Биографии Характеристики Анализ

Кристаллическое аморфное состояние твердого вещества. Видеоурок «Кристаллическое состояние вещества

В твердом состоянии большинство веществ имеют кристаллическое строение. В этом легко убедиться, расколов кусок вещества и рассмотрев полученный излом. Обычно на изломе (например, у сахара, серы, металлов) хорошо заметны расположенные под разными углами мелкие грани кристаллов, поблескивающие вследствие различного отражения ими света. В тех случаях, когда кристаллы очень малы, кристаллическое строение вещества можно установить при помощи микроскопа.

Каждое вещество обычно образует кристаллы совершенно определенной формы. Например, хлорид натрия кристаллизуется в форме кубов (рис. 59, а), квасцы - в форме октаэдров (рис. 59, б), нитрат натрия - в форме призм (рис. 59, в) и т.д. Кристаллическая форма - одно из характерных свойств вещества.

Рис. 59.

а - хлорид натрия; б - квасцы; в - нитрат натрия

Классификация кристаллических форм основана на симметрии кристаллов. Различные случаи симметрии кристаллических многогранников подробно разбираются в курсах кристаллографии. Здесь укажем только, что все разнообразие кристаллических форм может быть сведено к семи группам, или кристаллическим системам, которые, в свою очередь, подразделяются на классы.

Многие вещества, в частности железо, медь, алмаз, хлорид натрия, кристаллизуются в кубической системе. Простейшими формами этой системы являются куб, октаэдр, тетраэдр. Магний, цинк, лед, кварц кристаллизуются в гексагональной системе. Основные формы этой системы - шестигранные призма и бипирамида.

Природные кристаллы, а также кристаллы, получаемые искусственным путем, редко в точности соответствуют теоретическим формам. Обычно при затвердевании расплавленного вещества кристаллы срастаются вместе, и потому форма каждого из них оказывается не вполне правильной. При быстром выделении вещества из раствора тоже получаются кристаллы, форма которых искажена вследствие неравномерного роста в условиях кристаллизации.

Однако как бы неравномерно ни происходило развитие кристалла, как бы ни была искажена его форма, углы, под которыми сходятся грани кристалла данного вещества, остаются одними и теми же. Это один из основных законов кристаллографии - закон постоянства гран- ных углов. Поэтому по величине двугранных углов в кристалле можно установить, к какой кристаллической системе и к какому классу относится данный кристалл.

Особенности кристаллических тел не ограничиваются только формой кристаллов. Хотя вещество в кристалле совершенно однородно, многие из его физических свойств - прочность, теплопроводность, отношение к свету и др. - не всегда одинаковы по различным направлениям внутри кристалла. Эта важная особенность кристаллических веществ называется анизотропией.

Вырежем, например, в различных направлениях из кубического кристалла каменной соли два одинаковой толщины бруска (рис. 60) и определим сопротивление этих брусков разрыву. Оказывается, что для разрыва второго бруска требуется сила в 2,5 раза большая, чем для разрыва первого бруска. Очевидно, что прочность кристаллов каменной соли в направлении, перпендикулярном граням куба, в 2,5 раза меньше, чем в направлении диагоналей.

Рис. 60.

а - в направлении, перпендикулярном граням куба; б - в направлении диагонали одной из граней куба

Во многих кристаллах различие между прочностью по разным направлениям настолько велико, что при ударе или разламывании они раскалываются по тем плоскостям, перпендикулярно к которым прочность минимальна. Это свойство кристаллов называется спайностью. Примером проявления спайности могут служить кристаллы слюды, раскалывающейся, как известно, на тончайшие пластинки.

Естественным отличием строения большинства твердых материалов (за исключением монокристаллов), в сравнении с жидкими и особенно газообразными (низкомолекулярными) веществами, является их более сложная многоуровневая организация (см. табл. 4.1 и рис. 4.3). Это связано с уменьшением ковалентности и ростом ме- талличности и ионности гомо- и гетероядерных связей элементов их микроструктуры (см. рис. 6.2 и 6.6 и табл. 6.1-6.7), что приводит к росту числа элементов в структуре вещества и материала и соответствующему изменению его агрегатного состояния. При изучении структурной иерархии твердых материалов необходимо понимать единство и различия в уровнях структурной организации твердых металлических и неметаллических материалов с учетом степени упорядоченности в объеме материала элементов, их образующих. Особое значение имеет разница в структуре твердых кристаллических и аморфных тел, заключающаяся в способности кристаллических материалов, в отличие от аморфных тел, образовывать целый ряд более сложных структур, чем базовый электронно-ядерный химический уровень структур.

