Биографии Характеристики Анализ

Фуллерены в природе. Известные аллотропные формы углерода

Фуллерен С 60

Фуллерен C 540

Фуллере́ны , бакибо́лы или букибо́лы - молекулярные соединения, принадлежащие классу аллотропных форм углерода (другие - алмаз , карбин и графит) и представляющие собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода. Своим названием эти соединения обязаны инженеру и дизайнеру Ричарду Бакминстеру Фуллеру , чьи геодезические конструкции построены по этому принципу. Первоначально данный класс соединений был ограничен лишь структурами, включающими только пяти- и шестиугольные грани. Заметим, что для существования такого замкнутого многогранника, построенного из n вершин, образующих только пяти- и шестиугольные грани, согласно теореме Эйлера для многогранников , утверждающей справедливость равенства | n | − | e | + | f | = 2 (где | n | , | e | и | f | соответственно количество вершин, ребер и граней), необходимым условием является наличие ровно 12 пятиугольных граней и n / 2 − 10 шестиугольных граней. Если в состав молекулы фуллерена помимо атомов углерода входят атомы других химических элементов, то, если атомы других химических элементов расположены внутри углеродного каркаса, такие фуллерены называются эндоэдральными , если снаружи - экзоэдральными.

История открытия фуллеренов

Структурные свойства фуллеренов

В молекулах фуллеренов атомы углерода расположены в вершинах правильных шести- и пятиугольников, из которых составлена поверхность сферы или эллипсоида. Самый симметричный и наиболее полно изученный представитель семейства фуллеренов - фуллерен (C 60), в котором углеродные атомы образуют усечённый икосаэдр, состоящий из 20 шестиугольников и 12 пятиугольников и напоминающий футбольный мяч . Так как каждый атом углерода фуллерена С 60 принадлежит одновременно двум шести- и одному пятиугольнику, то все атомы в С 60 эквивалентны, что подтверждается спектром ядерного магнитного резонанса (ЯМР) изотопа 13 С - он содержит всего одну линию. Однако не все связи С-С имеют одинаковую длину. Связь С=С, являющаяся общей стороной для двух шестиугольников, составляет 1.39 , а связь С-С, общая для шести- и пятиугольника, длиннее и равна 1.44 Å . Кроме того, связь первого типа двойная, а второго - одинарная, что существенно для химии фуллерена С 60 .

Следующим по распространённости является фуллерен C 70 , отличающийся от фуллерена C 60 вставкой пояса из 10 атомов углерода в экваториальную область C 60 , в результате чего молекула C 70 оказывается вытянутой и напоминает своей формой мяч для игры в регби .

Так называемые высшие фуллерены, содержащие большее число атомов углерода (до 400), образуются в значительно меньших количествах и часто имеют довольно сложный изомерный состав. Среди наиболее изученных высших фуллеренов можно выделить C n , n =74, 76, 78, 80, 82 и 84.

Синтез фуллеренов

Первые фуллерены выделяли из конденсированных паров графита , получаемых при лазерном облучении твёрдых графитовых образцов. Фактически, это были следы вещества. Следующий важный шаг был сделан в 1990 году В. Кретчмером, Лэмбом, Д. Хаффманом и др., разработавшими метод получения граммовых количеств фуллеренов путём сжигания графитовых электродов в электрической дуге в атмосфере гелия при низких давлениях. . В процессе эрозии анода на стенках камеры оседала сажа, содержащая некоторое количество фуллеренов. Впоследствии удалось подобрать оптимальные параметры испарения электродов (давление, состав атмосферы, ток, диаметр электродов), при которых достигается наибольший выход фуллеренов, составляющий в среднем 3-12 % материала анода, что, в конечном счёте, определяет высокую стоимость фуллеренов.

На первых порах все попытки экспериментаторов найти более дешёвые и производительные способы получения граммовых количеств фуллеренов (сжигание углеводородов в пламени , химический синтез и др.) к успеху не привели и метод «дуги» долгое время оставался наиболее продуктивным (производительность около 1 г/час) . Впоследствии, фирме Mitsubishi удалось наладить промышленное производство фуллеренов методом сжигания углеводородов, но такие фуллерены содержат кислород и поэтому дуговой метод по-прежнему остаётся единственным подходящим методом получения чистых фуллеренов.

