Биографии Характеристики Анализ

Методы регистрации заряженных частиц таблица. A

Методы регистрации заряженных частиц

В настоящее время хорошо установлено, что ядро атома имеет сложную структуру и состоит из протонов и нейтронов. Из рассмотрения явления радиоактивности следует, что ядра могут претерпевать существенные изменения. Всё это наводит на мысль, что нуклоны могут превращаться друг в друга и сама структура протонов, нейтронов и даже электронов может быть сложной. Встаёт вопрос о том, существуют ли какие-то кирпичики мироздания (их физики назвали элементарными частицами), из которых построено всё? Ответ оказался очень сложным, и сейчас ещё на него нет окончательного ответа. В настоящее время физикам известны сотни элементарных (или, как говорят, субъядерных) частиц. Изучением их занимаются учёные, работающие в области физики элементарных частиц. Каким же образом можно “увидеть’, зарегистрировать столь малые объекты, которые недоступны никакому микроскопу? для этого разработан целый ряд хитроумных, весьма тонких способов, которые позволяют не только их зарегистрировать, распознать, но и увидеть их взаимные превращения.

Рассмотрим только некоторые наиболее важные и широко используемые методы регистрации излучений. Элементарные частицы удаётся наблюдать благодаря тем следам, которые они оставляют при своем прохождении через вещество. Это связано с тем, что заряженные частицы вызывают ионизацию молекул на своём пути. нейтральные частицы, такие как нейтроны, следов не оставляют, но они могут обнаружить себя в момента спада на заряженные частицы или в момент столкновения с каким – либо ядром.


Основной частью приборов для регистрации ядерных излучений является элемент, воспринимающий излучения, - детектор излучения . Для этой цели используются счетчики разных типов, позволяющие зарегистрировать попавшую в него частицу в виде кратковременного электрического тока – импульса. Наиболее широкое применение имеют газоразрядные счетчики, работа которых основана на ионизирующем действии ядерного излучения. Постепенно их начинают вытеснять сцинтилляционные счетчики, действие которых основано на регистрации вспышек света, возникающих в некоторых веществах под ударами частиц.

Чтобы не только обнаружить ядерное излучение, но и измерить его интенсивность, недостаточно одного детектора излучения. Необходимы еще электронные устройства, подсчитывающие число электрических импульсов, то есть число попавших в счетчик частиц, и устройства, показывающие результат подсчета.

Слайд 2

Методы регистрации

1) Счетчик Гейгера 2) Камера Вильсона 3) Пузырьковая камера 4) Метод толстослойных фотоэмульсий

Слайд 3

Счетчик Гейгера

Счетчик Гейгера - один из важнейших приборов для автоматического счета частиц.

Слайд 4

Счетчик состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой металлической нити, идущей вдоль оси трубки (анод). Трубка заполняется газом, обычно аргоном. Заряженная частица (электрон, а-частица и т.д.), пролетая в газе, отрывает от атомов электроны и создает положительные ионы и свободные электроны. Электрическое поле между анодом и катодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Принцип действия Возникает лавина ионов, и ток через счетчик резко возрастает. При этом на нагрузочном резисторе Rобразуется импульс напряжения, который подается в регистрирующее устройство.

Слайд 5

Особенности

Для того чтобы счетчик мог регистрировать следующую попавшую в него частицу, лавинный разряд необходимо погасить. Это происходит автоматически. Счетчик регистрирует почти все попадающие в него электроны; что же касается γ-квантов, то он регистрирует приблизительно только один γ - квант из ста. Регистрация тяжелых частиц (например, α-частиц) затруднена, так как сложно сделать в счетчике достаточно тонкое «окошко», прозрачное для этих частиц.

Слайд 6

Камера Вильсона

В камере же Вильсона, созданной в 1912 г., быстрая заряженная частица оставляет след, который можно наблюдать непосредственно или сфотографировать. Этот прибор можно назвать «окном» в микромир, т. е. мир элементарных частиц и состоящих из них систем.