Аморфное состояние. Специфика аморфного (в пер. с греч. - бесформенного) состояния заключается в нахождении вещества в конденсированном (жидком или твердом) состоянии с отсутствием в его структуре трехмерной периодичности в расположении элементов (атомных остовов или молекул), составляющих это вещество. В результате особенности аморфного состояния обусловлены отсутствием дальнего порядка - строгой повторяемости во всех направлениях одного и того же элемента структуры (ядра или атомного остова, группы атомных остовов, молекулы и т.п.) на протяжении сотен и тысяч периодов. В то же время у вещества в аморфном состоянии существует ближний порядок - согласованность в расположении соседних элементов структуры, т.е. порядок, соблюдаемый на расстояниях, сравнимых с размерами молекул. С расстоянием эта согласованность уменьшается и через 0,5- 1 нм исчезает. Аморфные вещества отличаются от кристаллических изотропностью, т.е. подобно жидкости они имеют одинаковые значения данного свойства при измерении в любом направлении внутри вещества. Переход аморфного вещества из твердого состояния в жидкое не сопровождается скачкообразным изменением свойств - это второй важный признак, отличающий аморфное состояние твердого вещества от кристаллического. В отличие от кристаллического вещества, имеющего определенную температуру плавления, при которой происходит скачкообразное изменение свойств, аморфное вещество характеризуется интервалом размягчения и непрерывным изменением свойств.

Аморфные вещества менее устойчивы, чем кристаллические. Любое аморфное вещество в принципе с течением времени должно кристаллизоваться, и этот процесс должен быть экзотермическим. Часто аморфные и кристаллические формы - это различные состояния одного и того же по составу химического вещества или материала. Так, известны аморфные формы ряда гомоядерных веществ (серы, селена и др.), оксидов (В 2 О э, Si0 2 , Ge0 2 и др.).

Вместе с тем многие аморфные материалы, в частности большинство органических полимеров, закристаллизовать не удается. На практике кристаллизация аморфных, особенно высокомолекулярных, веществ наблюдается очень редко, так как структурные изменения затормаживаются из-за большой вязкости этих веществ. Поэтому, если не прибегать к специальным методам, например к длительному высокотемпературному воздействию, переход в кристаллическое состояние протекает с крайне малой скоростью. В подобных случаях можно считать, что вещество в аморфном состоянии практически вполне устойчиво.

В отличие от аморфного состояния, присущего веществам, находящимся как в жидком или расплавленном виде, так и в твердом конденсированном, стеклообразное состояние относится только к твердому агрегатному состоянию вещества. В результате в жидком или расплавленном аморфном состоянии могут находиться вещества с любым преимущественным типом связи (ковалентным, металлическим и ионным) и, следовательно, и с молекулярной и немолекулярной структурой. Однако в твердом аморфном , или точнее,- стеклообразном состоянии будут в первую очередь находиться вещества на основе ВМС, характеризуемые преимущественно ковалентным типом связи элементов в цепях макромолекул. Это связано с тем, что твердое аморфное состояние вещества получают в результате переохлаждения его жидкого состояния, что препятствует процессам кристаллизации и приводит к «замораживанию» структуры с ближним порядком расположения элементов. Отметим, что наличие макромолекул в структуре полимерных материалов ввиду влияния сте- рического - размерного фактора (ведь из катионов легче создать кристалл, чем из молекул) приводит к дополнительному усложнению процесса кристаллизации. Поэтому органические (полиметилметакрилат и т.д.) и неорганические (оксиды кремния, фосфора, бора и т.д.) полимеры способны образовывать стекла или реализовать аморфное состояние в твердых материалах. Правда, сегодня и расплавы металлов при сверхвысоких скоростях охлаждения (>10 6 °С/с) переводят в аморфное состояние, получая аморфные металлы или металлические стекла с комплексом новых ценных свойств.

