Биографии Характеристики Анализ

Самостоятельный дуговой разряд (низких, средних и высоких давлений). Реферат: Дуговой разряд в газах

\ Для учителя физики

При использовании материалов этого сайта - и размещение баннера -ОБЯЗАТЕЛЬНО!!!

Разработка урока с презентацией по физике на тему: "Электрический ток в газах"

Разработку урока по физике подготовила : Семенченко Галина Васильевна, г. Барнаул КГОУНПО ПУ -13, преподаватель физики,астрономии и электротехники, email: [email protected]

Эпиграф:

«Позавчера мы ничего не знали об электричестве, вчера мы ничего не знали об огромных резервах энергии, содержащихся в атомном ядре, о чем мы не знаем сегодня?»

/Луи де Бройль/

Электрический ток в газе представляет собой направленное движение положительных ионов к катоду, а отрицательных ионов и электронов к аноду.

При столкновении положительного и отрицательного ионов отрицательный ион может отдать свой избыточный электрон положительному иону и оба иона превратятся в нейтральные атомы.

Процесс взаимной нейтрализации ионов называется рекомбинацией ионов.

При рекомбинации положительного иона и электрона или двух ионов освобождается определенная энергия, равная энергии, затраченной на ионизацию.

Частично она излучается в виде света, и поэтому рекомбинация ионов сопровождается свечением (свечение рекомбинации).

Процесс прохождения электрического тока в газах называется газовым разрядом.

Разряды бывают двух видов:

Самостоятельный – разряд, возникающий без чьей – либо помощи в газах.

Несамостоятельный – разряд, возникающий в газах с помощью ионизатора.

Ионизаторы – это факторы, вызывающие ионизацию газа.

К факторам относятся:

  • нагревание газа до высокой температуры;
  • рентгеновских лучей;
  • лучей, возникающих при радиоактивном распаде;
  • космических лучей;
  • бомбардировки молекул газа быстро движущимися электронами или ионами.

Несамостоятельный разряд

Электропроводность газа создается внешними ионизаторами;

С прекращением действия внешних ионизаторов несамостоятельный разряд прекращается;

Несамостоятельный газовый разряд не сопровождается свечением газа.

Самостоятельный разряд

Для его осуществления необходимо, чтобы в результате самого разряда в газе непрерывно образовывались свободные заряды. Основным источником свободных зарядов является ударная ионизация молекул газа.

Положительные ионы, образовавшиеся при столкновении электронов с нейтральными атомами, при своем движении к катоду приобретают под действием поля большую кинетическую энергию. При ударах таких быстрых ионов о катод с поверхности катода выбиваются электроны.

Кроме того, катод может испускать электроны при нагревании до большой температуры. Этот процесс называется термоэлектронной эмиссией. Его можно рассматривать как испарение электронов из металла. Во многих твердых веществах термоэлектронная эмиссия происходит при температурах, при которых испарение самого вещества еще мало. Такие вещества и используются для изготовления катодов.

Виды самостоятельных разрядов.

В зависимости от свойств и состояния газа, характера и расположения электродов, а также от приложенного к электродам напряжения возникают различные виды самостоятельного разряда.

Тлеющий разряд.

Тлеющий разряд наблюдается в газах при низких давлениях порядка нескольких десятков миллиметров ртутного столба и меньше.

Основными частями тлеющего разряда являются катодное темное пространство, резко отдаленное от него отрицательное, или тлеющее свечение, которое постепенно переходит в область фарадеева темного пространства. Эти три области образуют катодную часть разряда, за которой следует основная светящаяся часть разряда, определяющая его оптические свойства и называемая положительным столбом.

При достаточно низких давлениях электроны, выбиваемые из катода положительными ионами, проходят через газ почти без столкновений с его молекулами, образуя электронные, или катодные лучи.

Вид тлеющего разряда

Тлеющий разряд полученный с помощью генератора

Применение тлеющего разряда

Тлеющий разряд используется в газосветных трубках, лампах дневного света, стабилизаторах напряжения, для получения электронных и ионных пучков.

Если в катоде сделать щель, то сквозь нее в пространство за катодом проходят узкие ионные пучки, часто называемые каналовыми лучами.

Широко используется явление катодного распыления, т.е. разрушение поверхности катода под действием ударяющихся о него положительных ионов. Ультрамикроскопические осколки материала катода летят во все стороны по прямым линиям и покрывают тонким слоем поверхность тел (особенно диэлектриков), помещенных в трубку.

Таким способом изготовляют зеркала для ряда приборов, наносят тонкий слой металла на селеновые фотоэлементы.

Тлеющий разряд на производстве

Обработка коронным разрядом поверхностей

Коронный разряд

Коронный разряд возникает при нормальном давлении в газе, находящемся в сильно неоднородном электрическом поле (например, около остриев или проводов линий высокого напряжения).

При коронном разряде ионизация газа и его свечение происходят лишь вблизи коронирующих электродов. В случае коронирования катода (отрицательная корона) электроны, вызывающие ударную ионизацию молекул газа, выбиваются из катода при бомбардировке его положительными ионами.

Если коронируют анод (положительная корона), то рождение электронов происходит вследствие фотоионизации газа вблизи анода.

Корона - вредное явление, сопровождающееся утечкой тока и потерей электрической энергии. Для уменьшения коронирования увеличивают радиус кривизны проводников, а их поверхность делают более гладкой.

Вид коронного разряда

слайд№ 13

Частный случай коронного разряда – кистевой

При повышенном напряжении коронный разряд на острие приобретает вид исходящих из острия и перемежающихся во времени светлых линий. Эти линии, имеющие ряд изломов и изгибов, образуют подобие кисти, вследствие чего такой разряд называют кистевым.

С коронным разрядом приходится считаться, имея дело с высоким напряжением. При наличии выступающих частей или очень тонких проводов может начаться коронный разряд. Это приводит к утечке электроэнергии. Чем выше напряжение высоковольтной линии, тем толще должны быть провода.

Огни святого Эльма

Заряженное грозовое облако индуцирует на поверхности Земли под собой электрические заряды противоположного знака. Особенно большой заряд скапливается на остриях. Поэтому перед грозой или во время грозы нередко на остриях и острых углах высоко поднятых предметов вспыхивают похожие на кисточки конусы света. С давних времен это свечение называют огнями святого Эльма.

Особенно часто свидетелями этого явления становятся альпинисты. Иногда даже не только металлические предметы, но и кончики волос на голове украшаются маленькими светящимися кисточками.

Огни святого Эльма перед грозой в океане

Слайд№ 17

Искровой разряд

Искровой разряд имеет вид ярких зигзагообразных разветвляющихся нитей-каналов, которые пронизывают разрядный промежуток и исчезают, сменяясь новыми.

Каналы искрового разряда начинают расти иногда от положительного электрода, иногда от отрицательного, а иногда и от какой-нибудь точки между электродами.

Искровой разряд сопровождается выделением большого количества теплоты, ярким свечением газа, треском или громом.

Все эти явления вызываются электронными и ионными лавинами, которые возникают в искровых каналах и приводят к огромному увеличению давления, достигающему 107 108 Па, и повышению температуры до 10000 С.

Применение искрового разряда

При малой длине разрядного промежутка искровой разряд вызывает специфическое разрушение анода, называемое эрозией. Это явление было использовано в электроискровом методе резки, сверления и других видах точной обработки металла.

Искровой промежуток применяется в качестве предохранителя от перенапряжения в электрических линиях передач (например, в телефонных линиях).

Электрическая искра применяется для измерения больших разностей потенциалов с помощью шарового разрядника, электродами которого служат два металлических шара с полированной поверхностью.

Электроискровой станок

Слайд № 21

Характерным примером искрового разряда является молния.

Главный канал молнии имеет диаметр от 10 до 25 см., а длина молнии может достигать нескольких километров. Максимальная сила тока импульса молнии достигает десятков и сотен тысяч ампер.

Молнии бывают линейные и шаровые.

Шаровая молния - это одиночная ярко светящаяся относительно стабильная небольшая масса, которая наблюдается в атмосфере, плавающая в воздухе и перемещающаяся вместе с потоками воздуха, содержащая в своем теле большую энергию, исчезающая тихо или с большим шумом типа взрыва и не оставляющая после своего исчезновения никаких материальных следов, кроме тех разрушений, которые она успела натворить.

Шаровая молния

Слайд № 23

Как вести себя во время грозы?

  1. Нельзя укрываться в грозу возле одиноко стоящих деревьев, столбов и других высоких местных предметов, надо отойти на 15 метров.
  2. Опасно находиться в воде или поблизости от неё.
  3. Палатку ставить у воды нельзя, так как молнии часто ударяют в речные берега.
  4. Никогда не следует недооценивать опасность молнии.
  5. Если гроза застала вас в автомобиле, не выходите из него. Закройте все двери и окна и переждите ненастье внутри.
  6. Находясь во время грозы в загородном доме, отключите из сети электроприборы, а телевизор – от индивидуальной антенны.
  7. Молния редко ударяет в кустарник, практически не попадает в клён и берёзу, чаще всего попадает в дуб и тополь.

Дуговой разряд

Дуговой разряд был открыт В. В. Петровым в 1802 году. Этот разряд представляет собой одну из форм газового разряда, осуществляющуюся при большой плотности тока и сравнительно небольшом напряжении между электродами (порядка нескольких десятков вольт).

Основной причиной дугового разряда является интенсивное испускание термоэлектронов раскаленным катодом. Эти электроны ускоряются электрическим полем и производят ударную ионизацию молекул газа, благодаря чему электрическое сопротивление газового промежутка между электродами сравнительно мало.

В ряде случаев дуговой разряд наблюдается и при сравнительно низкой температуре катода (ртутная дуговая лампа).

Дуговой разряд нашел применение в ртутном выпрямителе, преобразующем переменный электрический ток в ток постоянного направления.

Применение дугового разряда

В 1876 году П. Н. Яблочков впервые использовал электрическую дугу как источник света.

Дуговой разряд применяется как источник света в прожекторах и проекционных аппаратах.

Высокая температура дугового разряда позволяет использовать его для устройства дуговой печи. Дуговые печи, питаемые током очень большой силы, применяются в ряде областей промышленности: для выплавки стали, чугуна, ферросплавов, бронзы, получения карбида кальция, окиси азота и т.д.

В 1882 году Н. Н. Бенардос дуговой разряд впервые использовал для резки и сварки металла.

В 1888 году Н. Г. Славянов усовершенствовал этот метод сварки, заменив угольный электрод металлическим.

Знаменитые физики, изучавшие дуговой разряд.

Применение плазмы

Низкотемпературная плазма применяется в газоразрядных источниках света - в светящихся трубках рекламных надписей, в лампах дневного света. Газоразрядную лампу используют во многих приборах, например, в газовых лазерах - квантовых источниках света.

Высокотемпературная плазма применяется в магнитогидродинамических генераторах.

Недавно был создан новый прибор - плазмотрон. В плазмотроне создаются мощные струи плотной низкотемпературной плазмы, широко применяемые в различных областях техники: для резки и сварки металлов, бурения скважин в твердых породах и т.д.

ВВедение.

Свойства дугового разряда.

1.Образование дуги.

2. Катодное пятно. Внешний вид и отдельные части

дугового разряда.

