, если

Решение : Так как обратная матрица равняется (см. пример 1)

Матричный метод в экономическом анализе

Наряду с другими в находят применение также матричные методы . Эти методы базируются на линейной и векторно-матричной алгебре. Такие методы применяются для целей анализа сложных и многомерных экономических явлений. Чаще всего эти методы используются при необходимости сравнительной оценки функционирования организаций и их структурных подразделений.

В процессе применения матричных методов анализа можно выделить несколько этапов.

На первом этапе осуществляется формирование системы экономических показателей и на ее основе составляется матрица исходных данных , которая представляет собой таблицу, в которой по ее отдельным строкам показываются номера систем (i = 1,2,....,n) , а по вертикальным графам — номера показателей (j = 1,2,....,m) .

На втором этапе по каждой вертикальной графе выявляется наибольшее из имеющихся значений показателей, которое и принимается за единицу.

После этого все суммы, отраженные в данной графе делят на наибольшее значение и формируется матрица стандартизированных коэффициентов .

На третьем этапе все составные части матрицы возводят в квадрат. Если они имеют различную значимость, то каждому показателю матрицы присваивается определенный весовой коэффициент k . Величина последнего определяется экспертным путем.

На последнем, четвертом этапе найденные величины рейтинговых оценок R j группируются в порядке их увеличения или уменьшения.

Изложенные матричные методы следует использовать, например, при сравнительном анализе различных инвестиционных проектов, а также при оценке других экономических показателей деятельности организаций.