Кристаллическое состояние. В кристаллическом теле наблюдается как ближний , так и дальний порядок расположения элементов структуры (атомные остовы или частицы в виде индивидуальных молекул), т.е. элементы структуры размещаются в пространстве на определенном расстоянии друг от друга в геометрически правильном порядке, образуя кристаллы - твердые тела, имеющие естественную форму правильных многогранников. Эта форма является следствием упорядоченного расположения в кристалле элементов, образующих трехмерно-периодическую пространственную укладку в виде кристаллической решетки. Вещество в кристаллическом состоянии характеризуется периодической повторяемостью в трех измерениях расположения в ее узлах атомных остовов или молекул. Кристалл является равновесным состоянием твердых тел. Каждому химическому веществу, находящемуся при данных термодинамических условиях (температуре, давлении) в кристаллическом состоянии, соответствует определенная кристаллическая ковалентная или молекулярная, металлическая и ионная структуры. Кристаллы обладают той или иной структурной симметрией атомных остовов (катионов в металле либо катионов и анионов в ионных кристаллах) или молекул, соответствующей ей макроскопической симметрией внешней формы, а также анизотропией свойств. Анизотропность - это неодинаковость свойств (механических, физических, химических) монокристалла в различных направлениях его кристаллической решетки. Изотропность - это одинаковость свойств вещества в различных ее направлениях. Естественно, что эти закономерности изменения свойств вещества определяются спецификой изменения или неиз- менения их структуры. Реальные кристаллические материалы (включая металлы) являются квазиизотропными структурами, т.е. они изотропны на мезоструктурном уровне (см. табл. 4.1) и их свойства одинаковы во всех направлениях. Это связано с тем, что большинство природных или искусственных кристаллических материалов являются поликристаллическими веществами, а не монокристаллами

(типа алмаза). Они состоят из большого количества так называемых зерен или кристаллитов, кристаллографические плоскости которых повернуты относительно друг друга на некоторый угол а. При этом в любом направлении мезоструктуры материала располагается примерно одинаковое количество зерен с различной ориентацией кристаллографических плоскостей, что приводит к независимости его свойств от направления. Каждое зерно состоит из отдельных элементов - блоков, которые повернуты относительно друг друга на углы порядка нескольких минут, что также обеспечивает изотропность свойств уже самого зерна в целом.

Кристаллические состояния одного и того же вещества могут различаться строением и свойствами, и тогда говорят, что данное вещество существует в различных модификациях. Существование нескольких кристаллических модификаций у данного вещества называется полиморфизмом, а переход из одной модификации в другую - полиморфным превращением. В отличие от полиморфизма, аллотропия - это существование элемента в виде различных «простых» (или, точнее, гомоядерных) веществ независимо от их фазового состояния. Например, кислород 0 2 и озон О э - аллотропные формы кислорода, существующие в газообразном, жидком и кристаллическом состояниях. В то же время алмаз и графит - аллотропные формы углерода - являются одновременно и его кристаллическими модификациями, в этом случае понятия «аллотропия» и «полиморфизм» совпадают для его кристаллических форм.

Нередко также наблюдается явление изоморфизма, при котором два разных по природе вещества образуют кристаллы одинаковой структуры. Такие вещества могут замещать друг друга в кристаллической решетке, образуя смешанные кристаллы. Впервые явление изоморфизма было продемонстрировано немецким минералогом Э. Мичерлихом в 1819 г. на примере КН 2 Р0 4 , KH 2 As0 4 и NH 4 H 2 P0 4 . Смешанные кристаллы являются совершенно однородными смесями твердых веществ - это твердые растворы замещения. Поэтому можно сказать, что изоморфизм - это способность образовывать твердые растворы замещения.

Традиционно кристаллические структуры традиционно делят на гомодесмические (координационные) и гетеродесмические. Гомо- десмическую структуру имеют, например, алмаз, галогениды щелочных металлов. Однако гораздо чаще кристаллические вещества имеют гетеродесмическую структуру; ее характерная черта - присутствие структурных фрагментов, внутри которых атомные остовы соединены наиболее прочными (обычно ковалентными) связями. Эти фрагменты могут представлять собой конечные группировки элементов, цепи, слои, каркасы. Соответственно выделяются островные, цепочечные, слоистые и каркасные структуры. Островными структурами обладают почти все органические соединения и такие неорганические вещества, как галогены, 0 2 , N 2 , С0 2 , N 2 0 4 и др. Роль островов играют молекулы, поэтому такие кристаллы называются молекулярными. Часто в качестве островов выступают многоатомные ионы (например, сульфаты, нитраты, карбонаты). Цепочечное строение имеют, например, кристаллы одной из модификаций Se (атомные остовы связаны в бесконечные спирали) или кристаллы PdCl 2 , в которых присутствуют бесконечные ленты; слоистую структуру - графит, BN, MoS 2 и др.; каркасную структуру - СаТЮ 3 (атомные остовы Ti и О, объединенные ковалентными связями, образуют ажурный каркас, в пустотах которого расположены атомные остовы Са). Часть из этих структур относят к неорганическим (безуглерод- ным) полимерам.