3. Распределение потенциала и вольтамперная

характеристика при дуговом разряде.

4. Температура и излучение отдельных частей дугового разряда.

5. Генерация незатухающих колебаний при помощи элек-

трической дуги.

6. Положительный столб дугового разряда при высоком

и сверхвысоком давлении.

III. Применение дугового разряда.

1. Современные методы электрообработки.

2. Электродуговая сварка.

3. Плазменная технология.

4. Плазменная сварка.
IV. Заключение.



Дуговой разряд в виде так называемой электрической (или вольтовой) дуги был впервые обнаружен в 1802 году русским учёным профессором физики Военно-медико-хирургической академии в Петербурге, а впоследствии академиком Петербургской Академии наук Василием Владимировичем Петровым. Петров следующими словами описывает в одной из изданных им книг свои первые наблюдения над электрической дугой:

«Если на стеклянную плитку или на скамеечку со стеклянными ножками будут положены два или три древесных угля... и если металлическими изолированными направлятелями...сообщенными с обоими полюсами огромной батареи, приближать оные один к другому на расстояние от одной до трёх линий,то является между ними весьма яркий белого цвета свет или пламя, от которого оные угли скорее или медлительнее загораются и от которого тёмный покой довольно ясно освещен быть может... ».

Путь к электрической дуге начался в глубокой древности. Еще греку Фалесу Милетскому, жившему в шестом веке до нашей эры, было известно свойство янтаря притягивать при натирании легкие предметы-перышки, солому, волосы и даже создавать искорки. Вплоть до семнадцатого века это был единственный способ электризации тел, не имевший никакого практического применения. Ученые искали объяснение этому явлению.

Английский физик Уильям Гильберт (1544-1603) установил, что и другие тела (например, горный хрусталь, стекло), подобно янтарю, обладают свойством притягивать легкие предметы после натирания. Он назвал эти свойства электрическими, впервые введя этот термин в употребление (по-гречески янтарь-электрон).

Бургомистр из Магдебурга Отто фон Герике (1602-1686) сконструировал одну из первых электрических машин. Это была электростатическая машина, представлявшая собой серный шар, укрепленный на оси. Одним из полюсов служил... сам изобретатель. При вращении рукоятки из ладоней довольного бургомистра с легким потрескиванием вылетали синеватые искры. Позднее машину Герике усовершенствовали другие изобретатели. Серный шар был заменен стеклянным, а вместо ладоней исследователя в качестве одного из полюсов приме- нены кожаные подушечки.

Большое значение имело изобретение в восемнадцатом веке лейденской банки-конденсатора, позволившего накапливать электричество. Это был стеклянный сосуд с водой, обернутый фольгой. В воду погружали металлический стержень, пропущенный через пробку.

Американский ученый Бенджамин Франклин (1706-1790) доказал, что вода в собирании электрических зарядов никакой роли не играет, этим свойством обладает стекло-диэлектрик.

Электростатические машины получили довольно широкое распространение, но лишь как забавные вещицы. Были, правда, попытки лечения больных с помощью электричества, однако каков был физиотерапевтический эффект такого лечения, сказать трудно.

Французский физик Шарль Кулон (1736-1806)- основатель электростатики-в 1785 г. установил, что сила взаимодействия электрических зарядов пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними.

В сороковых годах восемнадцатого века Бенджамин Франклин выдвинул теорию о том, что существует электричество только одного рода-особая электрическая материя, состоящая из мельчайших частиц, способных проникать внутрь вещества. Если в теле имеется избыток электрической материи, оно заряжено положительно, при ее недостатке-тело заряжено отрицательно. Франклин ввел в практику знаки «плюс» и «минус»,а также термины: конденсатор, проводник, заряд.

С оригинальными теориями о природе электричества выступили М. В. Ломоносов (1711-1765), Леонард Эйлер (1707-1783), Франц Эпинус (1724-1802) и другие ученые. К концу восемнадцатого века свойства и поведение неподвижных зарядов были достаточно изучены и в какой-то мере объяснены. Однако ничего не было известно об электрическом токе-движущихся зарядах, так как не существовало устройства, которое могло бы заставить двигаться большое количество зарядов. Токи, получаемые от электростатической машины,были слишком малы, их нельзя было измерить.


1. Если в тлеющем разряде увеличивать силу тока, уменьшая внешнее сопротивление, то при большой силе тока напряжение на зажимах трубки начинает падать, разряд быстро развива-ется и превращается в дуговой. В большинстве случаев переход совершается скачком и практически нередко ведёт к короткому замыканию. При подборе сопротивления внешнего контура удаётся стабилизовать переходную форму разряда и наблюдать при определённых давлениях непрерывный переход тлеющего разряда в дугу. Параллельно с падением напряжения между электродами трубки идёт возрастание температуры катода и постепенное уменьшение катодного падения.

Применение обычного способа зажигания дуги путём раздвигания электродов вызвано тем, что дуга горит при сравнительно низких напряжениях в десятки вольт, тогда как для зажигания тлеющего разряда нужно при атмосферном давлении напряжение порядка десятков киловольт. Процесс зажигания при раздвигании электродов объясняется местным нагреванием электродов вследствие образования между ними плохого контакта в момент разрыва цепи.

Вопрос о развитии дуги при разрыве цепи технически важен не только с точки зрения получения «полезных» дуг, но также и с точки зрения борьбы с «вредными» дугами, например с образованием дуги при размыкании рубильника. Пусть L-само- индукция контура, W-его сопротивление, ع-э.д.с. источника тока,U(I)-функция вольтамперной характеристики дуги. Тогда мы должны иметь: ع= L dI/dt+WI+U(I) (1) или

LdI/dt=(ع-WI)-U(I)=∆ (2).

Разность (ع - WI) есть не что иное, как ордината прямой сопротивления АВ (рис.1), а U(I)- ордината характеристики дуги при данном I. Чтобы dI/dt было отрицательно, т.е.Чтобы ток I непременно уменьшался со временем и между электродами рубильника не образовалось стойкой дуги, надо, чтобы



Рис.1. Относительное положение прямой сопротивления и кривой вольтамперной характеристики установившейся дуги для случаев:а)когда дуга пе может возникнуть при разрыве цепи; б)когда дуга возникает при разрыве в интервале силы тока, соответствующем точкам Р и Q.


имело место ∆ع-WI.

Для этого характеристика всеми своими точками должна лежать выше прямой сопротивления (рис. 1, а). Это простое заклю-чение пе учитывает ёмкости в цепи и относится лишь к постоянному току.

Точка пересечения прямой сопротивления с кривой вольт-амперной характеристики установившейся дуги соответствует низшему пределу силы постоянного тока, при котором может возникнуть дуга при разрыве цепи (рис. 1, б). В случае размыкания рубильником дуги переменного тока,потухающей при каждом переходе напряжения через нуль, существенно, чтобы условия,имеющиеся налицо в разрядном промежутке при размы-кании, не допускали нового зажигания дуги при последующем возрастании напряжения источника тока. Для этого требует-ся,чтобы при возрастании напряжения разрядный промежуток был достаточно деионизован. В выключателях сильных перемен-ных токов искусственно добиваются усиленной деионизации путём введения специальных электродов, отсасывающих заря-женные частицы газа благодаря двуполярной диффузии, а также путём применения механического дутья или путём воздействия на разряд магнитным полем. При высоких напряжениях при-меняют масляные выключатели.


2. Катодное пятно, неподвижное на угольном катоде, на поверхности жидкой ртути находится в непрерывном быстром движении. Положение катодного пятна на поверхности жидкой ртути может быть закреплено при помощи металлического штифта, погруженного в ртуть и немного высовывающегося из неё.

В случае небольшого расстояния между анодом и катодом тепловое излучение анода сильно влияет на свойства катод-ного пятна. При достаточно большом расстоянии анода от угольного катода размеры катодного пятна стремятся к неко-торому постоянному предельному значению, и площадь, занима-емая катодным пятном на угольном электроде в воздухе, пропорциональна силе тока и соответствует при атмосферном давлении 470 а/смІ.Для ртутной дуги в вакууме найдено 4000 а/смІ.

При уменьшении давления площадь, занимаемая катодным пятном на угольном катоде, при постоянной силе тока увели-чивается.

Резкость видимой границы катодного пятна объясняется тем, что сравнительно медленному уменьшению температуры с удале-нием от центра пятна соответствует быстрое падение как све-тового излучения, так и термоэлектронной эмиссии, а это равносильно резкой «оптической» и «электрической» границам пятна.

Угольный катод при горении дуги в воздухе заостряется, тогда как на угольном аноде, если разряд не перекрывает всю переднюю площадь анода, образуется круглое углубление-положительный кратер дуги.

Образованно катодного пятна объясняется следующим образом. Распределение пространственных зарядов в тонком слое у катода таково, что здесь разряд требует для своего поддержания тем меньшей разницы потенциалов, чем меньше поперечное сечение канала разряда. Поэтому разряд на катоде должен стягиваться.

Непосредственно к катодному пятну прилегает часть разряда, называемая отрицательной пли катодной кистью или отрицательным пламенем. Длина катодной кисти в дуге при низком давлении определяется тем расстоянием, на которое залетают быстрые первичные электроны, получившие свои ско-рости в области катодного падения потенциала.

Между отрицательной кистью и положительным столбом расположена область, аналогичная фарадееву тёмному пространству тлеющего разряда. В дуге Петрова в воздухе, кроме отрицательной кисти, имеется положи-тельное пламя и ряд ореолов. Спектральный анализ указывает на наличие в этих пламенах и ореолах ряда химических соединений (циана и окислов азота).

Прерывистой формой (даже при пользовании источниками постоянного тока). Он возникает в газе обычно при давлениях порядка атмосферного. В естественных природных условиях искровой разряд наблюдается в виде молний. По внешнему искровой разряд представляет собой пучок ярких зигзагообразных разветвляющихся тонких полосок, мгновенно пронизывающих разрядный промежуток, быстро гаснущих и постоянно...

Явления прохождения электрического тока через газы получили название электрических (газовых) разрядов. Существуют различные формы электрического разряда, отличающиеся друг от друга величиной разрядного тока, напряжением, температурой и давлением газа. Заряды могут быть устойчивые и неустойчивые (например, искровые). Строгой количественной границы между разрядами нет, один вид разряда может переходить в другой. Основные виды разрядов: темный, тлеющий, дуговой, искровой, коронный. Дуговой разряд – это высшая форма разряда, которая отличается от других форм разряда своими физическими свойствами. Так, тлеющий разряд имеет следующие параметры:

  • давление – несколько тор (мм рт. ст.);
  • плотность тока на катоде – (10 -3 -10 -2) А/мм 2 ;
  • напряжение – (200-300) В;
  • катодное падение напряжения ~ 100 В.

Физические свойства дугового разряда:

  • давление до 1 атм. и выше;
  • плотность тока на катоде – до 10 8 А/мм 2 ;
  • малая длина дуги – до 20-30 мм;
  • низкое напряжение дуги – (12¸50) В;
  • высокая температура столба дуги – (от 5 до 30)10 3 К;
  • ослепительная яркость (ввиду рекомбинации заряженных частиц с выделением световой энергии);
  • высокая концентрация заряженных частиц в катодной области разряда.

