Биографии Характеристики Анализ

Кинетическая энергия вращения. Кинетическая энергия при вращательном движении

Рассмотрим вначале твердое тело, вращающееся вокруг неподвижной оси OZ с угловой скоростью ω (рис.5.6). Разобьем тело на элементарные массы . Линейная скорость элементарной массы равна , где - ее расстояние от оси вращения. Кинетическая энергия i -той элементарной массы будет равна

.

Кинетическая энергия всего тела слагается из кинетических энергий его частей, поэтому

.

Учитывая то, что сумма в правой части этого соотношения представляет момент инерции тела относительно оси вращения, получим окончательно

. (5.30)

Формулы кинетической энергии вращающегося тела (5.30) подобны соответствующим формулам для кинетической энергии поступательного движения тела. Они получаются из последних формальной заменой .

В общем случае движение твердого тела можно представить в виде суммы движений – поступательного со скоростью, равной скорости центра масс тела, и вращения с угловой скоростью вокруг мгновенной оси, проходящей через центр масс. В этом случае выражение для кинетической энергии тела принимает вид

.

Найдем теперь работу, совершаемую моментом внешних сил, при вращении твердого тела. Элементарная работа внешних сил за время dt будет равна изменению кинетической энергии тела

Взяв дифференциал от кинетической энергии вращательного движения, найдем ее приращение

.

В соответствии с основным уравнением динамики для вращательного движения

С учетом данных соотношений, приведем выражение элементарной работы к виду

где - проекция результирующего момента внешних сил на направление оси вращения OZ, - угол поворота тела за рассматриваемый промежуток времени.

Интегрируя (5.31), получим формулу для работы внешних сил, действующих на вращающееся тело

В случае, если , то формула упрощается

Таким образом, работа внешних сил при вращении твердого тела относительно неподвижной оси определяется действием проекции момента этих сил на данную ось.

Гироскоп

Гироскопом называется быстро вращающееся симметричное тело, ось вращения которого может изменять свое направление в пространстве. Чтобы ось гироскопа могла свободно поворачиваться в пространстве, гироскоп помещают в так называемом кардановом подвесе (рис.5.13). Маховик гироскопа вращается во внутренней кольцевой обойме вокруг оси С 1 С 2 , проходящей через его центр тяжести. Внутренняя обойма в свою очередь может вращаться во внешней обойме вокруг оси В 1 В 2 , перпендикулярной к С 1 С 2 . Наконец, наружная обойма может свободно вращаться в подшипниках стойки вокруг оси А 1 А 2 , перпендикулярной к осям С 1 С 2 и В 1 В 2 . Все три оси пересекаются в некоторой неподвижной точке О, называемой центром подвеса или точкой опоры гироскопа. Гироскоп в кардановом подвесе имеет три степени свободы и, следовательно, может совершать любые повороты вокруг центра подвеса. Если центр подвеса гироскопа совпадает с его центром тяжести, то результирующий момент сил тяжести всех частей гироскопа относительно центра подвеса равен нулю. Такой гироскоп называют уравновешенным.

Рассмотрим теперь наиболее важные свойства гироскопа, которые и нашли ему широкое применение в различных областях.

1) Устойчивость.

При любых поворотах стойки уравновешенного гироскопа его ось вращения сохраняет неизменное направление по отношению к лабораторной системе отсчета. Это связано с тем, что момент всех внешних сил, равный моменту сил трения, очень мал и практически не вызывает изменения момента импульса гироскопа, т.е.

Поскольку момент импульса направлен вдоль оси вращения гироскопа, то ее ориентация должна сохраняться неизменной.

Если внешняя сила действует в течение короткого времени, то интеграл, определяющий приращение момента импульса, будет мал

. (5.34)

Значит, при кратковременных воздействиях даже больших сил движение уравновешенного гироскопа изменяется мало. Гироскоп как бы сопротивляется всяким попыткам изменить величину и направление его момента импульса. С этим и связана замечательная устойчивость, которую приобретает движение гироскопа после приведения его в быстрое вращение. Это свойство гироскопа широко используется для автоматического управления движением самолетов, судов, ракет и прочих аппаратов.

Если же действовать на гироскоп длительное время постоянным по направлению моментом внешних сил, то ось гироскопа устанавливается, в конце концов, по направлению момента внешних сил. Данное явление используется в гирокомпасе. Этот прибор представляет собой гироскоп, ось которого может свободно поворачиваться в горизонтальной плоскости. Вследствие суточного вращения Земли и действия момента центробежных сил ось гироскопа поворачивается так, чтобы угол между и стал минимальным (рис.5.14). Это соответствует положению оси гироскопа в плоскости меридиана.

2). Гироскопический эффект.