Механизм образования фуллеренов в дуге до сих пор остаётся неясным, поскольку процессы, идущие в области горения дуги, термодинамически неустойчивы, что сильно усложняет их теоретическое рассмотрение. Неопровержимо удалось установить только то, что фуллерен собирается из отдельных атомов углерода (или фрагментов С 2). Для доказательства в качестве анодного электрода использовался графит 13 С высокой степени очистки, другой электрод был из обычного графита 12 С. После экстракции фуллеренов было показано методом ЯМР , что атомы 12 С и 13 С расположены на поверхности фуллерена хаотично. Это указывает на распад материала графита до отдельных атомов или фрагментов атомного уровня и их последующую сборку в молекулу фуллерена. Данное обстоятельство заставило отказаться от наглядной картины образования фуллеренов в результате сворачивания атомных графитовых слоёв в замкнутые сферы.

Сравнительно быстрое увеличение общего количества установок для получения фуллеренов и постоянная работа по улучшению методов их очистки привели к существенному снижению стоимости С 60 за последние 17 лет - с 10000$ до 10-15$ за грамм , что подвело к рубежу их реального промышленного использования.

К сожалению, несмотря на оптимизацию метода Хаффмана - Кретчмера (ХК), повысить выход фуллеренов более 10-20 % от общей массы сожжённого графита не удаётся. Если учесть относительно высокую стоимость начального продукта - графита, становится ясно, что этот метод имеет принципиальные ограничения. Многие исследователи полагают, что снизить стоимость фуллеренов, получаемых методом ХК, ниже нескольких долларов за грамм не удастся. Поэтому усилия ряда исследовательских групп направлены на поиск альтернативных методов получения фуллеренов. Наибольших успехов в этой области достигла фирма Мицубиси, которой, как уже говорилось выше, удалось наладить промышленный выпуск фуллеренов методом сжигания углеводородов в пламени. Стоимость таких фуллеренов составляет около 5$/грамм (2005 год), что никак не повлияло на стоимость электродуговых фуллеренов.

Необходимо отметить, что высокую стоимость фуллеренов определяет не только их низкий выход при сжигании графита, но и сложность выделения, очистки и разделения фуллеренов различных масс из углеродной сажи. Обычный подход состоит в следующем: сажу, полученную при сжигании графита, смешивают с толуолом или другим органическим растворителем (способным эффективно растворять фуллерены), затем смесь фильтруют или отгоняют на центрифуге , а оставшийся раствор выпаривают. После удаления растворителя остается тёмный мелкокристаллический осадок - смесь фуллеренов, называемый обычно фуллеритом. В состав фуллерита входят различные кристаллические образования: мелкие кристаллы из молекул С 60 и С 70 и кристаллы С 60 /С 70 , являются твёрдыми растворами. Кроме того, в фуллерите всегда содержится небольшое количество высших фуллеренов (до 3 %). Разделение смеси фуллеренов на индивидуальные молекулярные фракции производят с помощью жидкостной хроматографии на колонках и жидкостной хроматографии высокого давления (ЖХВД). Последняя используется главным образом для анализа чистоты выделенных фуллеренов, так как аналитическая чувствительность метода ЖХВД очень высока (до 0,01 %). Наконец, последний этап - удаление остатков растворителя из твёрдого образца фуллерена. Оно осуществляется путём выдерживания образца при температуре 150-250 o С в условиях динамического вакуума (около 0.1 торр).

Физические свойства и прикладное значение фуллеренов

Фуллериты

Конденсированные системы, состоящие из молекул фуллеренов, называются фуллеритами . Наиболее изученная система такого рода - кристалл С 60 , менее - система кристаллического С 70 . Исследования кристаллов высших фуллеренов затруднены сложностью их получения. Атомы углерода в молекуле фуллерена связаны σ- и π-связями, в то время как химической связи (в обычном смысле этого слова) между отдельными молекулами фуллеренов в кристалле нет. Поэтому в конденсированной системе отдельные молекулы сохраняют свою индивидуальность (что важно при рассмотрении электронной структуры кристалла). Молекулы удерживаются в кристалле силами Ван-дер-Ваальса , определяя в значительной мере макроскопические свойства твёрдого C 60 .