Название «дуга» он получил за форму ярко светящегося шнура (столба) разряда, который в первых опытах со слаботочными разрядами изгибался вверх серповидной дужкой под действием восходящих конвективных потоков нагретого разрядом воздуха. Хотя в большинстве случаев, например между вертикальными электродами в ограниченном замкнутом пространстве, аналогичный разряд не имеет дугообразной формы, первоначальное его название сохранилось.

Дуговые разряды широко используются в технике. Они являются источниками света для прожекторов и кинопроекционной аппаратуры, в специальных лампах сверхвысокого давления CBD (до 100 ат). Дуга используется в газотронах, тиратронах, ртутных выпрямителях для выпрямления тока и управления его силой и т.д. Весьма широкое применение электрическая дуга получила в металлургии и сварочной технике для нагрева и плавления металлов.

Термин «дуга» применяется только к устойчивым или квазиустойчивым видам разрядов. Дугой принято считать конечную форму разряда, развившегося при любых обстоятельствах, если через газ проходит достаточно большой ток. Такой разряд можно получить различными путями: из какого-либо устойчивого маломощного разряда; из неустойчивого искрового разряда или раздвигая два токонесущих, предварительно соприкасающихся электрода.

Приоритет в открытии дугового разряда принадлежит академику Василию Владимировичу Петрову – 1802 г. Он сказал о возможности использования дугового разряда для плавления металлов. Дугой назвал это явление англичанин Гэмфи Дэви, который независимо от Петрова В. В. исследовал это явление в 1808-1810 г.

История развития техники во второй половине XIX века примечательна разработкой путей практического использования электричества, в т. ч. для целей нагрева и плавления металла. В мае 1981 года весь мир по решению ЮНЕСКО отмечал важнейшую памятную дату – 100-летие со дня создания промышленного способа электрической дуговой сварки металлов русским изобретателем Николаем Николаевичем Бенардосом.

ГОСТ 19521 насчитывает 35 технологических разновидностей дугового разряда. В качестве технологических признаков дуги стандартом определены: вид электрода, характер воздействия на основной металл, род применяемого тока, наличие внешнего воздействия на формирование шва, количества электродов с общим токоподводом сварочного тока, наличие и направление колебаний электрода относительно оси шва, количество дуг с раздельным питанием током и др. Остановимся на наиболее существенных из них.

Сварка может осуществляться как плавящимся, так и неплавящимся электродом. В качестве неплавящегося электрода чаще всего используют графит или металлы с высокой температурой плавления – молибден, тантал, вольфрам и др. Питание дуги может быть переменным или постоянным током, а также комбинированным способом. При переменном токе частота может быть не только 50 Гц, но и повышенная. Сварка может быть дугой прямого и косвенного действия (рис. 13). При сварке дугой прямого действия свариваемые детали включены в сварочную цепь, их нагрев осуществляется за счет энергии заряженных частиц, достигающих активного пятна. При сварке дугой косвенного действия свариваемые детали не включены в сварочную цепь, их нагрев осуществляется за счет теплопередачи (в основном лучистой) от столба дуги.

Степень ионизации газа в дуге находится в пределах до нескольких процентов. Это считается высокой степенью ионизации, т. к. при степени ионизации более 0,01% газ находится в плазменном состоянии при температуре более 3000 К. Это низкотемпературная плазма.

При ручной дуговой сварке плотность тока составляет (10-15) А/мм 2 , при сварке плавящимся электродом в защитных газах до 400 А/мм 2 . Эти величины значительно меньше названной выше величины плотности тока на катоде до 10 8 А/мм 2 , т. к. на практике плотность тока определяют его отношением к поперечной площади электрода, а при изучении физических свойств разряда – отношением величины тока к площади катодных ячеек торца электрода. Площадь этих ячеек значительно меньше площади электрода и определяется по результатам скоростной киносъемки процесса.

В физике принято называть электродом любой предмет, к которому подсоединен проводник от источника тока. В сварке принято называть электродом – проволочный электрод, а плоский электрод – изделием. При сварке на постоянном токе различают прямую и обратную полярность. При прямой полярности катодом является электрод, при обратной полярности – изделие. Сварку на прямой полярности используют в меньшей степени, например, при сварке неплавящимся электродом в инертных газах сталей. Чаще всего сварку на постоянном токе выполняют на обратной полярности.

Состав газовой фазы может быть различным – воздух, защитные газы, пары металлов и компонентов флюса или электродного покрытия. Давление газа – от вакуума (не ниже 50 тор) до нескольких атмосфер.

Электрические разряды бывают самостоятельные и несамостоятельные. При самостоятельных разрядах необходимые для существования разряда заряженные частицы образуются за счет процессов, происходящих в самом разряде. Дуга является самостоятельным разрядом. Электрические частицы – электроны и ионы образуются за счет процессов эмиссии и ионизации. На образование других видов частиц энергии дуги недостаточно.

Виды газового разряда и их применение. Понятие о плазме.

Отделение:

Бухгалтерского учета и права

Специальность:

Правоведение

Группа:

Составила:

Евтихевич А. А.

Преподаватель:

Орловская Г. В.

2011 год
Содержание:

Страница 1: Газовый разряд

Применение газового разряда

Страница 2: Искровой разряд

Коронный разряд

Страница 3: Применение коронного разряда

Страница 4: Дуговой разряд

Страница 5: Применение дугового разряда

Тлеющий разряд

Страница 6-7: Плазма

Страница 8: Литература

Га́зовый разря́д - совокупность процессов, возникающих при протекании электрического тока через вещество, находящееся в газообразном состоянии. Обычно протекание тока становится возможным только после достаточной ионизации газа и образования плазмы. Ионизация происходит за счёт столкновений электронов, ускорившихся в электромагнитном поле, с атомами газа. При этом возникает лавинное увеличение числа заряженных частиц, поскольку в процессе ионизации образуются новые электроны, которые тоже после ускорения начинают участвовать в соударениях с атомами, вызывая их ионизацию. Для возникновения и поддержания газового разряда требуется существование электрического поля, так как плазма может существовать только если электроны приобретают во внешнем поле энергию, достаточную для ионизации атомов, и количество образованных ионов превышает число рекомбинировавших ионов.

Если для существования газового разряда необходима дополнительная ионизация за счёт внешних источников (например, при помощи ионизирующих излучений), то газовый разряд называется несамостоятельным (такие разряды используются в счётчиках Гейгера).

Для осуществления газового разряда применяют как постоянные во времени, так и переменные электрические поля.

В зависимости от условий, при которых происходит образование носителей заряда (давление газа, напряжение, приложенное к электродам, форма и температура электродов), различают несколько типов самостоятельных разрядов: тлеющий, искровой, коронный, дуговой.

Применения газового разряда

  • Дуговой разряд для сварки и освещения.
  • Сверхвысокочастотный разряд.
  • Тлеющий разряд как источник света в люминесцентных лампах и плазменных экранах.
  • Искровой разряд для зажигания рабочей смеси в двигателях внутреннего сгорания.
  • Коронный разряд для очистки газов от пыли и других загрязнений, для диагностики состояния конструкций.
  • Плазмотроны для резки и сварки.
  • Разряды для накачки лазеров, например гелий-неонового лазера, азотного лазера, эксимерных лазеров и т. д.
  • в счётчике Гейгера,
  • в ионизационных вакуумметрах,
  • в тиратронах,
  • в крайтронах,
  • в гейслеровой трубке.