Слайд 7

Принцип действия

Камера Вильсона представляет собой герметически закрытый сосуд, заполненный парами воды или спирта, близкими к насыщению. При резком опускании поршня, вызванном уменьшением давления под поршнем, пар в камере расширяется. Вследствие этого происходит охлаждение, и пар становится пересыщенным. Это неустойчивое состояние пара: пар легко конденсируется. Центрами конденсации становятся ионы, которые образует в рабочем пространстве камеры пролетевшая частица. Если частица проникает в камеру непосредственно перед расширением или сразу после него, то на ее пути возникают капельки воды. Эти капельки образуют видимый след пролетевшей частицы - трек. Затем камера возвращается в исходное состояние и ионы удаляются электрическим полем. В зависимости от размеров камеры время восстановления рабочего режима колеблется от нескольких секунд до десятков минут.

Слайд 8

Особенности

По длине трека можно определить энергию частицы, а по числу капелек на единицу длины трека оценивается ее скорость. Чем длиннее трек частицы, тем больше ее энергия. А чем больше капелек воды образуется на единицу длины трека, тем меньше ее скорость. Частицы с большим зарядом оставляют трек большей толщены Камеру Вильсона можно поместить в однородное магнитное поле. Магнитное поле действует на движущуюся заряженную частицу с определенной силой. Эта сила искривляет траекторию частицы. Трек имеет тем большую кривизну, чем больше заряд частицы и чем меньше ее масса. По кривизне трека можно определить отношение заряда частицы ее массе.

Слайд 9

Пузырьковая камера

В 1952 американским ученым Д. Глейзером было предложено использовать дляобнаружения треков частиц перегретую жидкость.

Слайд 10

Принцип действия

В исходном состоянии жидкость в камере находится под высоким давлением, предохраняющим ее от закипания, несмотря на то что температура жидкости выше температуры кипения при атмосферном давлении. При резком понижении давления жидкость оказывается перегретой и в течение небольшого времени она будет находиться в неустойчивом состоянии. Заряженные частицы, пролетающие именно в это время, вызывают появление треков, состоящих из пузырьков пара. В качестве жидкостей используются главным образом жидкий водород и пропан.

Слайд 11

Особенности

Длительность рабочего цикла пузырьковой камеры невели­ка - около 0,1 с. Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества. Пробеги частиц вследствие этого оказываются достаточно короткими, и частицы даже больших энергий застревают в камере. Это позволяет наблюдать серию последовательных превращений частицы и вызываемые ею реакции.

Слайд 12

Метод толстослойных фотоэмульсий

Ионизирующее действие быстрых заряженных частиц на эмульсию фотопластинки позволило французскому физику А. Беккерелю открыть в 1896 г. радиоактивность. Метод был развит советскими физиками Л. В. Мысовским, А. П. Ждановым и др.

Слайд 13

Принцип действия

Фотоэмульсия содержит большое количество микроскопических кристалликов бромида серебра. Быстрая заряженная частица, пронизывая кристаллик, отрывает электроны от отдельных атомов брома. Цепочка таких кристалликов образует скрытое изображение. При проявлении в этих кристалликах восстанавливается металлическое серебро и цепочка зерен серебра образует трек частицы. По длине и толщине трека можно оценить энергию и массу частицы.

Слайд 14

Особенности

Из-за большой плотности фотоэмульсии треки получаются очень короткими (порядка 10-3 см для α-частиц, испускаемых радиоактив­ными элементами), но при фотографировании их можно увеличить. Преимущество фотоэмульсий состоит в том, что время экспозиции может быть сколь угодно большим. Это позволяет регистрировать редкие явления. Важно и то, что благо­даря большой тормозящей способности фотоэмульсий увеличивается число наблюдаемых интересных реакций между частицами и ядрами.