При комнатных температурах кристалл С 60 имеет гранецентрированную кубическую (ГЦК) решётку с постоянной 1.415 нм, но при понижении температуры происходит фазовый переход первого рода (Т кр ≈260 К) и кристалл С 60 меняет свою структуру на простую кубическую (постоянная решётки 1.411 нм) . При температуре Т > Т кр молекулы С 60 хаотично вращаются вокруг своего центра равновесия, а при её снижении до критической две оси вращения замораживаются. Полное замораживание вращений происходит при 165 К. Кристаллическое строение С 70 при температурах порядка комнатной подробно исследовалось в работе . Как следует из результатов этой работы, кристаллы данного типа имеют объёмноцентрированную (ОЦК) решётку с небольшой примесью гексагональной фазы.

Нелинейные оптические свойства фуллеренов

Анализ электронной структуры фуллеренов показывает наличие π-электронных систем, для которых имеются большие величины нелинейной восприимчивости. Фуллерены действительно обладают нелинейными оптическими свойствами. Однако из-за высокой симметрии молекулы С 60 генерация второй гармоники возможна только при внесении асимметрии в систему (например внешним электрическим полем). С практической точки зрения привлекательно высокое быстродействие (~250 пс), определяющее гашение генерации второй гармоники. Кроме того фуллерены С 60 способны генерировать и третью гармонику .

Другой вероятной областью использования фуллеренов и, в первую очередь, С 60 являются оптические затворы. Экспериментально показана возможность применения этого материала для длины волны 532 нм . Малое время отклика даёт шанс использовать фуллерены в качестве ограничителей лазерного излучения и модуляторов добротности. Однако, по ряду причин фуллеренам трудно конкурировать здесь с традиционными материалами. Высокая стоимость, сложности с диспергированием фуллеренов в стёклах, способность быстро окисляться на воздухе, далеко не рекордные коэффициенты нелинейной восприимчивости, высокий порог ограничения оптического излучения (не пригодный для защиты глаз) создают серьёзные трудности в борьбе с конкурирующими материалами.

Квантовая механика и фуллерен

Гидратированный фуллерен (HyFn);(С 60 @{H 2 O}n)

Водный раствор C 60 HyFn

Гидратированный фуллерен С 60 - C 60 HyFn – это прочный, гидрофильный супрамолекулярный комплекс, состоящий из молекулы фуллерена С 60 , заключенной в первую гидратную оболочку, которая содержит 24 молекулы воды: C 60 @(H 2 O) 24 . Гидратная оболочка образуется вследствие донорно-акцепторного взаимодействия неподеленных пар электронов кислорода молекул воды с электрон-акцепторными центрами на поверхности фуллерена. При этом, молекулы воды, ориентированные вблизи поверхности фуллерена связаны между собой объёмной сеткой водородных связей. Размер C 60 HyFn соответствует 1,6-1,8 нм. В настоящее время, максимальная концентрация С 60 , в виде C 60 HyFn, которую удалось создать в воде, эквивалентна 4 мг/мл. Фотография водного раствора С 60 HyFn с концентрацией С 60 0,22 мг/мл справа.

Фуллерен в качестве материала для полупроводниковой техники

Молекулярный кристалл фуллерена является полупроводником с шириной запрещённой зоны ~1.5 эВ и его свойства во многом аналогичны свойствам других полупроводников. Поэтому ряд исследований был связан с вопросами использования фуллеренов в качестве нового материала для традиционных приложений в электронике: диод, транзистор, фотоэлемент и т. п. Здесь их преимуществом по сравнению с традиционным кремнием является малое время фотоотклика (единицы нс). Однако существенным недостатком оказалось влияние кислорода на проводимость плёнок фуллеренов и, следовательно, возникла необходимость в защитных покрытиях. В этом смысле более перспективно использовать молекулу фуллерена в качестве самостоятельного наноразмерного устройства и, в частности, усилительного элемента .

Фуллерен как фоторезист

Под действием видимого (> 2 эВ), ультрафиолетового и более коротковолнового излучения фуллерены полимеризуются и в таком виде не растворяются органическими растворителями. В качестве иллюстрации применения фуллеренового фоторезиста можно привести пример получения субмикронного разрешения (≈20 нм) при травлении кремния электронным пучком с использованием маски из полимеризованной плёнки С 60 .