Если к вращающемуся гироскопу приложить пару сил и , стремящуюся повернуть его около оси, перпендикулярной оси вращения, то он станет поворачиваться вокруг третьей оси, перпендикулярной к первым двум (рис.5.15). Такое необычное поведение гироскопа получило название гироскопического эффекта. Оно объясняется тем, что момент пары сил направлен вдоль оси О 1 О 1 и изменение за время вектора на величину будет иметь тоже направление. В результате новый вектор повернется относительно оси О 2 О 2 . Таким образом, противоестественное на первый взгляд поведение гироскопа полностью соответствует законам динамики вращательного движения

3). Прецессия гироскопа.

Прецессией гироскопа называется конусообразное движение его оси. Оно происходит в том случае, когда момент внешних сил, оставаясь постоянным по величине, поворачивается одновременно с осью гироскопа, образуя с ней всё время прямой угол. Для демонстрации прецессии может служить велосипедное колесо с наращенной осью, приведенное в быстрое вращение (рис.5.16).

Если колесо подвесить за наращенный конец оси, то его ось начнет прецессировать вокруг вертикальной оси под действием собственного веса. Демонстрацией прецессии может служить и быстро вращающийся волчок.

Выясним причины прецессии гироскопа. Рассмотрим неуравновешенный гироскоп, ось которого может свободно поворачиваться вокруг некоторой точки О (рис.5.16). Момент сил тяжести, приложенный к гироскопу, равен по величине

где - масса гироскопа, - расстояние от точки О до цента масс гироскопа, - угол, образованный осью гироскопа с вертикалью. Вектор направлен перпендикулярно к вертикальной плоскости, проходящей через ось гироскопа.

Под действием этого момента момент импульса гироскопа (его начало помещено в точку О) получит за время приращение , а вертикальная плоскость, проходящая через ось гироскопа, повернется на угол . Вектор все время перпендикулярен к , следовательно, не изменяясь по величине, вектор изменяется только по направлению. При этом спустя время взаимное расположение векторов и будет таким же, как и в начальный момент. В итоге ось гироскопа будет непрерывно поворачиваться вокруг вертикали, описывая конус. Такое движение называется прецессией.

Определим угловую скорость прецессии. Согласно рис.5.16 угол поворота плоскости, проходящей через ось конуса и ось гироскопа, равен

где - момент импульса гироскопа, а - его приращение за время .

Разделив на , с учетом отмеченных соотношений и преобразований, получим угловую скорость прецессии

. (5.35)

Для гироскопов, применяющихся в технике, угловая скорость прецессии бывает в миллионы раз меньше скорости вращения гироскопа .

В заключении отметим, что явление прецессии наблюдается и у атомов вследствие орбитального движения электронов.

Примеры применения законов динамики

При вращательном движении

1. Рассмотрим некоторые примеры на закон сохранения момента импульса, которые можно осуществить с помощью скамьи Жуковского. В простейшем случае скамья Жуковского представляет собой платформу в форме диска (кресло), который может свободно вращаться вокруг вертикальной оси на шариковых подшипниках (рис.5.17). Демонстратор садится или становится на скамью, после чего ее приводят во вращательное движение. Вследствие того, что силы трения благодаря применению подшипников очень малы, момент импульса системы, состоящей из скамьи и демонстратора, относительно оси вращения не может меняться во времени, если система предоставлена самой себе. Если демонстратор держит в руках тяжелые гантели и разводит руки в стороны, то он увеличит момент инерции системы, а потому должна уменьшится угловая скорость вращения, чтобы остался неизменным момент импульса.

По закону сохранения момента импульса составим уравнение для данного случая

где - момент инерции человека и скамьи, и - момент инерции гантелей в первом и втором положениях, и - угловые скорости системы.

Угловая скорость вращения системы при разведении гантелей в сторону будет равна

.

Работу, совершенную человеком при перемещении гантелей, можно определить через изменение кинетической энергии системы

2. Приведем еще один опыт со скамьей Жуковского. Демонстратор садится или становится на скамью и ему передают быстро вращающееся колесо с вертикально направленной осью (рис.5.18). Затем демонстратор поворачивает колесо на 180 0 . При этом изменение момента импульса колеса целиком передается скамье и демонстратору. В результате скамья вместе с демонстратором приходит во вращение с угловой скоростью, определяемой на основании закона сохранения момента импульса.

Момент импульса системы в начальном состоянии определяется только моментом импульса колеса и равен

где - момент инерции колеса, - угловая скорость его вращения.

После поворота колеса на угол 180 0 момент импульса системы будет уже определяться суммой момента импульса скамьи с человеком и момента импульса колеса. С учетом того, что вектор момента импульса колеса изменил свое направление на противоположное, а его проекция на вертикальную ось стала отрицательной, получим

,

где - момент инерции системы «человек-платформа», - угловая скорость вращения скамьи с человеком.