По характеру связи между атомными остовами (в случае гомо- десмических структур) или между структурными фрагментами (в случае гетеродесмических структур) различают: ковалентные (например, SiC, алмаз), ионные, металлические (металлы и интерметаллические соединения) и молекулярные кристаллы. Кристаллы последней группы, в которой структурные фрагменты связаны межмолекулярным взаимодействием, имеют наибольшее число представителей.

Для ковалентных монокристаллов типа алмаза, карборунда и др. характерны тугоплавкость, высокая твердость и износостойкость, что является следствием прочности и направленности ковалентной связи в сочетании с их трехмерной пространственной структурой (полимерные тела).

Ионные кристаллы представляют собой образования, в которых сцепление элементов микроструктуры в виде противоионов обусловлено преимущественно ионными химическими связями. Примером ионных кристаллов являются галогениды щелочных и щелочноземельных металлов, в узлах кристаллической решетки которых находятся чередующиеся положительно заряженные катионы металла и отрицательно заряженные анионы галогена (Na + Cl - , Cs + Cl - , Ca + F^, рис. 7.1).

Рис. 7.1.

В металлических кристаллах сцепление атомных остовов в виде катионов металла обусловлено преимущественно металлическими ненаправленными химическими связями. Данный тип кристаллов характерен для металлов и их сплавов. В узлах кристаллической решетки находятся атомные остовы (катионы), связанные между собой ОЭ (электронным газом). Подробнее структура металлических кристаллических тел будет рассмотрена далее.

Молекулярные кристаллы образованы из молекул, связанных друг с другом ван-дер-ваальсовыми силами или водородной связью. Внутри молекул действует более прочная ковалентная связь (С к преобладает над С и и С м). Фазовые превращения молекулярных кристаллов (плавление, возгонка, полиморфные переходы) происходят, как правило, без разрушения отдельных молекул. Большинство молекулярных кристаллов - кристаллы органических соединений (например, нафталин). Молекулярные кристаллы образуют также такие вещества, как Н 2 , галогены типа J 2 , N 2 , 0 2 , S g , бинарные соединения типа Н 2 0, С0 2 , N 2 0 4 , металлоорганические соединения и некоторые комплексные соединения. К молекулярным кристаллам относятся также кристаллы таких природных полимеров, как белки (рис. 7.2) и нуклеиновые кислоты.

Полимеры, как уже было указано выше, как правило, также относятся к веществам, образующим молекулярные кристаллы. Однако в случае, когда упаковка макромолекул имеет складчатую или фибриллярную конформацию, правильнее было бы говорить о ковалентно-молекулярных кристаллах (рис. 7.3).


Рис. 7.2.


Рис. 7.3.

Это связано с тем, что вдоль одного из периодов решетки (например, периода с в случае полиэтилена, макромолекулы которого находятся в складчатой конформации, образуя ламель) действуют прочные химические (рис. 7.3), преимущественно ковалентные, связи. В то же время вдоль двух других периодов решетки (например, периодов b и с в тех же складчатых кристаллах полиэтилена) действуют уже более слабые силы межмолекулярного взаимодействия .

Деление кристаллов на указанные группы в значительной мере условно, поскольку существуют постепенные переходы от одной группы к другой по мере изменения характера связи в кристалле. Например, среди интерметаллидов - соединений металлов друг с другом - можно выделить группу соединений, в которых снижение металлической компоненты химической связи и соответствующий рост ковалентной и ионной компонент приводят к образованию ХС в соответствии с классическими валентностями. Примерами таких соединений могут служить соединения магния с элементами главной подгруппы IV и V групп Периодической системы, являющимися переходными между металлами и неметаллами (Mg 2 Si, Mg 2 Ge, Mg 2 Sn, Mg 2 Pb, Mg 3 As 2 , Mg 3 Sb 7 , Mg 3 Bi 7), к основным характерным особенностям которых обычно относят следующие:

  • их гетероядерная кристаллическая решетка отличается от гомо- ядерных решеток исходных соединений;
  • в их соединении обычно сохраняется простое кратное соотношение компонентов, позволяющее выразить их состав простой формулой А ш В;? , где А и В - соответствующие элементы; т и п - простые числа;
  • гетероядерные соединения характеризуются новым качеством структуры и свойств в отличие от исходных соединений.