Искровой разряд . Присоединим шаровые электроды к батарее конденсаторов и начнем заряжать конденсаторы при помощи электрической машины. По мере заряжения конденсаторов будет увеличиваться разность потенциалов между электродами, а следовательно, будет увеличиваться напряженность поля в газе. Пока напряженность поля невелика, в газе нельзя заметить никаких изменений. Однако при достаточной напряженности поля (около 30000 в/см) между электродами появляется электрическая искра, имеющая вид ярко светящегося извилистого канала, соединяющего оба электрода. Газ вблизи искры нагревается до высокой температуры и внезапно расширяется, отчего возникают звуковые волны, и мы слышим характерный треск. Конденсаторы в этой установке добавлены для того, чтобы сделать искру более мощной и, следовательно, более эффектной.
Описанная форма газового разряда носит название искрового разряда, или искрового пробоя газа. При наступлении искрового разряда газ внезапно, скачком, утрачивает свои изолирующие свойства и становится хорошим проводником. Напряженность поля, при которой наступает искровой пробой газа, имеет различное значение у разных газов и зависит от их состояния (давления, температуры). При заданном напряжении между электродами напряженность поля тем меньше, чем дальше электроды друг от друга. Поэтому, чем больше расстояние между электродами, тем большее напряжение между ними необходимо для наступления искрового пробоя газа. Это напряжение называется напряжением пробоя. Возникновение пробоя объясняется следующим образом. В газе всегда есть некоторое количество ионов и электронов, возникающих от случайных причин. Обычно, однако, число их настолько мало, что газ практически не проводит электричества. При сравнительно небольших значениях напряженности поля, с какими мы встречаемся при изучении несамостоятельной проводимости газов, соударения ионов, движущихся в электрическом поле, с нейтральными молекулами газа происходят так же, как соударения упругих шаров. При каждом соударении движущаяся частица передает покоящейся часть своей кинетической энергии, и обе частицы после удара разлетаются, но никаких внутренних изменений в них не происходит. Однако при достаточной напряженности поля кинетическая энергия, накопленная ионом в промежутке между двумя столкновениями может сделаться достаточной, чтобы ионизировать нейтральную молекулу при столкновении. В результате образуется новый отрицательный электрон и положительно заряженный остаток – ион. Такой процесс ионизации называют ударной ионизацией, а ту работу, которую нужно затратить, чтобы произвести отрывание электрона от атома, - работой ионизации. Величина работы ионизации зависит от строения атома и поэтому различна для разных газов. Образовавшиеся под влиянием ударной ионизации электроны и ионы увеличивают число зарядов в газе, причем в свою очередь они приходят в движение под действием электрического поля и могут произвести ударную ионизацию новых атомов. Таким образом, этот процесс «усиливает сам себя», и ионизация в газе быстро достигает очень большой величины. Все явления вполне аналогично снежной лавине в горах, для зарождения которой бывает достаточно ничтожного комка снега. Поэтому и описанный процесс был назван ионной лавиной. Образование ионной лавины и есть процесс искрового пробоя, а то минимальное напряжение, при котором возникает ионная лавина, есть напряжение пробоя. Мы видим, что при искровом пробое причина ионизации газа заключается в разрушении атомов и молекул при соударениях с ионами. Одним из природных представителей искрового разряда является молния – красивая и не безопасная.
Коронный разряд . Возникновение ионной лавины не всегда приводит к искре, а может вызвать и разряд другого типа – коронный разряд. Натянем на двух высоких изолирующих подставках металлическую проволоку AB диаметром в несколько десятых миллиметра и соединим ее с отрицательным полюсом генератора, дающего напряжение в несколько тысяч вольт, например, хорошей электрической машине. Второй полюс генератора отведем к Земле. Мы получим своеобразный конденсатор, обкладками которого являются наша проволока и стены комнаты, которые, конечно, сообщаются с Землей. Поле в этом конденсаторе весьма неоднородно, и напряженность его очень велика вблизи тонкой проволоки. Повышая постепенно напряжение и наблюдая за проволокой в темноте, можно заметить, что при известном напряжении возле проволоки появляется слабое свечение («корона»), охватывающее со всех сторон проволоку; оно сопровождается шипящим звуком и легким потрескиванием. Если между проволокой и источником включен чувствительный гальванометр, то с появлением свечения гальванометр показывает заметный ток, идущий от генератора по проводам к проволоке и от нее по воздуху комнаты к стенам, соединенным с другим полюсом генератора. Ток в воздухе между проволокой AB и стенами переносится ионами, образовавшимися в воздухе благодаря ударной ионизации. Таким образом, свечение воздуха и появление тока указывают на сильную ионизацию воздуха по действием электрического поля. Коронный разряд может возникнуть не только у проволоки, но и у острия и вообще у всех электродов, возле которых образуется очень сильное неоднородное поле.
Применение коронного разряда
1) Электрическая очистка газов (электрофильтры). Сосуд, наполненный дымом, внезапно делается совершенно прозрачным, если внести в него острые металлические электроды, соединенные с электрической машиной. Внутри стеклянной трубки содержатся два электрода: металлический цилиндр и висящая по его оси тонка металлическая проволока. Электроды присоединены к электрической машине. Если продувать через трубку струю дыма (или пыли) и привести в действие машину, то, как только напряжение сделается достаточным для образования короны, выходящая струя воздуха станет совершенно чистой и прозрачной, и все твердые и жидкие частицы, содержащиеся в газе, будут осаждаться на электродах.
Объяснение опыта заключается в следующем. Как только у проволоки зажигается корона, воздух внутри трубки сильно ионизируется. Газовые ионы, соударяясь с частицами пыли, «прилипают» к последним и заряжают их. Так как внутри трубки действует сильное электрическое поле, то заряженные частицы движутся под действием поля к электродам, где и оседают. Описанное явление находит себе в настоящее время техническое применение для очистки промышленных газов в больших объемах от твердых и жидких примесей.
2) Счетчики элементарных частиц. Коронный разряд лежит в основе действия чрезвычайно важных физических приборов: так называемых счетчиков элементарных частиц (электронов, а также других элементарных частиц, которые образуются при радиоактивных превращениях). Один из типов счетчика (счетчик Гейгера – Мюллера) показан на рис 1.
Он состоит из небольшого металлического цилиндра A, снабженного окошком, и тонкой металлической проволоки натянутой оп оси цилиндра и изолированной от него. Счетчик включают в цепь, содержащую источник напряжения В в несколько тысяч вольт. Напряжение выбирают таким, чтобы оно было только немного меньше «критического», т. е. Необходимого для зажигания коронного разряда внутри счетчика. При попадании в счетчик быстро движущегося электрона последний ионизует молекулы газа внутри счетчика, отчего напряжение, необходимое для зажигания короны, несколько понижается. В счетчике возникает разряд, а в цепи появляется слабый кратковременный ток.
Возникающий в счетчике ток настолько слаб, что обычным гальванометром его обнаружить трудно. Однако его можно сделать вполне заметным, если в цепь ввести очень большое сопротивление R и параллельно ему присоединить чувствительный электрометр E. При возникновении в цепи тока I на концах сопротивления создается напряжение U, равное по закону Ома U=IxR. Если выбрать величину сопротивления R очень большой (много миллионов ом), однако значительно меньшей, чем сопротивление самого электрометра, то даже очень слабый ток вызовет заметное напряжение. Поэтому при каждом попадании быстрого электрона внутрь счетчика листочек электрометра будет давать отброс.
Подобные счетчики позволяют регистрировать не только быстрые электроны, но и вообще любые заряженные, быстро движущиеся частички, способные производить ионизацию газа путем соударений. Современные счетчики легко обнаруживают попадание в них даже одной частицы и позволяют, поэтому с полной достоверностью и очень большой наглядностью убедиться, что в природе действительно существуют элементарные частички.
Дуговой разряд . В 1802 г. В. В. Петров установил, что если присоединить к полюсам большой электролитической батареи два кусочка древесного угля и, приведя угли в соприкосновение, слегка их разделить, то между концами углей образуется яркое пламя, а сами концы углей раскаляются добела. Испуская ослепительный свет (электрическая дуга). Это явление семь лет спустя независимо наблюдал английский химик Дэви, который предложил в честь Вольта назвать эту дугу «вольтовой».
Обычно осветительная сеть питается током переменного направления. Дуга, однако, горит устойчивее, если через нее пропускают ток постоянного направления, так что один из ее электродов является все время положительным (анод), а другой отрицательным (катод). Между электродами находится столб раскаленного газа, хорошо проводящего электричество. В обычных дугах этот столб испускает значительно меньше света, нежели раскаленные угли. Положительный уголь, имея более высокую температуру, сгорает быстрее отрицательного. Вследствие сильной возгонки угля на нем образуется углубление – положительный кратер, являющийся самой горячей частью электродов. Температура кратера в воздухе при атмосферном давлении доходит до 4000 °C.
Дуга может гореть и между металлическими электродами (железо, медь и т. д.). При этом электроды плавятся и быстро испаряются, на что расходуется много тепла. Поэтому температура кратера металлического электрода обычно ниже, чем угольного (2000-2500 °C).
Заставляя гореть дугу между угольными электродами в сжатом газе (около 20 атм), удалось довести температуру положительного кратера до 5900 °C, т. е. до температуры поверхности Солнца. При этом условии наблюдалось плавление угля.
Еще более высокой температурой обладает столб газов и паров, чрез который идет электрический разряд. Энергичная бомбардировка этих газов и паров электронами и ионами, подгоняемыми электрическим полем дуги, доводит температуру газов в столбе до 6000-7000 °. Поэтому в столбе дуги почти все известные вещества плавятся и обращаются в пар, и делаются возможными многие химические реакции, которые не идут при более низких температурах. Нетрудно, например, расплавить в пламени дуги тугоплавкие фарфоровые палочки.
Для поддержания дугового разряда нужно небольшое напряжение: дуга хорошо горит при напряжении на ее электродах 40-45 в. Ток в дуге довольно значителен. Так, например, даже в небольшой дуге, идет ток около 5 А, а в больших дугах, употребляющихся в промышленности, ток достигает сотен ампер. Это показывает, что сопротивление дуги невелико; следовательно, и светящийся газовый столб хорошо проводит электрический ток.
Такая сильная ионизация газа возможна только благодаря тому, что катод дуги испускает очень много электронов, которые своими ударами ионизуют газ в разрядном пространстве. Сильная электронная эмиссия с катода обеспечивается тем, что катод дуги сам накален до очень высокой температуры (от 2200° до 3500°C в зависимости от материала). Когда для зажигания дуги мы в начале приводим угли в соприкосновение, то в месте контакта, обладающем очень большим сопротивление, выделяется почти все джоулево тепло проходящего через угли тока. Поэтому концы углей сильно разогреваются, и этого достаточно для того, чтобы при их раздвижении между ними вспыхнула дуга. В дальнейшем катод дуги поддерживается в накаленном состоянии самим током, проходящие через дугу. Главную роль в этом играет бомбардировка катода падающими на него положительными ионами.
Применение дугового разряда
Вследствие высокой температуры электроды дуги испускают ослепительный свет, и поэтому электрическая дуга является одним из лучших источников света. Она потребляет всего около 0,3 ватта на каждую свечу и является значительно более экономичной. Нежели наилучшие лампы накаливания. Электрическая дуга впервые была использована для освещения П. Н. Яблочковым в 1875 г. и получила название «русского света», или «северного света».
Электрическая дуга также применяется для сварки металлических деталей (дуговая электросварка). В настоящее время электрическую дугу очень широко применяют в промышленных электропечах. В мировой промышленности около 90% инструментальной стали и почти все специальные стали выплавляются в электрических печах.
Большой интерес представляет ртутная дуга, горящая в кварцевой трубке, так называемая кварцевая лампа. В этой лампе дуговой разряд происходит не в воздухе, а в атмосфере ртутного пара, для чего в лампу вводят небольшое количество ртути, а воздух выкачивают. Свет ртутной дуги чрезвычайно богат невидимыми ультрафиолетовыми лучами, обладающими сильным химическим и физиологическим действием. Ртутные лампы широко применяют при лечении разнообразных болезней («искусственное горное солнце»), а также при научных исследованиях как сильный источник ультрафиолетовых лучей.
Тлеющий разряд . Кроме искры, короны и дуги, существует еще одна форма самостоятельного разряда в газах – так называемый тлеющий разряд. Для получения этого типа разряда удобно использовать стеклянную трубку длинной около полуметра, содержащую два металлических электрода. Присоединим электроды к источнику постоянного тока с напряжение в несколько тысяч вольт (годится электрическая машина) и будем постепенно откачивать из трубки воздух. При атмосферном давлении газ внутри трубки остается темным, так как приложенное напряжение в несколько тысяч вольт недостаточно для того, чтобы пробить длинный газовый промежуток. Однако когда давление газа достаточно понизится, в трубке вспыхивает светящийся разряд. Он имеет вид тонкого шнура (в воздухе – малинового цвета, в других газах – других цветов), соединяющий оба электрода. В этом состоянии газовый столб хорошо проводит электричество.
При дальнейшей откачен светящийся шнур размывается и расширяется, и свечение заполняет почти всю трубке. Различают следующие две части разряда: 1) несветящуюся часть, прилегающую к катоду, получившую название темного катодного пространства; 2) светящийся столб газа, заполняющий всю остальную часть трубки, вплоть до самого анода. Эта часть разряда носит название положительного столба.
А работает это вот как. При тлеющем разряде газ хорошо проводит электричество, а значит, в газе все время поддерживается сильная ионизация. При этом в отличие от дугового разряда катод все время остается холодным. Почему же в этом случае происходит образование ионов?
Падение потенциала или напряжения на каждом сантиметре длины газового столба в тлеющем разряде очень различно в разных частях разряда. Получается, что почти все падение потенциала приходится на темное пространство. Разность потенциалов, существующая между катодом и ближайшей к нему границей пространства, называют катодным падением потенциала. Оно измеряется сотнями, а в некоторых случаях и тысячами вольт. Весь разряд оказывается существует за счет этого катодного падения.
Значение катодного падения заключается в том, что положительные ионы, пробегая эту большую разность потенциалов, приобретают большую скорость. Так как катодное падение сосредоточено в тонком слое газа, то здесь почти не происходит соударений ионов с газовыми атомами, и по этому, проходя через область катодного падения, ионы приобретают очень большую кинетическую энергию. Вследствие этого при соударении с катодом они выбивают из него некоторое количество электронов, которые начинают двигаться к аноду. Проходя через темное пространство, электроны в свою очередь ускоряются катодным падением потенциала и при соударения с газовыми атомами в более удаленной части разряда производят ионизацию ударом. Возникающие при этом положительные ионы опять ускоряются катодным падением и выбивают из катода новые электроны и т. д. Таким образом все повторяется до тех пор пока на электродах есть напряжение.
Значит мы видим, что причинами ионизации газа в тлеющем разряде являются ударная ионизация и выбивание электронов с катода положительными ионами.
Такой разряд используют в основном для освещения. Применяется в люминесцентных лампа.