По закону сохранения момента импульса

и .

В итоге, находим скорость вращения скамьи

3. Тонкий стержень массой m и длиной l вращается с угловой скоростью ω=10 с -1 в горизонтальной плоскости вокруг вертикальной оси, проходящей через середину стержня. Продолжая вращаться в той же плоскости, стержень перемещается так, что ось вращения теперь проходит через конец стержня. Найти угловую скорость во втором случае.

В данной задаче за счет того, что распределение массы стержня относительно оси вращения изменяется, момент инерции стержня также изменяется. В соответствии с законом сохранения момента импульса изолированной системы, имеем

Здесь - момент инерции стержня относительно оси, проходящей через середину стержня; - момент инерции стержня относительно оси, проходящей через его конец и найденный по теореме Штейнера.

Подставляя данные выражения в закон сохранения момента импульса, получим

,

.

4. Стержень длиной L =1,5 м и массой m 1 =10 кг подвешен шарнирно за верхний конец. В середину стержня ударяет пуля массой m 2 =10 г, летящая горизонтально со скоростью =500 м/с, и застревает в стержне. На какой угол отклонится стержень после удара?

Представим на рис. 5.19. систему взаимодействующих тел «стержень-пуля». Моменты внешних сил (сила тяжести, реакция оси) в момент удара равны нулю, поэтому можем воспользоваться законом сохранения момента импульса

Момент импульса системы до удара равен моменту импульса пули относительно точки подвеса

Момент импульса системы после неупругого удара определится по формуле

,

где - момент инерции стержня относительно точки подвеса, - момент инерции пули, - угловая скорость стержня с пулей непосредственно после удара.

Решая после подстановки полученное уравнение, найдем

.

Воспользуемся теперь законом сохранения механической энергии. Приравняем кинетическую энергию стержня после попадания в него пули его потенциальной энергии в наивысшей точке подъема:

,

где - высота поднятия центра масс данной системы.

Проведя необходимые преобразования, получим

Угол отклонения стержня связан с величиной соотношением

.

Проведя вычисления, получим =0,1p=18 0 .

5. Определить ускорения тел и натяжения нити на машине Атвуда, предполагая, что (рис.5.20). Момент инерции блока относительно оси вращения равен I , радиус блока r . Массой нити пренебречь.

Расставим все силы, действующие на грузы и блок, и составим для них уравнения динамики

Если нет проскальзывания нити по блоку, то линейное и угловое ускорение связаны между собой соотношением

Решая эти уравнения, получим

После чего находим T 1 и T 2 .

6. К шкиву креста Обербека (рис.5.21) прикреплена нить, к которой подвешен груз массой M = 0,5 кг. Определить за какое время груз опускается с высоты h =1 м до нижнего положения. Радиус шкива r =3 см. На кресте укреплены четыре груза массой m =250 г каждый на расстоянии R = 30 см от его оси. Моментом инерции самого креста и шкива пренебречь по сравнению с моментом инерции грузов.

Кинетическая энергия вращения

Лекция 3. Динамика твердого тела

План лекции

3.1. Момент силы.

3.2. Основные уравнения вращательного движения. Момент инерции.

3.3. Кинетическая энергия вращения.

3.4. Момент импульса. Закон сохранения момента импульса.

3.5. Аналогия между поступательным и вращательным движением.

Момент силы

Рассмотрим движение твердого тела вокруг неподвижной оси. Пусть твердое тело имеет неподвижную ось вращения ОО (рис.3.1 ) и к нему приложена произвольная сила .

Рис. 3.1

Разложим силу на две составляющие силы , сила лежит в плоскости вращения, а сила – параллельна оси вращения. Затем силу разложим на две составляющие: – действующую вдоль радиус-вектора и – перпендикулярную ему.

Не любая сила, приложенная к телу, будет вращать его. Силы и создают давление на подшипники, но не вращают его.

Сила может вывести тело из равновесия, а может – нет в зависимости от того, в каком месте радиус-вектора она приложена. Поэтому вводится понятие момента силы относительно оси. Моментом силы относительно оси вращения называется векторное произведение радиуса-вектора на силу .

Вектор направлен по оси вращения и определяется правилом векторного произведения или правилом правого винта, или правилом буравчика.

Модуль момента силы

где α – угол между векторами и .

Из рис.3.1. видно, что .

r 0 кратчайшее расстояние от оси вращения до линии действия силы и называется плечом силы. Тогда момент силы можно записать

М = F r 0 . (3.3)

Из рис. 3.1.