Посмотреть все слайды

Приборы для регистрации заряженных частиц называются детекторами. Существует два основных вида детекторов:

1) дискретные (счетные и определяющие энергию частиц): счетчик Гейгера, ионизационная камера и др.;

2) трековые (дающие возможность наблюдать и фотографировать следы (треки) частиц в рабочем объеме детектора): камера Вильсона, пузырьковая камера, толстослойные фотоэмульсии и др.

1. Газоразрядный счетчик Гейгера. Для регистрации электронов и \(~\gamma\)-квантов (фотонов) большой энергии используется счетчик Гейгера-Мюллера. Он состоит из стеклянной трубки (рис. 22.4), к внутренним стенкам которой прилегает катод К - тонкий металлический цилиндр; анодом А служит тонкая металлическая проволока, натянутая по оси счетчика. Трубка заполняется газом, обычно аргоном. Счетчик включается в регистрирующую схему. На корпус подается отрицательный потенциал, на нить - положительный. Последовательно счетчику включается резистор R, с которого сигнал подается к регистрирующему устройству.

Действие счетчика основано на ударной ионизации. Пусть в счетчик попала частица, создавшая на своем пути хотя бы одну пару: "ион + электрон". Электроны, двигаясь к аноду (нити), попадают в поле с нарастающей напряженностью (напряжение между А и K ~ 1600 В), их скорость стремительно возрастает, и на своем пути они создают ионную лавину (возникает ударная ионизация). Попав на нить, электроны снижают ее потенциал, вследствие чего по резистору R пойдет ток. На его концах возникает импульс напряжения, который и поступает в регистрационное устройство.

На резисторе происходит падение напряжения, потенциал анода уменьшается, и напряженность поля внутри счетчика убывает, вследствие чего уменьшается кинетическая энергия электронов. Разряд прекращается. Таким образом, резистор играет роль сопротивления, автоматически гасящего лавинный разряд. Положительные ионы стекают к катоду в течение \(~t \approx 10^{-4}\) с после начала разряда.

Счетчик Гейгера позволяет регистрировать 10 4 частиц в секунду. Он применяется в основном для регистрации электронов и \(~\gamma\)-квантов. Однако непосредственно \(~\gamma\)-кванты вследствие своей малой ионизирующей способности не регистрируются. Для их обнаружения внутреннюю стенку трубки покрывают материалом, из которого \(~\gamma\)-кванты выбивают электроны. При регистрации электронов эффективность счетчика 100 %, а при регистрации \(~\gamma\)-квантов - лишь около 1 %.

Регистрация тяжелых \(~\alpha\)-частиц затруднена, так как сложно сделать в счетчике достаточно тонкое "окошко", прозрачное для этих частиц.

2. Камера Вильсона.

В камере используется способность частиц больших энергий ионизировать атомы газа. Камера Вильсона (рис. 22.5) представляет собой цилиндрический сосуд с поршнем 1. Верхняя часть цилиндра сделана из прозрачного материала, в камеру вводится небольшое количество воды или спирта, для чего снизу сосуд покрыт слоем влажного бархата или сукна 2. Внутри камеры образуется смесь насыщенных паров и воздуха. При быстром опускании поршня 1 смесь адиабатически расширяется, что сопровождается понижением ее температуры. За счет охлаждения пар становится пересыщенным.

Если воздух очищен от пылинок, то конденсация пара в жидкость затруднена из-за отсутствия центров конденсации. Однако центрами конденсации могут служить и ионы. Поэтому если через камеру (впускают через окошко 3) пролетает заряженная частица, ионизирующая на своем пути молекулы, то на цепочке ионов происходит конденсация паров и траектория движения частицы внутри камеры благодаря осевшим маленьким капелькам жидкости становится видимой. Цепочка образовавшихся капель жидкости образует трек частицы. Тепловое движение молекул быстро размывает трек частиц, и траектории частиц видны отчетливо лишь около 0,1 с, что, однако, достаточно для фотографирования.