Словом «плазма» (от греч. «плазма» - «оформленное») в середине XIX в. стали именовать бесцветную часть крови (без красных и белых телец) и жидкость, наполняющую живые клетки. В 1929 г. американские физики Ирвинг Лёнгмюр (1881-1957) и Леви Тонко (1897-1971) назвали плазмой ионизованный газ в газоразрядной трубке. Английский физик Уильям Крукс (1832-1919), изучавший электрический разряд в трубках с разрежённым воздухом, писал: «Явления в откачанных трубках открывают для физической науки новый мир, в котором материя может существовать в четвёртом состоянии». В зависимости от температуры любое вещество изменяет своё состояние. Так, вода при отрицательных (по Цельсию) температурах находится в твёрдом состоянии, в интервале от 0 до 100 "С - в жидком, выше 100 °С-в газообразном. Если температура продолжает расти, атомы и молекулы начинают терять свои электроны - ионизуются и газ превращается в плазму. При температурах более 1 000 000 °С плазма абсолютно ионизована - она состоит только из электронов и положительных ионов. Плазма - наиболее распространённое состояние вещества в природе, на неё приходится около 99 % массы Вселенной. Солнце, большинство звёзд, туманности - это полностью ионизованная плазма. Внешняя часть земной атмосферы (ионосфера) тоже плазма. Ещё выше располагаются радиационные пояса, содержащие плазму. Полярные сияния, молнии, в том числе шаровые, - всё это различные виды плазмы, наблюдать которые можно в естественных условиях на Земле. И лишь ничтожную часть Вселенной составляет вещество в твёрдом состоянии - планеты, астероиды и пылевые туманности. Под плазмой в физике понимают газ, состоящий из электрически заряженных и нейтральных частиц, в котором суммарный электрический заряд равен нулю, т. с. выполнено условие квазинейтральности (поэтому, например, пучок электронов, летящих в вакууме, не плазма: он несет отрицательный заряд). ПЛАЗМА - частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. В лабораторных условиях плазма образуется в электрическом разряде в газе, в процессах горения и взрыва. Когда луч лазера сфокусировали линзой, в воздухе в области фокуса вспыхнула искра, и там образовалась плазма. Это вызвало огромный интерес у физиков. Первые затравочные электроны появляются в результате вырывания их из атомов среды после одновременного поглощения нескольких фотонов световой волны. Энергия каждого фотона рубинового лазера равна 1, 78 эВ. Далее свободный электрон, поглощая фотоны, достигает энергии 10 эВ, достаточной для ионизации и рождения нового электрона в процессе столкновения с атомами среды. Разряд может гореть в течение длительного времени и светится ослепительно белым светом, на него невозможно смотреть без тёмных очков. Необычайно высокая температура- уникальное свойство оптического заряда- представляет большие возможности для использования его в качестве источника света. Возможность создания плазменного шнура световым излучением лазера открывает возможности для передачи энергии на расстояние. Носителями заряда в плазме являются электроны и ионы, образовавшиеся в результате ионизации газа. Отношение числа ионизованных атомов к полному их числу в единице объема плазмы называют степенью ионизации плазмы (а). В зависимости от величины а говорят о слабо ионизованной (а - доли процента), частично ионизованной (а - несколько процентов) к полностью ионизованной (а близка к 100%) плазме. Средние кинетические энергии различных типов частиц, составляющих плазму, могут быть разными. Поэтому в общем случае плазму характеризуют не одним значением температуры, а несколькими - различают электронную температуру Те, ионную температуру Тi и температуру нейтральных атомов Та. Плазму с ионной температурой Тi < 105 К называют низкотемпературной, а с Тi > 106 К - высокотемпературной. Высокотемпературная плазма является основным объектом исследования по УТС (управляемому термоядерному синтезу). Низкотемпературная плазма находит применение в газоразрядных источниках света, газовых лазерах, МГД - генераторах и др. Наиболее широко плазма применяется в светотехнике - в газоразрядных лампах, освещающих улицы, и лампах дневного света, используемых в помещениях. А кроме того, в самых разных газоразрядных приборах: выпрямителях электрического тока, стабилизаторах напряжения, плазменных усилителях и генераторах сверхвысоких частот (СВЧ), счётчиках космических частиц. Все так называемые газовые лазеры (гелий-неоновый, криптоновый, на диоксиде углерода и т. п.) на самом деле плазменные: газовые смеси в них ионизованы электрическим разрядом. Свойствами, характерными для плазмы, обладают электроны проводимости в металле (ионы, жестко закрепленные в кристаллической решётке, нейтрализуют их заряды), совокупность свободных электронов и подвижных «дырок» (вакансий) в полупроводниках. Поэтому такие системы называют плазмой твёрдых тел Газовую плазму принято разделять на низкотемпературную - до 100 тыс. градусов и высокотемпературную - до 100 млн градусов. Существуют генераторы низкотемпературной плазмы - плазмотроны, в которых используется электрическая дуга. С помощью плазмотрона можно нагреть почти любой газ до 7000-10000 градусов за сотые и тысячные доли секунды. С созданием плазмотрона возникла новая область науки - плазменная химия: многие химические реакции ускоряются или идут только в плазменной струе. Плазмотроны применяются и в горно-рудной промышленности, и для резки металлов. Созданы также плазменные двигатели, магнитогидродинамические электростанции. Разрабатываются различные схемы плазменного ускорения заряженных частиц. Центральной задачей физики плазмы является проблема управляемого термоядерного синтеза. Термоядерными называют реакции синтеза более тяжёлых ядер из ядер лёгких элементов (в первую очередь изотопов водорода - дейтерия D и трития Т), протекающие при очень высоких температурах (» 108 К и выше) В естественных условиях термоядерные реакции происходят на Солнце: ядра водорода соединяются друг с другом, образуя ядра гелия, при этом выделяется значительное количество энергии. Искусственная реакция термоядерного синтеза была осуществлена в водородной бомбе.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Национальный исследовательский Томский политехнический университет

Кафедра техники и электрофизики высоких напряжений

Курсовой проект

Предмет «Прикладная физика и химия плазмы»

Дуговой разряд

Выполнил студент группы 4ТМ41

Аширбаев М.Е.

Проверил профессор, д.ф.-м.н. ТЭВН

Пушкарев А.И.

Томск, 2015

дуговой разряд катодный вольтамперный

1. Общие сведения

2. Свойства дугового разряда

2.1 Образование дуги

2.2 Катодное пятно. Внешний вид и отдельные части дугового разряда

2.3 Распределение потенциала и вольтамперная характеристика при дуговом разряде

2.4 Температура и излучение отдельных частей дугового разряда

2.5 Генерация незатухающих колебаний при помощи электрической дуги

3. Применение дугового разряда

3.1 Современные методы электрообработки

3.2 Электродуговая сварка

3.3 Плазменная технология

3.4 Плазменная сварка

Заключение

Список использованных источников

1. Общие сведения

Дуговой разряд в виде так называемой электрической дуги был впервые обнаружен в 1802 году русским учёным профессором физики Военно-медико-хирургической академии в Петербурге, а впоследствии академиком Петербургской Академии наук Василием Владимировичем Петровым. Петров следующими словами описывает в одной из изданных им книг свои первые наблюдения над электрической дугой:

«Если на стеклянную плитку или на скамеечку со стеклянными ножками будут положены два или три древесных угля... и если металлическими изолированными направлятелями...сообщенными с обоими полюсами огромной батареи, приближать оные один к другому на расстояние от одной до трёх линий, то является между ними весьма яркий белого цвета свет или пламя, от которого оные угли скорее или медлительнее загораются и от которого тёмный покой довольно ясно освещен быть может... ».

Путь к электрической дуге начался в глубокой древности. Еще греку Фалесу Милетскому, жившему в шестом веке до нашей эры, было известно свойство янтаря притягивать при натирании легкие предметы--перышки, солому, волосы и даже создавать искорки. Вплоть до семнадцатого века это был единственный способ электризации тел, не имевший никакого практического применения. Ученые искали объяснение этому явлению.

Английский физик Уильям Гильберт (1544--1603) установил, что и другие тела (например, горный хрусталь, стекло), подобно янтарю, обладают свойством притягивать легкие предметы после натирания. Он назвал эти свойства электрическими, впервые введя этот термин в употребление (по-гречески янтарь--электрон).

Бургомистр из Магдебурга Отто фон Герике (1602--1686) сконструировал одну из первых электрических машин. Это была электростатическая машина, представлявшая собой серный шар, укрепленный на оси. Одним из полюсов служил... сам изобретатель. При вращении рукоятки из ладоней довольного бургомистра с легким потрескиванием вылетали синеватые искры. Позднее машину Герике усовершенствовали другие изобретатели. Серный шар был заменен стеклянным, а вместо ладоней исследователя в качестве одного из полюсов применены кожаные подушечки.

Большое значение имело изобретение в восемнадцатом веке лейденской банки--конденсатора, позволившего накапливать электричество. Это был стеклянный сосуд с водой, обернутый фольгой. В воду погружали металлический стержень, пропущенный через пробку.

Американский ученый Бенджамин Франклин (1706--1790) доказал, что вода в собирании электрических зарядов никакой роли не играет, этим свойством обладает стекло--диэлектрик.

Электростатические машины получили довольно широкое распространение, но лишь как забавные вещицы. Были, правда, попытки лечения больных с помощью электричества, однако каков был физиотерапевтический эффект такого лечения, сказать трудно.

Французский физик Шарль Кулон (1736--1806)-- основатель электростатики-в 1785 г. установил, что сила взаимодействия электрических зарядов пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними.

В сороковых годах восемнадцатого века Бенджамин Франклин выдвинул теорию о том, что существует электричество только одного рода--особая электрическая материя, состоящая из мельчайших частиц, способных проникать внутрь вещества. Если в теле имеется избыток электрической материи, оно заряжено положительно, при ее недостатке--тело заряжено отрицательно. Франклин ввел в практику знаки «плюс» и «минус»,а также термины: конденсатор, проводник, заряд.

С оригинальными теориями о природе электричества выступили М. В. Ломоносов (1711--1765), Леонард Эйлер (1707--1783), Франц Эпинус (1724--1802) и другие ученые. К концу восемнадцатого века свойства и поведение неподвижных зарядов были достаточно изучены и в какой-то мере объяснены. Однако ничего не было известно об электрическом токе--движущихся зарядах, так как не существовало устройства, которое могло бы заставить двигаться большое количество зарядов. Токи, получаемые от электростатической машины, были слишком малы, их нельзя было измерить.

2. Свойства дугового разряда

2.1 Образование дуги

Если в тлеющем разряде увеличивать силу тока, уменьшая внешнее сопротивление, то при большой силе тока напряжение на зажимах трубки начинает падать, разряд быстро развивается и превращается в дуговой. В большинстве случаев переход совершается скачком и практически нередко ведёт к короткому замыканию. При подборе сопротивления внешнего контура удаётся стабилизовать переходную форму разряда и наблюдать при определённых давлениях непрерывный переход тлеющего разряда в дугу. Параллельно с падением напряжения между электродами трубки идёт возрастание температуры катода и постепенное уменьшение катодного падения.