где F – проекция вектора на направление, перпендикулярное вектору радиус-вектору . В этом случае момент силы равен

. (3.4)

Если на тело действует несколько сил, то результирующий момент силы равен векторной сумме моментов отдельных сил, но так как все моменты направлены вдоль оси, то их можно заменить алгебраической суммой. Момент будет считаться положительным, если он вращает тело по часовой стрелке и отрицательным, если против часовой стрелки. При равенстве нулю всех моментов сил (), тело будет находиться в равновесии.

Понятие момента силы можно продемонстрировать с помощью «капризной катушки». Катушку с нитками тянут за свободный конец нитки (рис. 3.2 ).

Рис. 3.2

В зависимости от направления силы натяжения нити катушка перекатывается в ту или иную сторону. Если тянуть под углом α , то момент силы относительно оси О (перпендикулярной к рисунку) вращает катушку против часовой стрелки и она откатывается назад. В случае натяжения под углом β вращающий момент направлен против часовой стрелки и катушка катится вперед.

Используя условие равновесия (), можно сконструировать простые механизмы, которые являются «преобразователями» силы, т.е. прикладывая меньшую силу можно поднимать и перемещать разного веса грузы. На этом принципе основаны рычаги, тачки, блоки разного рода, которые широко используются в строительстве. Для соблюдения условия равновесия в строительных подъемных кранах для компенсации момента силы, вызванного весом груза, всегда имеется система противовесов, создающая момент силы обратного знака.

3.2. Основное уравнение вращательного
движения. Момент инерции

Рассмотрим абсолютно твердое тело, вращающееся вокруг неподвижной оси ОО (рис.3.3 ). Разобьём мысленно это тело на элементы массами Δm 1 , Δm 2 , …, Δm n . При вращении эти элементы опишут окружности радиусами r 1 , r 2 , …, r n . На каждый элемент действуют соответственно силы F 1 , F 2 , …, F n . Вращение тела вокруг оси ОО происходит под действием полного момента сил М .

М = М 1 + М 2 + … +М n (3.4)

где М 1 = F 1 r 1, М 2 = F 2 r 2, …, M n = F n r n

Согласно II закону Ньютона, каждая сила F , действующая на элемент массой Dm , вызывает ускорение данного элемента a , т.е.

F i = Dm i a i (3.5)

Подставив в (3.4) соответствующие значения, получим

Рис. 3.3

Зная связь между линейным угловым ускорением ε () и что угловое ускорение для всех элементов одинаково, формула (3.6) будет иметь вид

М = (3.7)

=I (3.8)

I – момент инерции тела относительно неподвижной оси.

Тогда мы получим

М = I ε (3.9)

Или в векторном виде

(3.10)

Это уравнение является основным уравнением динамики вращательного движения. По форме оно сходно с уравнением II закона Ньютона. Из (3.10) момент инерции равен

Таким образом, моментом инерции данного тела называется отношение момента силы к вызываемому им угловому ускорении. Из (3.11) видно, что момент инерции является мерой инертности тела по отношению к вращательному движению. Момент инерции играет ту же роль, что и масса при поступательном движении. Единица измерения в СИ [I ] = кг·м 2 . Из формулы (3.7) следует, что момент инерции характеризует распределение масс частиц тела относительно оси вращения.

Итак, момент инерции элемента массы ∆m движущегося по окружности радиусом r равен

I = r 2 Dm (3.12)

I= (3.13)

В случае непрерывного распределения масс сумму можно заменить интегралом

I= ∫ r 2 dm (3.14)

где интегрирование производится по всей массе тела.

Отсюда видно, что момент инерции тела зависит от массы и её распределения относительно оси вращения. Это можно продемонстрировать на опыте (рис.3.4 ).

Рис. 3.4

Два круглых цилиндра, один полый (например, металлический), другой сплошной (деревянный) с одинаковыми длинами, радиусами и массами начинают одновременно скатываться. Полый цилиндр, обладающий большим моментом инерции, отстанет от сплошного.

Вычислить момент инерции можно, если известна масса m и ее распределение относительно оси вращения. Наиболее простой случай – кольцо, когда все элементы массы расположены одинаково от оси вращения (рис. 3.5 ):

I = (3.15)

Рис. 3.5

Приведем выражения для моментов инерции разных симметричных тел массой m .

1. Момент инерции кольца , полого тонкостенного цилиндра относительно оси вращения совпадающей с осью симметрии.

, (3.16)

r – радиус кольца или цилиндра

2. Для сплошного цилиндра и диска момент инерции относительно оси симметрии

(3.17)

3. Момент инерции шара относительно оси, проходящей через центр

(3.18)

r – радиус шара



4. Момент инерции тонкого стержня длинной l относительно оси, перпендикулярной стержню и проходящей через его середину

(3.19)

l – длина стержня.