В кристалле структурные элементы (ионы, атомные остовы, молекулы), образующие кристалл, располагаются закономерно по разным направлениям (рис. 7Ла). Обычно пространственное изображение структуры кристаллов представляют схематично (рис.7.45), отмечая точками центры тяжести структурных элементов, включая характеристики решетки.

Плоскости, параллельные координатным плоскостям, находящиеся на расстоянии а, Ь, с друг от друга, делят кристалл на множество равных и параллельно ориентированных параллелепипедов. Наименьший из них называют элементарной ячейкой, их совокупность образует пространственную кристаллическую решетку. Вершины параллелепипеда являются узлами пространственной решетки, с этими узлами совпадают центры тяжести элементов, из которых построен кристалл.

Пространственные кристаллические решетки полностью описывают строение кристалла. Для описания элементарной ячейки кристаллической решетки используют шесть величин: три отрезка, равные расстояниям до ближайших элементарных частиц по осям координат а, Ь, с, и три угла между этими отрезками а, (3, у.

Соотношения между этими величинами определяют форму ячейки, в зависимости от которой все кристаллы разделяют на семь систем (табл. 7.1).

Размер элементарной ячейки кристаллической решетки оценивают отрезки а, Ь, с. Их называют периодами решетки. Зная периоды решетки, можно определить радиус атомного остова элемента. Этот радиус равен половине наименьшего расстояния между частицами в решетке.

О степени сложности решетки судят по числу структурных элементов, приходящихся на одну элементарную ячейку. В простой пространственной решетке (см. рис. 7.4) всегда на одну ячейку приходится один элемент. В каждой ячейке имеется восемь вершин, но


Рис. 7.4. Расположение элементов в кристалле : а - изображение с размещением объема атомного остова элемента; б - пространственное изображение элементарной ячейки и ее параметры

Табл и ца 7.1

Характеристики кристаллических систем

каждый элемент в вершине относится, в свою очередь, к восьми ячейкам. Таким образом, от узла на долю каждой ячейки приходится У 8 объема, а всего узлов в ячейке восемь, и, следовательно, на одну ячейку приходится один структурный элемент.

В сложных пространственных решетках на одну ячейку всегда приходится больше одного структурного элемента, которые наиболее распространены в важнейших чистых металлических соединениях (рис. 7.5).

В ОЦК-решетке кристаллизуются следующие металлы: Fe a , W, V, Сг, Li, Na, К и др. В ГЦК-решетке кристаллизуются Fe y , Ni, Со а, Си, Pb, Pt, Аи, Ag и др. В ГПУ-решетке кристаллизуются Mg, Ti a , Со р, Cd, Zn и др.

Система, период и число структурных элементов, приходящихся на элементарную ячейку, позволяют полностью представить расположение последних в кристалле. В ряде случаев используют дополнительные характеристики кристаллической решетки, обусловленные ее геометрией и отражающие плотность упаковки элемен-


Рис. 7.5. Типы сложных элементарных ячеек кристаллических решеток: а - ОЦК; 6 - ГЦК; в - ГПУ тарных частиц в кристалле. Такими характеристиками являются КЧ и коэффициент компактности.

Число ближайших равноудаленных элементарных частиц определяет координационное число. Например, для простой кубической решетки КЧ будет 6 (Кб); в решетке объемно-центрированного куба (ОЦК) для каждого атомного остова число таких соседей будет равно восьми (К8); для гранецентрированной кубической решетки (ГЦК) КЧ число равно 12 (К 12).

Отношение объема всех элементарных частиц, приходящихся на одну элементарную ячейку, ко всему объему элементарной ячейки определяет коэффициент компактности. Для простой кубической решетки этот коэффициент равен 0,52, для ОЦК - 0,68 и ГЦК - 0,74.

  • Sirotkin R.O. The effect of morphology on the yield behaviour of solution crystallisedpolyethylenes: PhD thesis, University of North London. - London, 2001.

Кристаллическое состояние вещества, характеризуется наличием дальнего порядка в расположении частиц (атомов, . молекул). В кристаллическом состоянии существует и ближний порядок, который характеризуется постоянными координационными числами, и длинами хим. связей. Инвариантность характеристик ближнего порядка в кристаллическое состояние приводит к совпадению структурных ячеек при их трансляционном перемещении и образованию трехмерной периодичности структуры (см. . Кристаллы).