Применение обычного способа зажигания дуги путём раздвигания электродов вызвано тем, что дуга горит при сравнительно низких напряжениях в десятки вольт, тогда как для зажигания тлеющего разряда нужно при атмосферном давлении напряжение порядка десятков киловольт. Процесс зажигания при раздвигании электродов объясняется местным нагреванием электродов вследствие образования между ними плохого контакта в момент разрыва цепи. Вопрос о развитии дуги при разрыве цепи технически важен не только с точки зрения получения «полезных» дуг, но также и с точки зрения борьбы с «вредными» дугами, например с образованием дуги при размыкании рубильника. Пусть L-само- индукция контура, W--его сопротивление, Ъ--э.д.с. источника тока U(I)--функция вольтамперной характеристики дуги. Тогда мы должны иметь:

Ъ= L dI/dt+WI+U(I) (1)

LdI/dt=(Ъ-WI)-U(I)=? (2)

Разность (Ъ -- WI) есть не что иное, как ордината прямой сопротивления АВ (рис.1), а U(I)-- ордината характеристики дуги при данном I. Чтобы dI/dt было отрицательно, т.е. Чтобы ток I непременно уменьшался со временем и между электродами рубильника не образовалось стойкой дуги, надо, чтобы

Рис. 1. Относительное положение прямой сопротивления и кривой вольтамперной характеристики установившейся дуги для случаев: а)когда дуга не может возникнуть при разрыве цепи; б)когда дуга возникает при разрыве в интервале силы тока, соответствующем точкам Р и Q.

имело место?<0, т. е. надо, чтобы во всех точках характеристики соблюдалось неравенство U(I)>Ъ-WI. Для этого характеристика всеми своими точками должна лежать выше прямой сопротивления (рис. 1, а). Это простое заключение не учитывает ёмкости в цепи и относится лишь к постоянному току.

Точка пересечения прямой сопротивления с кривой вольт-амперной характеристики установившейся дуги соответствует низшему пределу силы постоянного тока, при котором может возникнуть дуга при разрыве цепи (рис. 1, б). В случае размыкания рубильником дуги переменного тока, потухающей при каждом переходе напряжения через нуль, существенно, чтобы условия, имеющиеся налицо в разрядном промежутке при размыкании, не допускали нового зажигания дуги при последующем возрастании напряжения источника тока. Для этого требуется, чтобы при возрастании напряжения разрядный промежуток был достаточно деионизован. В выключателях сильных переменных токов искусственно добиваются усиленной деионизации путём введения специальных электродов, отсасывающих заряженные частицы газа благодаря двух полярной диффузии, а также путём применения механического дутья или путём воздействия на разряд магнитным полем. При высоких напряжениях применяют масляные выключатели.

2.2 Катодное пятно. Внешний вид и отдельные части дугового разряда

Катодное пятно, неподвижное на угольном катоде, на поверхности жидкой ртути находится в непрерывном быстром движении. Положение катодного пятна на поверхности жидкой ртути может быть закреплено при помощи металлического штифта, погруженного в ртуть и немного высовывающегося из неё.

В случае небольшого расстояния между анодом и катодом тепловое излучение анода сильно влияет на свойства катодного пятна. При достаточно большом расстоянии анода от угольного катода размеры катодного пятна стремятся к некоторому постоянному предельному значению, и площадь, занимаемая катодным пятном на угольном электроде в воздухе, пропорциональна силе тока и соответствует при атмосферном давлении 470 а/смІ.Для ртутной дуги в вакууме найдено 4000 а/смІ.

При уменьшении давления площадь, занимаемая катодным пятном на угольном катоде, при постоянной силе тока увеличивается.

Резкость видимой границы катодного пятна объясняется тем, что сравнительно медленному уменьшению температуры с удалением от центра пятна соответствует быстрое падение как светового излучения, так и термоэлектронной эмиссии, а это равносильно резкой «оптической» и «электрической» границам пятна.

Угольный катод при горении дуги в воздухе заостряется, тогда как на угольном аноде, если разряд не перекрывает всю переднюю площадь анода, образуется круглое углубление--положительный кратер дуги .

Образованно катодного пятна объясняется следующим образом. Распределение пространственных зарядов в тонком слое у катода таково, что здесь разряд требует для своего поддержания тем меньшей разницы потенциалов, чем меньше поперечное сечение канала разряда. Поэтому разряд на катоде должен стягиваться.

Непосредственно к катодному пятну прилегает часть разряда, называемая отрицательной пли катодной кистью или отрицательным пламенем. Длина катодной кисти в дуге при низком давлении определяется тем расстоянием, на которое залетают быстрые первичные электроны, получившие свои скорости в области катодного падения потенциала.

Между отрицательной кистью и положительным столбом расположена область, аналогичная Фарадееву тёмному пространству тлеющего разряда. В дуге Петрова в воздухе, кроме отрицательной кисти, имеется положи-тельное пламя и ряд ореолов. Спектральный анализ указывает на наличие в этих пламенях и ореолах ряда химических соединений (циана и окислов азота).

При горизонтальном расположении электродов и большом давлении газа положительный столб дугового разряда изгибается кверху под действием конвекционных токов нагретого разрядом газа. Отсюда произошло самое название дуговой разряд.

2.3 Распределение потенциала и вольтамперная характеристика при дуговом разряде

В дуге Петрова высокая температура и высокое давление не дают возможности использовать для измерения распределения потенциала метод зондов.

Падение потенциала между электродами дуги складывается из катодного падения и Uк, анодного падения Uа и падения в положительном столбе. Сумму катодного и анодного падений потенциала можно определить, сближая анод и катод до исчезновения положительного столба и измеряя напряжение между электродами. В случае дуги при низком давлении можно определить значения потенциала в двух точках столба дуги, пользуясь методом зондовых характеристик, вычислить отсюда продольный градиент потенциала и далее подсчитать как анодное, так и катодное падение потенциала.

Установлено, что в дуговом разряде при атмосферном давлении сумма катодного и анодного падений примерно той же величины, что и ионизационный потенциал газа или пара, в котором происходит разряд.

В технике применения дуги Петрова с угольными электродами обычно пользуются эмпирической формулой Айртона:

U=a+bl+(c+dl)/I (3)

Здесь U - напряжение между электродами, I - сила тока в дуге, l - длина дуги, а, b, с и d - четыре постоянных. Формула характеристики (3) установлена для дуги между угольными электродами в воздухе. Под l подразумевается расстояние между катодом и плоскостью, проведённой через края положительного кратера.

Перепишем формулу (4) в виде

U=а+c/I+l(b+d/I). (4)

В (4) члены, содержащие множитель l, соответствуют падению потенциала в положительном столбе; первые два члена представляют собой сумму катодного и анодного падения Uк+Uа. Постоянные в (3) зависят от давления воздуха и от условий охлаждения электродов, а следовательно, от размеров и формы углей.

В случае дугового разряда в откачанном сосуде, заполненном парами металла (например, ртути), давление пара зависит от температуры наиболее холодных частей сосуда и поэтому ход характеристики сильно зависит от условий охлаждения всей трубки.

Динамическая характеристика дугового разряда сильно отличается от статической. Вид динамической характеристики зависит от быстроты изменения режима дуги. Практически наиболее интересна характеристика дуги при питании переменным током. Одновременное осциллографирование тока и напряжения даёт картину, изображенную на рис.2. Начерченная по этим кривым характеристика дуги за целый период имеет вид, представленный на рис.2. Пунктиром показан ход напряжения при отсутствии разряда.

Рис. 2. Осциллограмма тока и напряжения дугового разряда на переменном токе низкой частоты. Точки А, В, С и т.д. соответствуют точкам, обозначенным теми же буквами

Катод, не успевший ещё охладиться после разряда, имевшего место в предыдущем полупериоде тока, с самого начала полупериода, когда внешняя э.д.с. проходит через нуль, эмитирует электроны. От точки О до точки А характеристика соответствует несамостоятельному разряду, источником которого являются эмитируемые катодом электроны. В точке А происходит зажигание дуги. После точки А разрядный ток быстро увеличивается. При наличии сопротивления во внешней цепи напряжение между электродами дуги падает, хотя э.д.с. источника тока (пунктир на рис.3), пробегая синусоиду, ещё увеличивается. С уменьшением напряжения и тока, даваемого внешним источником, разрядный ток начинает уменьшаться.

С уменьшением тока в дуге напряжение между её электродами может вновь возрасти в зависимости от внешнего сопротивления, но часть ВС характеристики на рис.3 может быть и горизонтальной или иметь противоположный наклон. В точке С имеет место потухание дуги.

После точки С ток несамостоятельного разряда уменьшается до нуля вместе с уменьшением напряжения между электродами.

После перехода напряжения через нуль роль катода начинает играть прежний анод и картина повторяется при обратных знаках тока и напряжения.

На вид динамической характеристики оказывают влияние все условия, определяющие режим дуги: расстояние между электродами, величина внешнего сопротивления, самоиндукция и ёмкость внешней цепи, частота переменного тока, питающего дугу, и т. д.

Если на электроды дуги, питаемой постоянным током, наложить переменное напряжение амплитуды, меньшей, чем напряжение питающего дугу постоянного тока, то характеристика имеет вид замкнутой петли, охватывающей статическую характеристику ВС с двух сторон. При увеличении частоты переменного тока ось этой петли поворачивается, сама петля сплющивается и, наконец, стремится принять вид отрезка прямой ОА , проходящей через начало координат (рис.3).

Рис. 3. Изменение динамической характеристики при повышенной частоты переменного тока, наложенного на постоянный

При очень малой частоте петля динамической характеристики превращается в отрезок статической характеристики ВС, так как все внутренние параметры разряда, в частности концентрация ионов и электронов, успевают в каждой точке характеристики принимать значения, соответствующие стационарному разряду при данных U и I. Наоборот, при очень быстром изменении и параметры разряда совершенно не успевают изменяться, поэтому I оказывается пропорциональным и, что соответствует прямой ОА, проходящей через начало координат. Таким образом, при увеличении частоты переменного тока петля характеристики (рис. 3) становится во всех своих точках возрастающей.

В связи с возможностью полной ионизации газа в дуговом разряде стоит вопрос об обрыве дуги при малом давлении газа и очень сильных токах. В явлении обрыва дуги существенную роль играет значительное уменьшение плотности газа вследствие электрофореза и отсоса ионов к стенкам, особенно в таких местах, где разрядный промежуток сильно сужен. Практически это приводит к необходимости избегать чрезмерных сужений при постройке ртутных выпрямителей на очень большие силы тока.

Электрики, имевшие впервые дело с электрической дугой, пытались применить закон Ома также и в этом случае. Для получения результатов расчёта по закону Ома, согласных с действительностью, им пришлось ввести представление об обратной электродвижущей силе дуги. По аналогии с явлениями в гальванических элементах, предполагаемое появление этой э.д.с. назвали поляризацией дуги. Вопросу об обратной э.д.с. дуги посвящены работы русских учёных Д. А. Лачинова и В. Ф. Миткевича. Дальнейшее развитие представлений об электрических разрядах в газах показало, что такая постановка вопроса является чисто формальной и может быть с успехом заменена представлением о падающей характеристике дуги. Справедливость этой точки зрения подтверждается неудачей всех попыток непосредственно обнаружить экспериментально обратную э.д.с. электрической дуги.