Если ось вращения не проходит через центр масс, то момент инерции тела относительно этой оси определяется теоремой Штейнера.

(3.20)

Согласно этой теореме, момент инерции относительно произвольной оси О’O’ ( ) равен моменту инерции относительно параллельной оси, проходящей через центр масс тела ( ) плюс произведение массы тела на квадрат расстояния а между осями (рис. 3.6 ).

Рис. 3.6

Кинетическая энергия вращения

Рассмотрим вращение абсолютно твердого тела вокруг неподвижной оси ОО с угловой скоростью ω (рис. 3.7 ). Разобьем твердое тело на n элементарных масс ∆m i . Каждый элемент массы вращается по окружности радиуса r i с линейной скоростью (). Кинетическая энергия складывается из кинетических энергий отдельных элементов.

(3.21)

Рис. 3.7

Вспомним по (3.13), что – момент инерции относительно оси ОО.

Таким образом, кинетическая энергия вращающегося тела

Е к = (3.22)

Мы рассмотрели кинетическую энергию вращения вокруг неподвижной оси. Если тело участвует в двух движениях: в поступательном и вращательном движениях, то кинетическая энергия тела складывается из кинетической энергии поступательного движения и кинетической энергии вращения.

Например, шар массой m катится; центр масс шара движется поступательно со скоростью u (рис. 3.8 ).

Рис. 3.8

Полная кинетическая энергия шара будет равна

(3.23)

3.4. Момент импульса. Закон сохранения
момента импульса

Физическая величина равная произведению момента инерции I на угловую скорость ω , называется моментом импульса (моментом количества движения) L относительно оси вращения.

– момент импульса величина векторная и по направлению совпадает с направлением угловой скорости .

Продифференцировав уравнение (3.24) по времени, получим

где, М – суммарный момент внешних сил. В изолированной системе момент внешних сил отсутствует (М =0) и

«Физика - 10 класс»

Почему для увеличения угловой скорости вращения фигурист вытягивается вдоль оси вращения.
Должен ли вращаться вертолёт при вращении его винта?

Заданные вопросы наводят на мысль о том, что если на тело не действуют внешние силы или действие их скомпенсировано и одна часть тела начинает вращение в одну сторону, то другая часть должна вращаться в другую сторону, подобно тому как при выбросе горючего из ракеты сама ракета движется в противоположную сторону.


Момент импульса.


Если рассмотреть вращающийся диск, то становится очевидным, что суммарный импульс диска равен нулю, так как любой частице тела соответствует частица, движущаяся с равной по модулю скоростью, но в противоположном направлении (рис. 6.9).

Но диск движется, угловая скорость вращения всех частиц одинакова. Однако ясно, что чем дальше находится частица от оси вращения, тем больше её импульс. Следовательно, для вращательного движения надо ввести ещё одну характеристику, подобную импульсу, - момент импульса.

Моментом импульса частицы, движущейся по окружности, называют произведение импульса частицы на расстояние от неё до оси вращения (рис. 6.10):

Линейная и угловая скорости связаны соотношением v = ωr, тогда

Все точки твёрдого дела движутся относительно неподвижной оси вращения с одинаковой угловой скоростью. Твёрдое тело можно представить как совокупность материальных точек.

Момент импульса твёрдого тела равен произведению момента инерции на угловую скорость вращения:

Момент импульса - векторная величина, согласно формуле (6.3) момент импульса направлен так же, как и угловая скорость.

Основное уравнение динамики вращательного движения в импульсной форме.


Угловое ускорение тела равно изменению угловой скорости, делённому на промежуток времени, в течение которого это изменение произошло: Подставим это выражение в основное уравнение динамики вращательного движения отсюда I(ω 2 - ω 1) = MΔt, или IΔω = MΔt.

Таким образом,

ΔL = MΔt. (6.4)

Изменение момента импульса равно произведению суммарного момента сил, действующих на тело или систему, на время действия этих сил.

Закон сохранения момента импульса:

Если суммарный момент сил, действующих на тело или систему тел, имеющих неподвижную ось вращения, равен нулю, то изменение момента импульса также равно нулю, т. е. момент импульса системы остаётся постоянным.

ΔL = 0, L = const .

Изменение импульса системы равно суммарному импульсу сил, действующих на систему.

Вращающийся фигурист разводит в стороны руки, тем самым увеличивает момент инерции, чтобы уменьшить угловую скорость вращения.

Закон сохранения момента импульса можно продемонстрировать с помощью следующего опыта, называемого «опыт со скамьёй Жуковского». На скамью, имеющую вертикальную ось вращения, проходящую через её центр, встаёт человек. Человек держит в руках гантели. Если скамью заставить вращаться, то человек может изменять скорость вращения, прижимая гантели к груди или опуская руки, а затем разводя их. Разводя руки, он увеличивает момент инерции, и угловая скорость вращения уменьшается (рис. 6.11, а), опуская руки, он уменьшает момент инерции, и угловая скорость вращения скамьи увеличивается (рис. 6.11, б).