Фуллереновые добавки для роста алмазных плёнок методом CVD

Другой интересной возможностью практического применения является использование фуллереновых добавок при росте алмазных плёнок CVD-методом (Chemical Vapor Deposition). Введение фуллеренов в газовую фазу эффективно с двух точек зрения: увеличение скорости образования алмазных ядер на подложке и поставка строительных блоков из газовой фазы на подложку. В качестве строительных блоков выступают фрагменты С 2 , которые оказались подходящим материалом для роста алмазной плёнки. Экспериментально показано, что скорость роста алмазных плёнок достигает 0.6 мкм/час, что в 5 раз выше, чем без использования фуллеренов. Для реальной конкуренции алмазов с другими полупроводниками в микроэлектронике необходимо разработать метод гетероэпитаксии алмазных плёнок, однако рост монокристаллических плёнок на неалмазных подложках остаётся пока неразрешимой задачей. Один из возможных путей решения этой проблемы - использование буферного слоя фуллеренов между подложкой и плёнкой алмазов. Предпосылкой к исследованиям в этом направлении является хорошая адгезия фуллеренов к большинству материалов. Перечисленные положения особенно актуальны в связи с интенсивными исследованиями алмазов на предмет их использования в микроэлектронике следующего поколения. Высокое быстродействие (высокая насыщенная дрейфовая скорость); максимальная, по сравнению с любыми другими известными материалами, теплопроводность и химическая стойкость делают алмаз перспективным материалом для электроники следующего поколения .

Сверхпроводящие соединения с С 60

Молекулярные кристаллы фуллеренов - полупроводники, однако в начале 1991 г. было установлено, что легирование твёрдого С 60 небольшим количеством щелочного металла приводит к образованию материала с металлической проводимостью, который при низких температурах переходит в сверхпроводник . Легирование С 60 производят путём обработки кристаллов парами металла при температурах в несколько сотен градусов Цельсия. При этом образуется структура типа X 3 С 60 (Х - атом щелочного металла). Первым интеркалированным металлом оказался калий. Переход соединения К 3 С 60 в сверхпроводящее состояние происходит при температуре 19 К. Это рекордное значение для молекулярных сверхпроводников. Вскоре установили, что сверхпроводимостью обладают многие фуллериты, легированные атомами щелочных металлов в соотношении либо Х 3 С 60 , либо XY 2 С 60 (X,Y - атомы щелочных металлов). Рекордсменом среди высокотемпературных сверхпроводников (ВТСП) указанных типов оказался RbCs 2 С 60 - его Т кр =33 К .

Влияние малых добавок фуллереновой сажи на антифрикционные и противоизносные свойства ПТФЭ

Следует отметить, что присутствие фуллерена С 60 в минеральных смазках инициирует на поверхностях контртел образование защитной фуллерено-полномерной пленки толщиной - 100 нм. Образованная пленка защищает от термической и окислительной деструкции, увеличивает время жизни узлов трения в аварийных ситуациях в 3-8 раз, термостабильность смазок до 400-500ºС и несущую способность узлов трения в 2-3 раза, расширяет рабочий интервал давлений узлов трения в 1,5-2 раза, уменьшает время приработки контртел.

Другие области применения фуллеренов

Среди других интересных приложений следует отметить аккумуляторы и электрические батареи, в которых так или иначе используются добавки фуллеренов. Основой этих аккумуляторов являются литиевые катоды, содержащие интеркалированные фуллерены. Фуллерены также могут быть использованы в качестве добавок для получения искусственных алмазов методом высокого давления. При этом выход алмазов увеличивается на ≈30 %. Фуллерены могут быть также использованы в фармации для создания новых лекарств. Кроме того, фуллерены нашли применение в качестве добавок в интумесцентные (вспучивающиеся) огнезащитные краски. За счёт введения фуллеренов краска под воздействием температуры при пожаре вспучивается, образуется достаточно плотный пенококсовый слой, который в несколько раз увеличивает время нагревания до критической температуры защищаемых конструкций. Также фуллерены и их различные химические производные используются в сочетании с полисопряжёнными полупроводящими полимерами для изготовления солнечных элементов.

Химические свойства фуллеренов

Фуллерены, несмотря на отсутствие атомов водорода, которые могут быть замещены как в случае обычных

Фуллерены в Природе существуют повсюду, и особенно там, где есть углерод и высокие энергии. Они существуют вблизи углеродных звезд, в межзвездном пространстве, в местах попадания молний, вблизи кратеров вулканов, образуются при горении газа в домашней газовой плите или в пламени обычной зажигалки.