Вид трека на фотоснимке часто позволяет судить о природе частицы и величине ее энергии. Так, \(~\alpha\)-частицы оставляют сравнительно толстый сплошной след, протоны - более тонкий, а электроны - пунктирный (рис. 22.6). Появляющееся расщепление трека - "вилки" свидетельствует о происходящей реакции.

Чтобы подготовить камеру к действию и очистить ее от оставшихся ионов, внутри нее создают электрическое поле, притягивающее ионы к электродам, где они нейтрализуются.

Советские физики П. Л. Капица и Д. В. Скобельцын предложили размещать камеру в магнитном поле, под действием которого траектории частиц искривляются в ту или иную сторону в зависимости от знака заряда. По радиусу кривизны траектории и интенсивности треков определяют энергию и массу частицы (удельный заряд).

3. Пузырьковая камера. В настоящее время в научных исследованиях используется пузырьковая камера. Рабочий объем в пузырьковой камере заполнен жидкостью под высоким давлением, предохраняющим ее от закипания, несмотря на то, что температура жидкости выше температуры кипения при атмосферном давлении. При резком понижении давления жидкость оказывается перегретой и в течение небольшого времени находится в неустойчивом состоянии. Если через такую жидкость пролетит заряженная частица, то вдоль ее траектории жидкость закипит, поскольку образовавшиеся в жидкости ионы служат центрами парообразования. При этом траектория частицы отмечается цепочкой пузырьков пара, т.е. делается видимой. В качестве жидкостей используются главным образом жидкий водород и пропан С 3 Н 3 . Длительность рабочего цикла порядка 0,1 с.

Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества, вследствие чего частица теряет больше энергии, чем в газе. Пробеги частиц оказываются более короткими, и частицы даже больших энергий застревают в камере. Это позволяет гораздо точнее определить направление движения частицы и ее энергию, наблюдать серию последовательных превращений частицы и вызываемые ею реакции.

4. Метод толстослойных фотоэмульсий разработан Л. В. Мысовским и А. П. Ждановым.

Он основан на использовании почернения фотографического слоя под действием проходящих через фотоэмульсию быстрых заряженных частиц. Такая частица вызывает распад молекул бромистого серебра на ионы Ag + и Вг - и почернение фотоэмульсии вдоль траектории движения, образуя скрытое изображение. При проявлении в этих кристалликах восстанавливается металлическое серебро и образуется трек частицы. По длине и толщине трека судят об энергии и массе частицы.

Для изучения следов частиц, обладающих очень высокой энергией и дающих длинные следы, большое количество пластинок складывается в стопу.

Существенным преимуществом метода фотоэмульсий, помимо простоты применения, является то, что он дает неисчезающий след частицы, который затем может быть тщательно изучен. Это привело к широкому применению данного метода при исследовании новых элементарных частиц. Этим методом с добавлением к эмульсии соединений бора или лития могут быть изучены следы нейтронов, которые в результате реакций с ядрами бора и лития создают \(~\alpha\)-частицы, вызывающие почернение в слое ядерной эмульсии. По следам \(~\alpha\)-частиц делаются выводы о скорости и энергиях нейтронов, вызвавших появление \(~\alpha\)-частиц.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 618-621.

Элементарные частицы удается наблюдать благодаря тем следам, которые они оставляют при прохождении через вещество. Характер следов позволяет судить о знаке заряда частицы, её энергии, импульсе. Заряженные частицы вызывают ионизацию молекул на своем пути. Нейтральные частицы на своем пути следов не оставляют, но они могут обнаружить себя в момент распада на заряженные частицы или в момент столкновения с каким-либо ядром. Следовательно, нейтральные частицы также обнаруживаются по ионизации, вызванной порожденными или заряженными частицами.