Человек может также заставить вращаться скамью если пойдёт вдоль её края. При этом скамья будет вращаться в противоположном направлении, так как суммарный момент импульса должен остаться равным нулю.

На законе сохранения момента импульса основан принцип действия приборов, называемых гироскопами. Основное свойство гироскопа - это сохранение направления оси вращения, если на эту ось не действуют внешние силы. В XIX в. гироскопы использовались мореплавателями для ориентации в море.


Кинетическая энергия вращающегося твёрдого тела.


Кинетическая энергия вращающегося твёрдого тела равна сумме кинетических энергий отдельных его частиц. Разделим тело на малые элементы, каждый из которых можно считать материальной точкой. Тогда кинетическая энергия тела равна сумме кинетических энергий материальных точек, из которых оно состоит:

Угловая скорость вращения всех точек тела одинакова, следовательно,

Величина в скобках, как мы уже знаем, это момент инерции твёрдого тела. Окончательно формула для кинетической энергии твёрдого тела, имеющего неподвижную ось вращения, имеет вид

В общем случае движения твёрдого тела, когда ось вращения свободна, его кинетическая энергия равна сумме энергий поступательного и вращательного движений. Так, кинетическая энергия колеса, масса которого сосредоточена в ободе, катящегося по дороге с постоянной скоростью, равна

В таблице сопоставлены формулы механики поступательного движения материальной точки с аналогичными формулами вращательного движения твёрдого тела.


Задачи

1. Определить, во сколько раз эффективная масса больше тяготеющей массы поезда массой 4000 т, если масса колес составляет 15% от массы поезда. Колеса считать дисками диаметром 1,02 м. Как изменится ответ, если диаметр колес будет в два раза меньше?

2. Определить ускорение, с которым скатывается колесная пара массой 1200 кг с горки с уклоном 0,08. Колеса считать дисками. Коэффициент сопротивления качению 0,004. Определить силу сцепления колес с рельсами.

3. Определить, с каким ускорением закатывается колесная пара массой 1400 кг на горку с уклоном 0,05. Коэффициент сопротивления 0,002. Каким должен быть коэффициент сцепления, чтобы колеса не буксовали. Колеса считать дисками.

4. Определить, с каким ускорением скатывается вагон массой 40 т, с горки с уклоном 0,020, если у него восемь колес массой 1200 кг и диаметром 1,02 м. Определить силу сцепления колес с рельсами. Коэффициент сопротивления 0,003.

5. Определить силу давления тормозных колодок на бандажи, если поезд массой 4000 т тормозит с ускорением 0,3 м/с 2 . Момент инерции одной колесной пары 600 кг·м 2 , количество осей 400, коэффициент трения скольжения колодки 0,18, коэффициент сопротивления качению 0,004.

6. Определить силу торможения, действующую на четырехосный вагон массой 60 т на тормозной площадке сортировочной горки, если скорость на пути 30 м уменьшилась от 2 м/с до 1,5 м/с. Момент инерции одной колесной пары 500 кг·м 2 .

7. Скоростемер локомотива показал увеличение скорости поезда в течении одной минуты от 10 м/с до 60 м/c. Вероятно, произошло буксование ведущей колесной пары. Определить момент сил, действующих на якорь электродвигателя. Момент инерции колесной пары 600 кг·м 2 , якоря 120 кг·м 2 . Передаточное отношение зубчатой передачи 4,2. Сила давления на рельсы 200 кН, коэффициент трения скольжения колес по рельсу 0,10.


11. КИНЕТИЧЕСКАЯ ЭНЕРГИЯ ВРАЩАТЕЛЬОГО

ДВИЖЕНИЯ

Выведем формулу кинетической энергии вращательного движения. Пусть тело вращается с угловой скоростью ω относительно неподвижной оси. Любая небольшая частица тела совершает поступательное движение по окружности со скоростью , где r i – расстояние до оси вращения, радиус орбиты. Кинетическая энергия частицы массы m i равна . Полная кинетическая энергия системы частиц равна сумме их кинетических энергий. Просуммируем формулы кинетической энергии частиц тела и вынесем за знак суммы половину квадрата угловой скорости, которая одинакова для всех частиц, . Сумма произведений масс частиц на квадраты их расстояний до оси вращения является моментом инерции тела относительно оси вращения . Итак, кинетическая энергия тела, вращающегося относительно неподвижной оси, равна половине произведения момента инерции тела относительно оси на квадрат угловой скорости вращения :



С помощью вращающихся тел можно запасать механическую энергию. Такие тела называются маховиками. Обычно это тела вращения. Известно с древности применение маховиков в гончарном круге. В двигателях внутреннего сгорания во время рабочего хода поршень сообщает механическую энергию маховику, который затем три последующих такта совершает работу по вращению вала двигателя. В штампах и прессах маховик приводится во вращение сравнительно маломощным электродвигателем, накапливает механическую энергию почти в течение полного оборота и в кратковременный момент удара отдает ее на работу штампования.