В местах скопления древних углеродных пород также обнаруживаются фуллерены. Особое место принадлежит карельским минералам - шунгитам. Этим породам, содержащим до 80% чистого углерода, около 2-х миллиардов лет. Природа их происхождения до сих пор не ясна. Одно из предположений – падение большого углеродного метеорита.

Фуллерены в шунгитах (Fullerenes in Shungites Stone) - тема, широко обсуждаемая во многих печатных изданиях и на страницах Интернет-сайтов. По этому поводу существует немало противоречивых мнений, в связи, с чем и у читателей, и у пользователей шунгитной продукцией возникает немало вопросов. Действительно ли шунгиты содержат молекулярную форму углерода – фуллерены? Содержат ли лечебные «Марциальные воды» фуллерены? Можно ли пить воду, настоянную на шунгите, и какова от этого будет польза? Основываясь на своем опыте научных исследований свойств различных шунгитов, ниже мы приводим свое мнение по поводу этих и некоторых других, часто задаваемых вопросов.

В настоящее время широкое распространение получила продукция, изготовляемая с использованием карельских шунгитов. Это различные фильтры для водоочистки, пирамиды, кулоны, изделия, экранирующие от электро-магнитных излучений, пасты и просто шунгитный щебень и многие другие виды продукции, предлагаемой в качестве профилактических, лечебно-оздоровительных средств. При этом, как правило, в последние годы лечебные свойства различных видов шунгитов приписывают содержащимся в них фуллеренам.

Вскоре, после открытия в 1985 году фуллеренов, начался активный поиск их в Природе. Фуллерены были обнаружены в карельском шунгите, о чем сообщалось в различных научных изданиях . В свою очередь нами были разработаны альтернативные методические подходы по выделению фуллеренов из шунгитов и доказательству их присутствия. В исследованиях анализировались образцы, отобранные в разных районах Заонежья, где залегают шунгитовые породы. Перед анализом образцы шунгитов измельчались до микродисперсного состояния.

Напомним, что шунгиты представляют собой ажурную силикатную решетку, пустоты которой заполнены шунгитным углеродом, который по своей структуре является промежуточным продуктом между аморфным углеродом и графитом. Также в шунгитном углероде присутствуют природные органические низкои высокомолекулярные соединения (ПОНВС) невыясненного химического состава. Шунгиты различаются по составу минеральной основы (алюмосиликатной, кремнистой, карбонатной) и составу шунгитного углерода. Шунгиты подразделяются на малоуглеродистые (до 5% С), среднеуглеродистые (5 - 25% С) и высокоуглеродистые (25 - 80% С). После полного сжигания шунгитов в золе, кроме кремния, находят Fe, Ni, Ca, Mg, Zn, Cd, V, Mo, Cu, Ce, As, W и др. элементы.

Фуллерен в шунгитном углероде находится в виде особых, полярных донорно-акцепторных комплексов с ПОНВС. Поэтому эффективная экстракция фуллеренов из него органическими растворителями, например толуолом, в котором фуллерены хорошо растворимы, не происходит и выбор такого метода извлечения часто приводит к противоречивым результатам об истинном наличии фуллеренов в шунгитах.

В связи с этим нами был разработан метод ультразвуковой экстракции водно-детергентной дисперсии шунгитов с последующим переводом фуллеренов из полярной среды в фазу органического растворителя . После нескольких стадий экстракции, концентрирования и очистки удается получить раствор в гексане, УФ-вид и ИК-спектры которого являются характерными спектрам чистого фуллерена С 60 . Также четкий сигнал в масс-спектре с m/z = 720 (рис. ниже) является однозначным подтверждением наличия в шунгитах только фуллерена С 60 .

252 Cf-ПД масс-спектр экстракта из шунгита. Сигнал при 720 а.е.м – фуллерен С 60 , а сигналы с 696, 672 –характерные осколочные ионы фуллерена С 60 , образующиеся в условиях плазменно-десорбционной ионизации.

Однако нами было обнаружено, что далеко не каждый образец шунгита содержит фуллерены. Из всех образцов шунгита, предоставленных нам Институтом геологии Карельского НЦ РАН (Петрозаводск, Россия) и отобранных из разных районов залегания шунгитовых пород – фуллерен С 60 был обнаружен только в одном образце высокоуглеродистого шунгита, содержащего более 80 % углерода. Причем фуллерена в нем содержалось около 0,04 мас. %. Из этого можно сделать вывод, что далеко не каждый образец шунгита содержит фуллерен, по крайней мере, в количестве доступном для его обнаружения современными высокочувствительными методами физико-химического анализа.