Вследствие своей максимальной упорядоченности кристаллическое состояние характеризуется минимальной внутренней энергией и является термодинамически равновесным состоянием при данных параметрах - давлении, температуре, составе (в случае твердых растворов ) и др. Строго говоря, полностью упорядоченное кристаллическое состояние реально не может быть осуществлено, приближение к нему имеет место при стремлении температуры к 0 К (т. наз. идеальный кристалл). Реальные тела в кристаллическом состоянии всегда содержат некоторое количество дефектов , нарушающих как ближний, так и дальний порядок. Особенно много наблюдается в твердых растворах, в которых отдельные частицы и их группировки статистически занимают различные положения в пространстве.

Вследствие трехмерной периодичности атомного строения основными признаками являются однородность и свойств и симметрия, которая выражается, в частности, в том, что при определенных условиях образования кристаллы приобретают форму многогранников (см. выращивание). Некоторые свойства на поверхности кристалла и вблизи от нее существенно отличны от этих свойств внутри кристалла, в частности из-за нарушения симметрии. Состав и, соответственно, свойства меняются по объему кристалла из-за неизбежного изменения состава среды по мере роста кристалла. Таким образом, однородность свойств так же, как и наличие дальнего порядка, относится к характеристикам "идеального" кристаллическое состояние

Большинство тел в кристаллическое состояние является поликристаллическими и представляет собой сростки большого числа мелких кристаллитов (зерен) - участков размером порядка 10 -1 -10 -3 мм, неправильной формы и различно ориентированных. Зерна отделены друг от друга межкристаллитными слоями, в которых нарушен порядок расположения частиц. В межкристаллитных слоях происходит также концентрирование примесей в процессе кристаллизации. Из-за случайной ориентации зерен поликристаллическое тело в целом (объем, содержащий достаточно много зерен) может быть изотропным, например полученное при кристаллических с послед. . Однако обычно в процессе и особенно пластической возникает текстура - преимуществ, ориентация кристаллических зерен в определенном направлении, приводящая к анизотропии свойств.

На однокомпонентной системы вследствие кристаллическое состояние может отвечать несколько полей, расположенных в области сравнительно низких температур и повышенных . Если имеется лишь одно поле кристаллического состояния и вещество химически не разлагается при повышении температуры, то поле кристаллическое состояние граничит с полями и газа по линиям плавления и возгонки - конденсации соотв., причем жидкость и газ (пар) могут находиться в метастабильном (переохлажденном) состоянии в поле кристаллическое состояние, тогда как кристаллическое состояние не может находиться в поле или пара, т. е. кристаллическое вещество нельзя перегреть выше температуры плавления или возгонки. Некоторые (мезогены) при нагреве переходят в жидкокристаллическое состояние (см. Жидкие кристаллы ). Если на диаграмме однокомпонентной системы имеются два и более полей кристаллического состояния, эти поля граничат по линии полиморфных превращений. Кристаллическое вещество можно перегреть или переохладить ниже температуры полиморфного превращения. В этом случае рассматриваемое кристаллическое состояние может находиться в поле других кристаллических модификации и является метастабильным.

В то время как жидкость и пар благодаря существованию критической точки на линии испарения можно непрерывно перевести друг в друга, вопрос о возможности непрерывного взаимного превращения кристаллического состояния и окончательно не решен. Для некоторых веществ можно оценить критические параметры - давление и температуру, при которых DH пл и DV пл равны нулю, т. е. кристаллическое состояние и жидкость термодинамически неразличимы. Но реально такое превращение не наблюдалось ни для одного (см. Критическое состояние ).

Вещество из кристаллическое состояние можно перевести в неупорядоченное состояние (аморфное или стеклообразное), не отвечающее минимуму свободной энергии, не только изменением параметров состояния (давления, температуры, состава), но и воздействием ионизирующего излучения или тонким измельчением. Критический размер частиц, при котором уже не имеет смысла говорить о кристаллическое состояние, примерно 1 нм, т.е. того же порядка, что и размер элементарной ячейки.

Агрегатные состояния вещества.

В этом разделе мы рассмотрим агрегатные состояния , в которых пребывает окружающая нас материя и силы взаимодействия между частицами вещества, свойственные каждому из агрегатных состояний.

1. Состояние твёрдого тела ,

2. Жидкое состояние и

Газообразное состояние.

Часто выделяют четвёртое агрегатное состояние – плазму .

Иногда, состояние плазмы считают одним из видов газообразного состояния.

Плазма - частично или полностью ионизированный газ , чаще всего существующий при высоких температурах.

Плазма является самым распространённым состоянием вещества во вселенной, поскоьку материя звёд пребывает именно в этом состоянии.

Для каждого агрегатного состояния характерны особенности в характере взаимодействия между частицами вещества, что влияет на его физические и химические свойства.