Известны многочисленные попытки применения вращающихся маховиков для привода в движение транспортных средств: легковых автомобилей, автобусов. Их называют махомобили, гировозы. Таких экспериментальных машин было создано немало. Было бы перспективно применять маховики для аккумулирования энергии при торможении электропоездов с целью использования накопленной энергии при последующем разгоне. Известно, что маховичный накопитель энергии используется на поездах метрополитена Нью-Йорка.

Определим кинетическую энергию твёрдого тела, вращающегося вокруг неподвижной оси. Разобьем это тело на n материальных точек. Каждая точка движется с линейной скоростью υ i =ωr i , тогда кинетическая энергия точки

или

Полная кинетическая энергия вращающегося твердого тела равна сумме кинетических энергий всех его материальных точек:

(3.22)

(J - момент инерции тела относительно оси вращения)

Если траектории всех точек лежат в параллельных плоскостях (как у цилиндра, скатывающегося с наклонной плоскости, каждая точка перемещается в своей плоскости рис), это плоское движение . В соответствии с принципом Эйлера плоское движение всегда можно бесчисленным количеством способов разложить на поступательное и вращательное движение. Если шарик падает или скользит вдоль наклонной плоскости, он двигается только поступательно; когда же шарик катится – он ещё и вращается.

Если тело совершает поступательное и вращательное движения одновременно, то его полная кинетическая энергия равна

(3.23)

Из сопоставления формул кинетической энергии для поступательно­го и вращательного движений видно, что мерой инертности при враща­тельном движении служит момент инерции тела.

§ 3.6 Работа внешних сил при вращении твёрдого тела

При вращении твёрдого тела его потенциальная энергия не изменяется, поэтому элементарная работа внешних сил равна приращению кинетической энергии тела:

dA = dE или

Учитывая, что Jβ = M, ωdr = dφ, имеем α тела на конечный угол φ равна

(3.25)

При вращении твёрдого тела вокруг неподвижной оси работа внешних сил определяется действием момента этих сил относительно данной оси. Если момент сил относительно оси равен нулю, то эти силы работы не производят.

Примеры решения задач

Пример 2.1. Маховик массой m =5кг и радиусом r = 0,2 м вращается вокруг горизонтальной оси с частотой ν 0 =720 мин -1 и при торможении останавливается за t =20 с. Найти тормозящий момент и число оборотов до остановки.

Для определения тормозящего момента применим основное уравнение динамики вращательного движения

где I=mr 2 – момент инерции диска; Δω =ω - ω 0 , причём ω =0 конечная угловая скорость, ω 0 =2πν 0 - начальная. М –тормозящий момент сил, действующих на диск.

Зная все величины, можно определить тормозящий момент

Mr 2 2πν 0 = МΔt (1)

(2)

Из кинематики вращательного движения угол поворота за время вращения диска до остановки может быть определён по формуле

(3)

где β–угловое ускорение.

По условию задачи: ω =ω 0 – βΔt, так как ω=0, ω 0 = βΔt

Тогда выражение (2) может быть записано в виде:

Пример 2.2. Два маховика в виде дисков одинаковых радиусов и масс были раскручены до скорости вращения n = 480 об/мин и предоставили самим себе. Под действием сил трения валов о подшипники первый остановился через t =80 с, а второй сделал N = 240 оборотов до остановки. У какого и маховика момент сил трения валов о подшипники был больше и во сколько раз.

Момент сил терния М 1 первого маховика найдём, воспользовавшись основным уравнением динамики вращательного движения

M 1 Δt = Iω 2 - Iω 1

где Δt – время действия момента сил трения, I=mr 2 - момент инерции маховика, ω 1 = 2πν и ω 2 = 0– начальная и конечная угловые скорости маховиков

Тогда

Момент сил трения М 2 второго маховика выразим через связь между работой А сил трения и изменением его кинетической энергии ΔE к:

где Δφ = 2πN – угол поворота, N -число оборотов маховика.


Тогда, откуда

Отношение будет равно

Момент сил трения второго маховика в 1.33 раза больше.

Пример 2.3. Масса однородного сплошного диска m, массы грузов m 1 и m 2 (рис.15). Скольжения и трения нити в оси цилиндра нет. Найти ускорение грузов и отношение натяжений нити в процессе движения.