Наравне с этим, хорошо известно, что шунгиты могут содержать достаточно большое количество примесей, в том числе ионов тяжелых поливалентных металлов. И поэтому вода, настоянная на шунгитах, может содержать нежелательные, токсичные примеси.

Но, почему же тогда Марциальная вода (Карельская природная вода, проходящая через шунгитосодержащие породы) обладает столь уникальными биологическими свойствами. Напомним, что еще во времена Петра I, и по его личной инициативе, в Карелии был открыт лечебный источник «Марциальные воды» (подробней, см. ). Долгое время никто не мог объяснить причину особых лечебных свойств этого источника. Предполагалось, что повышенное содержание железа в этих водах является причиной оздоровительных эффектов. Однако есть много железосодержащих источников на Земле, но, как правило, лечебные эффекты от их приема весьма ограничены. Лишь после обнаружения фуллерена в шунгитовых породах, сквозь которые протекает источник, возникло предположение о том, что фуллерен и есть главная причина, квитэсценция лечебного действия Марциальных вод .

Действительно, вода длительное время проходящая через пласты «отмытой» шунгитовой породы, уже не содержит ощутимых количеств вредных примесей. Вода «насыщается» той структурой, которую ей задает порода. Фуллерен, содержащийся в шунгите, способствует упорядочению водных структур и образованию в ней фуллереноподобных гидратных кластеров и приобретению уникальных биологических свойств Марциальных вод. Шунгит, допированный фуллереном, является своеобразным природным структуризатором проходящей через него воды. В то же время никто ещё не смог обнаружить фуллерены в Марциальных водах или в водном настое шунгита: или они из шунгитов не вымываются, или если и вымываются, то в столь мизерных количествах, которые не детектируются ни одним из известных методов. К тому же хорошо известно, что фуллерены в воде самопроизвольно не растворяются. И если бы молекулы фуллеренов содержались бы в Марциальной воде, то ее полезные свойства сохранялись бы очень долгое время. Однако она активна лишь непродолжительное время. Также, как и «талая вода», насыщенная кластерными, льдоподобными структурами, Марциальная вода, содержащая живительные фуллереноподобные структуры, сохраняет свои свойства лишь несколько часов. При хранении Марциальной воды, также как и «талой», упорядоченные водные кластеры саморазрушаются и вода приобретает структурные свойства, как у обычной воды. Поэтому такую воду нет смысла разливать в емкости и хранить длительное время. В ней отсутствует структурообразующий и структуроподдерживающий элемент – фуллерен С 60 в гидратированном состоянии, который способен сохранять упорядоченные кластеры воды сколь угодно долго. Другими словами, для того, чтобы вода в течение длительного времени сохраняла свои естественные кластерные структуры, необходимо постоянное присутствие в ней структурообразующего фактора. Для этого молекула фуллерена является оптимальной, в чем мы убедились, исследуя многие годы уникальные свойства гидратированного фуллерена С 60 .

Все началось в 1995 году, когда нами был разработан метод получения молекулярно–коллоидных растворов гидратированных фуллеренов в воде. Тогда же мы познакомились с книгой, рассказывающей о необычных свойствах Марциальных вод . Мы попробовали воспроизвести природную суть Марциальных вод в лабораторных условиях. Для этого была использована вода высокой степени очистки, к которой по специальной технологии добавлялся гидратированный фуллерена С 60 в очень малых дозах. После этого стали проводить различные биологические испытания на уровне отдельных биомолекул, живых клеток и целостного организма. Результаты оказались поразительными. Практически при любой патологии мы обнаруживали только положительные биологические эффекты действия воды с гидратированным фуллереном С 60 , причем эффекты её применения не только полностью совпадали, но и даже превосходили по многим параметрам, эффекты, которые были описаны для Марциальных вод еще в Петровские времена. Многие патологические изменения в живом организме уходят, и он возвращается к своему нормальному, здоровому состоянию. А ведь это не лекарственный препарат целенаправленного действия и не чужеродное химическое соединение, а просто шарик углерода, растворенный в воде. Причем, складывается впечатление, что гидратированный фуллерен C 60 помогает вернуть в «нормальное состояние» любые негативные изменения в организме за счет восстановления и поддержания тех структур, которые он породил, как матрица, в процессе зарождения жизни.