Газоразрядный счетчик Гейгера . Счетчик Гейгера – прибор для автоматического счета частиц. Счетчик состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод) и тонкой металлической нити, идущей по оси трубки (анод).

Трубка обычно заполняется инертным газом (аргоном). Действие прибора основано на ударной ионизации. Заряженная частица, пролетая в газе, соударяется с атомами, в результате чего возникают положительные ионы газа и электроны. Электрическое поле между катодом и анодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов и электронов и ток через счетчик резко возрастает. При этом на нагрузочном сопротивлении R образуется импульс напряжения, который подается на счетное устройство.

Счетчик Гейгера применяется в основном для регистрации электронов и -квантов. Регистрация тяжелых частиц (например -частиц) затруднена, так как сложно сделать в счетчике достаточно тонкое «окошко», прозрачное для этих частиц.

Камера Вильсона . В камере Вильсона, созданной в 1912г., заряженная частица оставляет след, который можно наблюдать непосредственно или фотографировать. Действие камеры основано на конденсации перенасыщенного пара на ионах с образованием капелек воды. Эти ионы создает вдоль своей траектории движущаяся заряженная частица. По длине следа (трека), оставленного частицей, можно определить энергию частицы, а по числу капелек на единицу длины трека оценить её скорость. Частицы с большим зарядом оставляют трек большей толщины.

Пузырьковая камера. В 1952г. американский ученый Д. Глейзер предложил использовать для обнаружения треков частиц перегретую жидкость. Пролетевшая через камеру ионизирующая частица вызывает бурное вскипание жидкости, вследствие чего след частицы оказывается обозначенным цепочкой пузырьков пара – образуется трек.

Эмульсионная камера. Советские физики Л.В. Мысовский и А.П. Жданов впервые применили для регистрации микрочастиц фотопластинки. Заряженные частицы оказывают на фотографическую эмульсию такое же действие, как и фотоны. Поэтому после проявления пластинки в эмульсии образуется видимый след (трек) пролетевшей частицы. Недостатком метода фотопластинок была малая толщина эмульсионного слоя, вследствие чего получались полностью лишь треки частиц, лежащих параллельно плоскости слоя.

В эмульсионных камерах облучению подвергаются толстые пачки, составленные из отдельных слоев фотоэмульсии. Этот метод назвали методом толстослойных фотоэмульсий.

В начале XX в. были разработаны методы исследования явлении атомной физики и созданы приборы, позволившие не только выяснить основные вопросы строения атомов, но и наблюдать превращения химических элементов.

Трудность создания таких приборов заключалась в том, что используемые в экспериментах заряженные частицы представляют собой ионизированные атомы каких-либо элементов или, например, электроны, и прибор должен регистрировать попадание в него лишь одной частицы или делать видимой траекторию ее движения.

В качестве одного из первых и простейших приборов для регистрации частиц был использован экран, покрытый люминесцирующим составом. В той точке экрана, куда попадает частица с достаточно большой энергией, возникает вспышка - сцинтилляция (от латинского «сцинтилляцио» - сверкание, вспышка).

Первый основной прибор для регистрации частиц был изобретен в 1908 г. Г. Гейгером. После того, как этот прибор был усовершенствован В. Мюллером, он мог подсчитывать число попадающих в него частиц. Действие счетчика Гейгера - Мюллер, а основано на том, что пролетающие через газ заряженные частицы ионизируют встречающиеся на их пути атомы газа: отрицательно заряженная частица, отталкивая электроны, выбивает их из атомов, а положительно заряженная частица притягивает электроны и вырывает их из атомов.