Проскальзывания нити нет, поэтому, когда m 1 и m 2 будут совершать поступательное движение, цилиндр будет совершать вращение относительно оси, проходящей через точку О. Положим для определённости, что m 2 > m 1 .

Тогда груз m 2 опускается и цилиндр вращается по часовой стрелке. Запишем уравнения движения тел, входящих в систему

Первые два уравнения записаны для тел с массами m 1 и m 2 , совершающих поступательное движение, а третье уравнение – для вращающегося цилиндра. В третьем уравнении слева стоит суммарный момент сил, действующих на цилиндр (момент силы T 1 взят со знаком минус, так как сила T 1 стремится повернуть цилиндр против часовой стрелки). Справа I - момент инерции цилиндра относительно оси О, который равен

где R - радиус цилиндра; β - угловое ускорение цилиндра.

Так как проскальзывания нити нет, то
. С учётом выражений для I и β получим:

Складывая уравнения системы, приходим к уравнению

Отсюда находим ускорение a грузов

Из полученного уравнения видно, что натяжения нитей будут одинаковы, т.е. =1, если масса цилиндра будет гораздо меньше массы грузов.

Пример 2.4. Полый шар массой m = 0,5 кг имеет внешний радиус R = 0,08м и внутренний r = 0,06м. Шар вращается вокруг оси, проходящей через его центр. В определённый момент на шар начинает действовать сила, в результате чего угол поворота шара изменяется по закону
. Определить момент приложенной силы.

Решаем задачу, используя основное уравнение динамики вращательного движения
. Основная трудность – определить момент инерции полого шара, а угловое ускорение β находим как
. Момент инерции I полого шара равен разности моментов инерции шара радиуса R и шара радиуса r:

где ρ - плотность материала шара. Находим плотность, зная массу полого шара

Отсюда определим плотность материала шара

Для момента силы M получаем следующее выражение:

Пример 2.5. Тонкий стержень массой 300г и длиной 50см вращается с угловой скоростью 10с -1 в горизонтальной плоскости вокруг вертикальной оси, проходящей через середину стержня. Найдите угловую скорость, если в процессе вращения в той же плоскости стержень переместится так, что ось вращения пройдёт через конец стержня.

Используем закон сохранения момента импульса

(1)

(J i -момент инерции стержня относительно оси вращения).

Для изолированной системы тел векторная сумма моментов импульса остаётся постоянной. Вследствие того, что распределение массы стержня относительно оси вращения изменяется момент инерции стержня также изменяется в соответствии с (1):

J 0 ω 1 = J 2 ω 2 . (2)

Известно, что момент инерции стержня относительно оси, проходящей через центр масс и перпендикулярной стержню, равен

J 0 = mℓ 2 /12. (3)

По теореме Штейнера

J =J 0 +mа 2

(J-момент инерции стержня относительно произвольной оси вращения; J 0 – момент инерции относительно параллельной оси, проходящей через центр масс; а - расстояние от центра масс до выбранной оси вращения).

Найдём момент инерции относительно оси, проходящей через его конец и перпендикулярной стержню:

J 2 =J 0 +mа 2 , J 2 = mℓ 2 /12 +m(ℓ/2) 2 = mℓ 2 /3. (4)

Подставим формулы (3) и (4) в (2):

mℓ 2 ω 1 /12 = mℓ 2 ω 2 /3

ω 2 = ω 1 /4 ω 2 =10с-1/4=2,5с -1

Пример 2.6 . Человек массой m =60кг, стоящий на краю платформы массой М=120кг, вращающейся по инерции вокруг неподвижной вертикальной оси с частотой ν 1 =12мин -1 , переходит к её центру. Считая платформу круглым однородным диском, а человека – точечной массой, определите, с какой частотой ν 2 будет тогда вращаться платформа.

Дано: m=60кг, М=120кг, ν 1 =12мин -1 = 0,2с -1 .

Найти: ν 1

Решение: Согласно условию задачи, платформа с человеком вращается по инерции, т.е. результирующий момент всех сил, приложенных к вращающейся системе, равен нулю. Поэтому для системы «платформа-человек» выполняется закон сохранения момента импульса

I 1 ω 1 = I 2 ω 2

где
- момент инерции системы, когда человек стоит на краю платформы (учли, что момент инерции платформы, равен(R – радиус п
латформы), момент инерции человека на краю платформы равенmR 2).

- момент инерции системы, когда человек стоит в центре платформы (учли, что момент человека, стоящего в центре платформы, равен нулю). Угловая скорость ω 1 = 2π ν 1 и ω 1 = 2π ν 2 .

Подставив записанные выражения в формулу (1), получаем

откуда искомая частота вращения

Ответ : ν 2 =24мин -1 .