Каждое вещество может пребывать в разных агрегатных состояниях. При достаточно низких температурах все вещества находятся в твёрдом состоянии . Но по мере нагрева они становятся жидкостями , затем газами . При дальнейшем нагревании они ионизируются (атомы теряют часть своих электронов) и переходят в состояние плазмы .

Газообразное состояние (от нидерл. gas, восходит к др.-греч. Χάος ) характеризующееся очень слабыми связями между составляющими его частицами.

Образующие газ молекулы или атомы хаотически движутся и при этом преобладающую часть времени находятся на больших (в сравнении с их размерами) растояниях друг от друга. Вследствие этого силы взаимодействия между частицами газа пренебрежимо малы .

Основной особенностью газа является то, что он заполняет все доступное пространство, не образуя поверхности. Газы всегда смешиваются. Газ - изотропное вещество , то есть его свойства не зависят от направления.

При отсутствии сил тяготения давление во всех точках газа одинаково. В поле сил тяготения плотность и давление не одинаковы в каждой точке, уменьшаясь с высотой. Соответственно, в поле сил тяжести смесь газов становится неоднородной. Тяжелые газы имеют тенденцию оседать ниже, а более легкие - подниматься вверх.

Газ имеет высокую сжимаемость - при увеличении давления возрастает его плотность. При повышении температуры расширяются.

При сжатии газ может перейти в жидкость , но конденсация происходит не при любой температуре, а при температуре, ниже критической температуры. Критическая температура является характеристикой конкретного газа и зависит от сил взаимодействия между его молекулами. Так, например, газ гелий можно ожижить только при температуре, ниже от 4,2 К .

Существуют газы, которые при охлаждении переходят в твердое тело, минуя жидкую фазу. Превращения жидкости в газ называется испарением, а непосредственное превращение твердого тела в газ - сублимацией .

Твёрдое тело

Состояние твёрдого тела в сравнении с другими агрегатными состояниямихарактеризуется стабильностью формы .

Различают кристаллические и аморфные твёрдые тела .

Кристаллическое состояние вещества

Стабильность формы твёрдых тел связана с тем, что большинство, находящихся в твёрдом состоянии имеет кристалическое строение .

В этом случае расстояния между частицами вещества малы, а силы взаимодействия между ними велики, что и определяет стабильность формы .

В кристаллическом строении многих твёрдых тел легко убедиться, расколов кусок вещества и рассмотрев полученный излом. Обычно на изломе (например, у сахара, серы, металлов и пр.) хорошо заметны расположенные под разными углами мелкие грани кристаллов, поблескивающие вследствии различного отражения ими света.

В тех случаях, когда кристаллы очень малы, кристаллическое строение вещества можно установить при помощи микроскопа.

Формы кристаллов

Каждое вещество образует кристаллы совершенно определённой формы.

Разнообразие кристаллических форм может быть сведено к семи группам:

1. Триклинная (параллелепипед),

2.Моноклинная (призма с параллелограммом в основании),

3. Ромбическая (прямоугольный параллелепипед),

4. Тетрагональная (прямоугольный параллелепипед с квадратом в основании),

5. Тригональная ,

6. Гексагональная (призма с основанием правильного центрированного
шестиугольника),

7. Кубическая (куб).

Многие вещества, в частности железо, медь, алмаз, хлорид натрия кристализуются вкубической системе . Простейшими формами этой системы являются куб, октаэдр, тетраэдр .

Магний, цинк, лёд, кварц кристализуются в гексагональной системе . Основные формы этой системы – шестигранные призмы и бипирамида .

Природные кристаллы, а также кристаллы, получаемые искусственным путём, редко в точности соответствуют теоретическим формам. Обычно при затвердевании расплавленного вещества кристаллы срастаются вместе и потому форма каждого из них оказывается не вполне правильной.

Однако как бы неравномерно не происходило развитие кристалла, как бы ни была искажена его форма, углы, под которыми сходятся грани кристалла у одного и того же вещества остаются постоянными.

Анизотропия

Особенности кристаллических тел не ограничиваются только формой кристаллов. Хотя вещество в кристалле совершенно однородно, многие из его физических свойств – прочность, теплопроводность, отношение к свету и др. – не всегда одинаковы по различным направлениям внутри кристалла. Эта важная особенность кристаллических веществ называется анизотропией .

Внутреннее строение кристаллов. Кристаллические решётки.