2.4 Температура и излучение отдельных частей дугового разряда

В случае дуги в воздухе между угольными электродами преобладает излучение раскалённых электродов, главным образом, положительного кратера. Излучение анода, как излучение твёрдого тела, обладает сплошным спектром. Интенсивность его определяется температурой анода. Последняя является характерной величиной для дуги в атмосферном воздухе при аноде из какого-либо данного материала, так как температура анода от силы тока не зависит и определяется исключительно температурой плавления или возгонки материала анода. Температура плавления или возгонки зависит от давления, под которым находится плавящееся или возгоняемое тело. Поэтому температура анода, а следовательно, и интенсивность излучения положительного кратера зависят от давления, при котором горит дуга. В этом отношении известны классические опыты с угольной дугой под давлением, приведшие к получению очень высоких температур.

Об изменении температуры положительного кратера с давлением даёт понятие кривая рис 4. Прямая линия, на которую на этом чертеже укладываются точки для давлений от 1 атм. и выше, служит подтверждением предположения, что температура положительного кратера определяется температурой плавления или возгонки вещества анода, так как в этом случае должна существовать линейная зависимость между ln р и 1/T. Отступление от линейной зависимости при более низких давлениях объясняется тем, что при давлении ниже 1 атм. количество тепла, выделяющееся на аноде, недостаточно для нагревания анода до температуры плавления или возгонки.

Рис. 4. Изменение температуры угольного анода электрической дуги в воздухе при изменении давления. Шкала по оси ординат логарифмическая

Температура катодного пятна дуги Петрова всегда на несколько сот градусов ниже температуры положительного кратера. Высокие температуры шнура дуги не могут быть определены при помощи термоэлемента или болометра. В настоящее время для определения температуры в дуге применяют спектральные методы. При больших силах тока температура газа в дуге Петрова может быть выше температуры анода и достигает 6000° К. Такие высокие температуры газа характерны для всех случаев дугового разряда при атмосферном давлении. В случае очень больших давлений (десятки и сотни атмосфер) температура в центральных частях от шнуровавшегося положительного столба дуги доходит до 10 000° К. В дуговом разряде при низких давлениях температура газа в положительном столбе того же порядка, как и в положительном столбе тлеющего разряда.

Температура положительного кратера дуги выше, чем температура катода, потому что на аноде весь ток переносится электронами, бомбардирующими и нагревающими анод. Электроны отдают аноду не только всю приобретённую в области анодного падения кинетическую энергию, но ещё и работу выхода (скрытую теплоту испарения» электронов). Напротив, на катод попадает и его бомбардирует и нагревает малое число положительных ионов по сравнению с числом электронов, попадающих на анод при той же силе тока. Остальная часть тока на катоде осуществляется электронами, при выходе которых в случае

термоэлектронной дуги на работу выхода затрачивается тепловая энергия катода.

2.5 Генерация незатухающих колебаний при помощи электрической дуги

Благодаря тому, что дуга имеет падающую характеристику, она может быть использована в качестве генератора незатухающих колебаний. Схема такого дугового генератора представлена на рис. 5. Условия генерации колебаний в этой схеме можно вывести из рассмотрения условий устойчивости стационарного разряда при заданных параметрах внешней цепи. Пусть электродвижущая сила источника постоянного тока, питающего разряд (рис.5), равна Ъ, напряжение между электродами трубки U, сила стационарного тока через разрядную трубку при данном режиме равна I, ёмкость катод-анод трубки плюс ёмкость всех подводящих проводов С, самоиндукция в цепи L, сопротивление, через которое подаётся ток от источника, R.

Рис. 5. Принципиальная электрическая схема дугового генератора.

При установившемся режиме постоянного тока будем иметь:

Ъ=U о+ IR (5)

Допустим, что этот стационарный режим нарушен. Разрядный ток в какой-либо данный момент времени равен I + i , где i - малая величина, а разность потенциалов между электродами равна U. Введём обозначение U?=dU/dI (dU/di )i=0 равно тангенсу угла наклона касательной к вольтамперной характеристике в рабочей точке, соответствующей выбранному нами первоначально режиму (ток I). Посмотрим, как будет дальше изменяться i . Если i будет возрастать, то данный режим разряда неустойчив; если, наоборот, i беспредельно убывает, то режим разряда устойчивый.

Обратимся к вольтамперной характеристике рассматриваемого разрядного промежутка U=f (I +i ) - через трубку идёт ток I +i и ёмкость С заряжается (или разряжается). Разность потенциалов на ёмкости С уравновешивается в этом случае не только напряжением на разрядном промежутке, но и э.д.с. самоиндукции цепи. Пусть I +i2 --общий ток через сопротивление R. Обозначим ток, заряжающий ёмкость С, через i1 ; мгновенное значение разности потенциалов на ёмкости С-- через U1.Разность потенциалов между электродами дуги будет U 0+ iU ".

Ъ =U1+(i+I2)R, (6)

U1-U0=U"i+Ldi/dt, (7)

i 2= i 1+ i . (8)

Добавочный заряд Q на ёмкости С по сравнению со стационарным режимом:

Q=?i 1 dt=(U 1 -U 0)C. (9)

Вычитая (5) из (6), находим:

U 1 - U 0 =- i 2 R (10)

Выражения (7), (8) и (10) дают:

U"i+Ldi/dt=-R(i+i 1 ) . (11)

Выражения (7) и (9) дают:

1/C? i 1 dt = U "i + Ldi / dt . (12)

Дифференцируя (12) по t и вставляя результат в (11), находим:

U"i+Ldi/dt=-iR-RCU"di/dt-RLCdІi/dtІ. (13)

dІi/dtІ +(1/CR+U"/L )di/dt + 1/LC(U"/R+1)i =0 (14)

Формула (14) представляет собой дифференциальное уравнение, которому подчиняется добавочный ток i .

Как известно, полный интеграл уравнения (14) имеет вид:

i=А1е^r1t+А2е^r2t, (15)

где r1 и r2-- корни характеристического уравнения, определяемые формулой

r =-1/2(1/CR + U "/ L )+ v1/4(1/ CR + U "/ L )І-1/ LC (U "/ R +1) . (16)

Если подкоренная величина в (16) больше нуля, то r1 и r2 оба действительны, i изменяется апериодически по экспоненциальному закону и решение (15) соответствует апериодическому изменению тока. Для того чтобы в рассматриваемой нами схеме возникли колебания тока, необходимо, чтобы r 1 и r 2 были комплексными величинами, т. е. чтобы

1/LC(U"/R+1)>1/4(1/CR+U"/L)І (17)

В этом случае (15) можно представить в виде

i=A 1 e -дt+jщt + A 2 e -дt-jщt , (18)

д=1/2(1/CR+U"/L); i= v-1.

При д < 0 колебания, возникшие в рассматриваемой цепи, будут раскачиваться. При д > 0 они быстро затухают, и разряд на постоянном токе будет устойчив.

Таким образом, для того чтобы в рассматриваемой схеме в конечном итоге могли установиться незатухающие колебания, надо, чтобы

(1/ CR + U "/ L )<0. (19)

Так как Р, L и С существенно положительные величины, то неравенство (19) может быть соблюдено только при условии:

dU/di=U"<0. (20)

Отсюда заключаем, что колебания в рассматриваемом контуре могут возникнуть только при падающей вольтамперной характеристике разряда.

Исследование условий, при которых r1 и r2 действительны и оба меньше нуля, приводит к условиям устойчивости разряда постоянного тока: Условия (21) и (22) представляют собой общие условия. Устойчивости разряда, питаемого постоянным напряжением.

(1/ CR + U "/ L )>0 и (21)

U "/ R +1>0 . (22)

Из (21) следует, что при возрастающей вольтамперной характеристике разряд всегда устойчив. Объединяя это требование с условием (22), находим, что при падающей характеристике разряд может быть устойчивым только при

|U"|

При непосредственном применении формул этого параграфа к вопросу о генерации колебаний при помощи дуги приходится брать U" из «средней характеристики», построенной на основании восходящей и нисходящей ветвей динамической характеристики.

При периодическом изменении силы тока в дуге Петрова изменяются температура и плотность газа и скорости аэродинамических потоков. При подборе соответствующего режима эти изменения приводят к возникновению акустических колебании в окружающем воздухе. В результате получается так называемая поющая дуга, воспроизводящая чистые музыкальные тона.

3 . Применение дугового разряда

3.1 Современные методы электрообработки

Среди современных технологических процессов одним из самых распространенных является электросварка. Сварка позволяет сваривать, паять, склеивать, напылять не только металлы, но и пластмассы, керамику и даже стекло. Диапазон применения этого метода поистине необъятен -- от производства мощных подъемных кранов, строительных металлоконструкций, оборудования для атомных и других электростанций, постройки крупнотоннажных судов, атомных ледоколов до изготовления тончайших микросхем и различных бытовых изделий. В ряде производств внедрение сварки привело к коренному изменению технологии. Так, подлинной революцией в судостроении стало освоение поточной постройки судов из крупных сварных секций. На многих верфях страны сейчас строят крупнотоннажные цельносварные танкеры. Электросварка позволила решить проблемы создания газопроводов, рассчитанных на работу в северных условиях при давлении 100--120 атмосфер. Сотрудники Института электросварки им. Е. О. Патона предложили оригинальный метод изготовления труб на основе сварочной технологии, предназначенных для таких газопроводов.

Из таких труб со стенками толщиной до 40 миллиметров и собирают высоконадежные газопроводы, пересекающие континенты.

Большой вклад в развитие электросварки внесли советские ученые и специалисты. Продолжая и творчески развивая наследие своих великих предшественников--В. В. Петрова, Н. Н. Бенардоса, Н. Г. Славянова, они создали науку о теоретических основах сварочной техники, разработали ряд новых технологических процессов. Всему миру известны имена академиков Е. О. Патона, В. П. Вологдина, К. К. Хренова, Н. Н. Рыкалина и др.

В настоящее время широко применяется электродуговая, электрошлаковая и плазменно-дуговая сварка.

3.2 Электродуговая сварка

Электродуговая сварка. Простейшим способом является ручная дуговая сварка. К одному полюсу источника тока гибким проводом присоединяется держатель, к другому - свариваемое изделие. В держатель вставляется угольный или металлический электрод. При коротком прикосновении электрода к изделию зажигается дуга, которая плавит основной металл и стержень электрода, образуя сварочную ванну, дающую при затвердевании сварочный шов.

Ручная дуговая сварка требует высокой квалификации рабочего и отличается не самыми лучшими условиями труда, но с ее помощью можно сваривать детали в любом пространственном положении, что особенно важно при монтаже металлоконструкций. Производительность ручной сварки сравнительно невысокая и зависит в значительной мере от такой простой детали, кaк электрододержатель. И сейчас, как и сто лет назад, продолжаются поиски наилучшей его конструкции. Серию простых и надежных электрододержателей изготовили ленинградские новаторы М. Э. Васильев и В.С. Шумский.

При дуговой сварке большое значение имеет защита металла шва от кислорода и азота воздуха. Активно взаимодействуя с расплавленным металлом, кислород и азот атмосферного воздуха образуют окислы и нитриды, снижающие прочность и пластичность сварного соединения.

Существуют два способа защиты места сварки: введение в материал электрода и электродного покрытия различных веществ (внутренняя защита) и введение в зону сварки инертных газов и окиси углерода, покрытие места сварки флюсами (внешняя защита).