Счетчик состоит из полого металлического цилиндра, диаметром около 3 см (рис. 37.1), с окном из тонкого стекла или алюминия. По осп цилиндра проходит изолированная от стенок металлическая нить. Цилиндр (камера) заполняется разреженным газом, например, аргоном. Между стенками цилиндра и нитью создается напряжение порядка 1500 В, недостаточное для образования самостоятельного разряда. Нить заземляется через большое сопротивление R. При попадании в камеру частицы с большой энергией происходит ионизация атомов газа на пути этой частицы, и между стенками и нитью возникает разряд. Разрядный ток создает большое падение напряжения на сопротивлении R, и напряжение между нитью и стенками сильно уменьшается. Поэтому разряд быстро прекращается. После прекращения тока все напряжение вновь сосредоточивается между стенками камеры и нитью, и счетчик подготовлен к регистрации новой частицы. Напряжение с сопротивления R подается на вход усилительной лампы, в анодную цепь которой включается счетный механизм.

Способность частиц большой энергии ионизировать атомы газа используются и в одном из самых замечательных приборов современной физики - в камере Вильсона. В 1911 г. английский ученый Ч. Вильсон построил прибор, с помощью которого можно было видеть и фотографировать траектории заряженных частиц.

Камера Вильсона (рис. 37.2) состоит из цилиндра с поршнем; верхняя часть цилиндра сделана из прозрачного материала. В камеру вводится небольшое количество воды или спирта, и внутри нее образуется смесь паров и воздуха. При быстром опускании поршня смесь адиабатически расширяется и охлаждается, поэтому воздух в камере оказывается пересыщенным парами.

Если воздух очищен от пылинок, то превращение избытка пара в жидкость затруднено из-за отсутствия центров конденсации. Однако центрами конденсации могут служить и ионы. Поэтому, если через камеру пролетает в это время заряженная частица, ионизирующая на своем пути молекулы воздуха, то на цепочке ионов происходит конденсация паров и траектория движения частицы внутри камеры получается отмеченной нитью тумана, т. е. становится видимой. Тепловое движение воздуха быстро размывает нити тумана, и траектории частиц видны отчетливо лишь около 0,1 с, что, однако, достаточно для фотографирования.

Вид траектории на фотоснимке часто позволяет судить о природе частицы и величине ее энергии. Так, альфа-частицы оставляют сравнительно толстый сплошной след, протоны - более тонкий, а электроны - пунктирный след. Одна из фотографий альфа-частиц в камере Вильсона показана на рис. 37.3.

Чтобы подготовить камеру к действию и очистить ее от оставшихся ионов, внутри нее создают электрическое поле, притягивающее ионы к электродам, где они нейтрализуются.

Как говорилось выше, в камере Вильсона для получения следов частиц используется конденсация пересыщенного пара, т. е. превращение его в жидкость. Для этой же цели можно использовать обратное явление, т. е. превращение жидкости в пар. Если жидкость заключить в замкнутый сосуд с поршнем и при помощи поршня создать повышенное давление, а затем резким перемещением поршня уменьшить давление в жидкости, то при соответствующей температуре жидкость может оказаться в перегретом состоянии. Если через такую жидкость пролетит заряженная частица, то вдоль ее траектории жидкость закипит, поскольку образовавшиеся в жидкости ионы служат центрами парообразования. При этом траектория частицы отмечается цепочкой пузырьков пара, т. е. делается видимой. На этом принципе основано действие пузырьковой камеры.

При изучении следов частиц с большой энергией пузырьковая камера удобнее камеры Вильсона, так как при движении в жидкости частица теряет значительно больше энергии, чем в газе. Во многих случаях это позволяет значительно точнее определить направление движения частицы и ее энергию. В настоящее время имеются пузырьковые камеры диаметром около 2 м. Они заполняются жидким водородом. Следы частиц в жидком водороде получаются очень отчетливыми .

Для регистрации частиц и получения их следов служит также метод толстослойных фотопластинок. Он основан на том, что пролетающие сквозь фотоэмульсию частицы действуют на зерна бромистого серебра, поэтому оставленный частицами след после проявления фотопластинки становится видимым (рис. 37.4) и его можно исследовать с помощью микроскопа. Чтобы след был достаточно длинным, используются толстые слои фотоэмульсии.