Внешняя форма кристалла отражает его внутреннее строение и обусловлена правильным расположением частиц, составляющих кристалл, - молекул, атомов или ионов.

Это расположение можно представить в виде кристаллической решётки – пространственного каркаса, образованного пересекающимися прямыми линиями. В точках пересечения линий – узлах решётки – лежат центры частиц.

В зависимости от природы частиц, находящихся в узлах кристаллической решётки, и от того, какие силы взаимодействия между ними преобладают в данном кристалле, различают следующие виды кристаллических решёток :

1. молекулярные ,

2. атомные ,

3. ионные и

4. металлические .

Молекулярные и атомные решётки присущи веществам с ковалентной связью, ионные – ионным соединениям, металические – металам и их сплавам.

· Атомные кристаллические решётки

В узлах атомных решёток находятся атомы . Они связаны друг с другомковалентной связью .

Веществ, обладающих атомными решётками, сравнительно мало. К ним принадлежаталмаз, кремний и некоторые неорганические соединения.

Эти вещества характеризуются высокой твёрдостью, они тугоплавки и нерастворимы практически ни в каких растворителях. Такие их свойства объясняются прочностьюковалентной связи .

· Молекулярные кристаллические решётки

В узлах молекулярных решёток находятся молекулы . Они связаны друг с другоммежмолекулярными силами .

Веществ с молекулярной решёткой очень много. К ним принадлежат неметаллы , за исключением углерода и кремния, все органические соединения с неионной связью имногие неорганические соединения .

Силы межмолекулярного взаимодействия значительно слабее сил ковалентной связи, поэтому молекулярные кристаллы имеют небольшую твёрдость, легкоплавки и летучи.

· Ионные кристаллические решётки

В узлах ионных решёток располагаются, чередуясь положительно и отрицательно заряженные ионы . Они связаны друг с другом силамиэлектростатического притяжения .

К соединениям с ионной связью, образующим ионные решётки, относится большинство солей и небольшое число оксидов .

По прочности ионные решётки уступают атомным, но превышают молекулярные.

Ионные соединения имеют сравнительно высокие температуры плавления. Летучесть их в большинстве случаев не велика.

· Металлические кристаллические решётки

В узлах металлических решёток находятся атомы металла, между которыми свободно движутся общие для этих атомов электроны .

Cтраница 1


Кристаллическое состояние вещества характеризуется трехмерной периодичностью размещения строительного материала. Именно на этой особенности основана дифракция рентгеновских лучей, пропускаемых через кристалл, а значит, и весь рентгеноструктурный анализ кристаллов.  

Кристаллическое состояние вещества наступает тогда, когда реализуется как ближний, так и дальний порядок во взаимном расположении частиц. Звенья, сегменты макромолекул могут взаимодействовать как внутри -, так и межмолекулярно.  

Кристаллическое состояние вещества характеризуется тем, что в нем частицы (атомы, ионы или молекулы) располагаются упорядочение, на постоянных расстояниях друг от друга, образуя правильную решетку. В аморфном веществе никакого правильного порядка в расположении частиц не наблюдается.  


Кристаллическое состояние вещества характеризуется правильным расположением в пространстве частиц, составляющих кристалл, образованием кристаллической, или пространственной, решетки. Центры размещения частиц в кристалле называются узлами пространственной решетки.  

Кристаллическое состояние вещества характеризуется строго закономерным, периодически повторяющимся расположением всех атомов. Такая картина является идеальной, а кристалл, обладающий таким идеальным расположением атомов, называется совершенным. В реальном кристалле всегда имеются отклонения и нарушения идеального расположения атомов. Эти нарушения называются несовершенствами, или дефектами.  

Кристаллическое состояние вещества характеризуется трехмерной периодичностью размещения строительного материала. Именно эта особенность лежит в основе дифракции рентгеновских лучей, пропускаемых через кристалл, а значит, и в основе всего рентгеноструктурного анализа кристаллов.  

Кристаллическое состояние вещества характеризуется строго закономерным, периодически повторяющимся расположением1 всех атомов в решетке кристалла. Кристалл с таким идеальным расположением атомов называется совершенным. В реальном кристалле всегда обнаруживаются отклонения и нарушения идеального расположения атомов. Эти нарушения называются несовершенствами, или дефектами, кристаллической структуры.  

Кристаллическое состояние вещества характеризуется строго определенной ориентацией частиц относительно друг друга и анизотропией (векториальностью) свойств, когда свойства кристалла (теплопроводность, прочность на разрыв и др.) неодинаковы в разных направлениях.