В 1932 г. в Московском электромеханическом институте инженеров железнодорожного транспорта под руководством академика К. К. Хренова впервые в мире была осуществлена дуговая электросварка под водой. Однако еще в 1856 г. Л. И. Шпаковский впервые провел опыт по оплавлению дугой медных электродов, опущенных в воду. По совету Д. А. Лачинова, получившего подводную дугу, Н. Н. Бенардос в 1887 г. произвел подводную резку металла. Понадобилось 45 лет, чтобы первый опыт получил научное обоснование и превратился в метод.

А 16 октября 1969 г. электрическая дуга впервые вырвалась в космос. Вот как об этом выдающемся событии сообща-лось в газете «Известия»; «Экипаж космического корабля «Союз-6» в составе подполковника Г. С. Шонина и бортинжене-ра В. Н. Кубасова осуществил эксперименты по проведению сварочных работ, в космосе. Целью этих экспериментов яви-лось определение особенностей сварки различных металлов в условиях космического пространства. Поочередно были осуществлены несколько видов автоматической сварки». И далее: «Проведенный эксперимент является уникальным и имеет большое значение для науки и техники при разработке технологии сварочно-монтажных работ в космосе».

3.3 Плазменная технология

Эта технология основана на использовании дуги с высокой температурой. Она включает плазменную сварку, резку, наплавку и плазменно-механическую обработку.

Как повысить производительность дуги? Для этого надо получить дугу с большей концентрацией энергии, т. е. дугу надо сфокусировать. Добиться этого удалось в 1957--1958 гг., когда в Институте металлургии им. А. А. Байкова была создана аппаратура для плазменно-дуговой резки.

Как увеличить температуру дуги? Наверное, так же, как повышают давление водяной или воздушной струи,-пропустив ее через узкий канал.

Проходя через узкий канал сопла горелки, дуга обжимается струей газа (нейтрального, кислородсодержащего) или смесью газов и вытягивается в тонкую струю. При этом резко меняются ее свойства: температура дугового разряда достигает 50 000 градусов, удельная мощность доходит до 500 и более киловатт на один квадратный сантиметр. Ионизация плазмы в газовом столбе настолько велика, что электропроводность ее оказывается почти такой же, как и у металлов.

Сжатую дугу называют плазменной. С ее помощью осуществляют плазменную сварку, резку, направку, напыление и т. п. Для получения плазменной дуги созданы специальные генераторы -- плазмотроны.

Плазменная дуга, как и обычная, бывает прямого и косвенного действия. Дуга прямого действия замыкается на изделие, косвенного действия -- на второй электрод, которым служит сопло. Во втором случае из сопла вырывается не дуга, а плазменная струя, возникающая за счет нагрева дугой и последующей ионизации плазмообразующего газа. Плазменная струя применяется в основном для плазменного напыления и обработки неэлектропроводных материалов. Газ, окружающий дугу, выполняет также теплозащитную функцию. Наибольшую нагрузку в плазмотроне несет сопло. Чем выше его теплостойкость, тем больший ток можно получить в плазмотроне косвенного действия. Наружный слой плазмообразующего газа имеет относительно низкую температуру, поэтому он защищает сопло от разрушения.

Значительное повышение температуры плазмообразующего газа в плазмотронах прямого действия может привести к электрическому пробою и возникновению двойной дуги -- между катодом и соплом и между соплом и изделием. В таком случае сопло обычно выходит из строя.

3.4 Плазменная сварка

Существуют две конструкции плазмотронов. В одних конструкциях газ подается вдоль дуги, при этом достигается хорошее ее обжатие. В других конструкциях газ охватывает дугу по спирали, за счет чего удается получить стабильную дугу в канале сопла и обеспечить надежную защиту сопла пристеночным слоем газа.

В плазмотронах прямого действия дуга возбуждается не сразу, так как слишком велик воздушный промежуток между катодом и изделием. Сначала возбуждается так называемая дежурная, или вспомогательная, дуга между катодом и соплом. Развивается она из искрового разряда, который возникает под действием напряжения высокой частоты, создаваемого осциллятором. Поток газа выдувает дежурную дугу, она касается обрабатываемого металла, и тогда зажигается основная дуга. После этого осциллятор выключают, и дежурная дуга гаснет. Если этого не произойдет, может возникнуть двойная дуга. Зону шва при плазменной сварке, как и при других ее видах, защищают от действия окружающего воздуха. Для этого кроме плазмообразующего газа в специальное сопло подают защитный газ: аргон или более дешевый и распространенный углекислый газ. Углекислый газ часто используют не только для защиты, но и для образования плазмы. Иногда плазменную сварку ведут под слоем флюса.

Плазменно-дуговую сварку можно производить как автоматически, так и вручную. В настоящее время этот метод получил довольно широкое распространение. На многих заводах внедрена плазменная сварка сплавов алюминия и сталей. Значительную экономию дало применение однопроходной плазменной сварки алюминия вместо многопроходной аргонно-дуговой сварки. Сварку ведут на автоматической установке с применением углекислого газа в качестве плазмообразующего и защитного.

Заключение

В современной жизни применение электрической энергии получило самое широкое распространение. Достижения электротехники используются во всех сферах практической деятельности человека: в промышленности, сельском хозяйстве, на транспорте, в медицине, в быту и т. д. Успехи электротехники оказывают существенное влияние на развитие радиотехники, электроники, телемеханики, автоматики, вычислительной техники, кибернетики. Все это стало возможным в результате строительства мощных электростанций, электрических сетей, создания новых электроэнергетических систем, совершенствования электротехнических устройств. Современная электротехническая промышленность выпускает машины и аппараты для производства, передачи, преобразования, распределения и потребления электроэнергии, разнообразную электротехническую аппаратуру и технологическое оборудование, электроизмерительные приборы и средства электро-связи, регулирующую, контролирующую и управляющую аппаратуру для систем автоматического управления, медицинское и научное оборудование, электробытовые приборы и машины и многое другое. В последние годы дальнейшее развитие получили различные методы электрообработки: электросварка, плазменная резка и наплавка металлов, плазменно-механическая и электроэрозионная обработка. Из вышесказанного видно, что исследование разряда в газе имеет большое значение для общенаучного и технического прогресса. Следовательно, не нужно останавливаться на достигнутом, а необходимо продолжать исследования, отыскивая неизвестное, тем самым стимулируя в дальнейшем построение новых теорий.

Список использованных источников

1. Важов В.Ф., Лавринович В.А., Лопаткин С.А. Техника высоких напряжений/ Курс лекции для бакалавров направления 140200 “Электроэнергетика” - Томск: Изд-во ТПУ, 2006. - 119с.

2. Райзер Ю. П. Физика газового разряда. -- 2-е изд. -- М.: Наука, 1992. -536с.

3. Степанчук К.Ф., Тиняков Н.А. Техника высоких напряжений: [Учеб. Пособие для электро-энерг. Спец. втузов]. - 2-е изд., перераб. и доп. - Мн.: Выш. школа 1982 - 367 с. ил.,

4. Базуткин В.В., Ларионов В.П., Пинталь Ю.С. Техника высоких напряжений: Изоляция и перенапряжения в электрических системах: Учебник для вузов/ Под общ. Ред. Ларионова В.П. - 3-е изд., перераб. и доп. -М.: Энергоатомиздат, 1986. - 464 с.: ил.

5. Лозанский Э. Д., Фирсов О. Б. Теория искры. М., Атомиздат, 1975, 272 с.

6. Лесков Г.И. Электрическая сварочная дуга. М., «Машиностроение», 1970, -335с.

7. Черный О.М. Электродуговая сварка: практика и терия / - Изд. 2-е, доп. и перераб. - Ростов н/Д: Феникс, 2009. - 319 с.

8. Свенчанский А. Д., Смелянский М. Я. Электрические промышленные печи. - М.: 1970.

9. Сапко А.И. Исполнительные механизмы регуляторов мощности дуговых электропечей. М., Энергия, 1969. - 128 с.

10. Ширшов И. Г., Котиков В. Н.Ш64 Плазменная резка. - Л.: Машиностроение. Ленингр. отд-ние,?1987. -192 с.: ил.

11. В. Дембовский. Плазменная металлургия. Прага, СНТЛ. Пер. с чешского. М., «Металлургия», 1981. - 280с. с ил.

12. Гладкий П.В., Переплетчиков Е.Ф., Рябцев И.А. Плазменная наплавка. - К.: «Eкотехнологiя», 2007. - 292с.

13. Коротеев А.С., Миронов В.М., Свирчук Ю.С. - М.: Машиностроение, 1993. - 296 с.

Размещено на Allbest.ru

...

Подобные документы

    Основные параметры и свойства положительного столба (ПС) тлеющего и дугового разрядов. Метастабильные атомы в ПС. Явление катафореза в смеси газов. Основные механизмы накачки возбужденных энергетических уровней газа. Излучение ПС, параметры плазмы.

    контрольная работа , добавлен 25.03.2016

    Исследование и физическая интерпретация соотношения, определяющего зависимость напряжения возникновения разряда от давления газа и межэлектродного расстояния. Возникновение коронного и дугового разрядов в газовом промежутке с плоским оксидным катодом.

    реферат , добавлен 30.11.2011

    Характеристики тлеющего разряда, процессы, обеспечивающие его существование. Картина свечения. Объяснение явлений тлеющего разряда с точки зрения элементарных процессов. Вольт-амперная характеристика разряда между электродами. Процессы в атомарных газах.

    реферат , добавлен 03.02.2016

    Понятие плазмы тлеющего разряда. Определение концентрации и зависимости температуры электронов от давления газа и радиуса разрядной трубки. Баланс образования и рекомбинации зарядов. Сущность зондового метода определения зависимости параметров плазмы.

    реферат , добавлен 30.11.2011

    Изучение тлеющего газового разряда как одного из видов стационарного самостоятельного электрического разряда в газах. Создание квантовых источников света в люминесцентных лампах. Формирование тлеющего газового разряда при низком давлении газа, малом токе.

    презентация , добавлен 13.04.2015

    Емкостной высокочастотный разряд: общие сведения, типы, способы возбуждения, построение простейшей модели, формы существования. Краткая теория метода зондов Ленгмюра. Система уравнений для определения параметров разряда. Измерение разрядного тока.

    дипломная работа , добавлен 30.04.2011

    Методики экспериментального определения коэффициента ионизации газа. Напряжение возникновения разряда. Вольт-амперные характеристики слаботочного газового разряда в аргоне с молибденовым катодом. Распределение потенциала в газоразрядном промежутке.

    контрольная работа , добавлен 28.11.2011

    Условия возникновения электрического разряда в газах. Принцип ионизации газов. Механизм электропроводности газов. Несамостоятельный газовый разряд. Самостоятельный газовый разряд. Различные типы самостоятельного разряда и их техническое применние.

    реферат , добавлен 21.05.2008

    Электрический разряд в газах. Основные типы газового разряда. Исследование квазистационарных токов и квазистационарных напряжений в аргоне. Элементарные процессы в приэлектродном слое. Спектроскопическое исследование аргона. Принцип работы монохроматора.

    реферат , добавлен 13.12.2013

    Понятие и назначение СО2-лазера, его технические характеристики и составляющие части, принцип работы и выполняемые функции. Порядок расчета основных показателей СО2-лазера. Способы организации несамостоятельного разряда постоянного тока, расчет его КПД.