Поэтому, видимо, неслучайно Орлов А.Д. в своей книге "Шунгит - камень чистой воды., сравнивая свойства шунгитов и фуллеренов, говорит о последних как о квинтэссенции здоровья.

1. Buseck et al. Fullerenes from the Geological Environment. Science 10 July 1992: 215-217. DOI: 10.1126/science.257.5067.215.
2. Н.П. Юшкин. Глобулярная надмолекулярная структура шунгита: данные растровой туннельной микроскопии. ДАН, 1994, т. 337, № 6 с. 800-803.
3. В.А. Резников. Ю.С. Полеховский. Аморфный шунгитовый углерод – естественная среда образования фуллеренов. Письма в ЖТФ. 2000. т. 26. в. 15. с.94-102.
4. Peter R. Buseck. Geological fullerenes: review and analysis. Earth and Planetary Science Letters.V 203, I 3-4, 15 November 2002, Pages 781-792
5. N.N. Rozhkova, G. V.Andrievsky. Aqueous colloidal systems based on shungite carbon and extraction of fullerenes from them. The 4 th Biennial International Workshop in Russia "Fullerenes and Atomic Clusters" IWFAC"99 October 4 - 8, 1999, St. Petersburg, Russia. Book of Abstracts, p.330.
6. Н.Н Рожкова, Г.В. Андриевский. Фуллерены в шунгитовом углероде. Сб. научн. трудов междунар. симпозиума “Фуллерены и фуллереноподобные структуры”: 5-8 июня 2000, БГУ, Минск, 2000, С. 63-69.
7. Н.Н. Рожкова, Г.В. Андриевский. Наноколлоиды шунгитового углерода. экстракция фуллеренов водосодержащими растворителями. Сб. Научн. трудов III международного семинара "Минералогия и жизнь: биоминеральные гомологи", 6-8 июня 2000 г., Сыктывкар, Россия, Геопринт, 2000, С.53-55.
8. С.А. Вишневский. Лечебные местности Карелии. Государственное издательство Карельской АССР, Петрозаводск, 1957, 57 с.
9. Фуллерены: Квинтэссенция Здоровья. Глава на с. 79-98 в книге: А.Д. Орлов. "Шунгит - камень чистой воды."Москва-СПб: "Издательство "ДИЛЯ", 2004. - 112 с.; и в Интернете на сайте (www.golkom.ru/book/36.html).

Физики и химики нашли фуллеренам множество применений: их используют при синтезе новых соединений в оптике и при производстве проводников. О биологических же свойствах фуллеренов долгое время поступали неоднозначные данные: биологи то объявляли их токсичными , то обнаруживали антиоксидантные свойства фуллеренов и предлагали использовать их в лечении таких серьезных заболеваний, как бронхиальная астма .

Крысы-долгожители

В 2012 году увидела свет публикация, которая привлекла внимание геронтологов - специалистов, работающих над проблемами старения. В этой работе Тарек Баати и соавторы * продемонстрировали впечатляющие результаты - крысы, которых кормили суспензией фуллеренов в оливковом масле, жили вдвое дольше обычных, и, к тому же, демонстрировали повышенную устойчивость к действию токсических факторов (таких как четыреххлористый углерод). Токсичность этого соединения обусловлена его способностью генерировать активные формы кислорода (АФК) , а значит, биологические эффекты фуллеренов, скорее всего, можно объяснить их антиоксидантными свойствами (способностью «перехватывать» и дезактивировать АФК).

* - Подробно об этом «биомолекула» уже рассказывала: « » . - Ред.

Связь активных форм кислорода с процессами, происходящими при старении, в настоящее время уже практически не подвергается сомнению. С 60-х годов ХХ века, когда была сформулирована свободнорадикальная теория старения , и до настоящего времени объем данных, подтверждающих такую точку зрения, только накапливается. Однако до сих пор ни один антиоксидант - ни природный, ни синтетический - не давал столь поразительного увеличения продолжительности жизни экспериментальных животных, как в опытах Баати и коллег. Даже специально сконструированные коллективом под руководством академика Скулачева антиоксиданты «адресного действия» - так называемые «ионы Скулачева », или соединения ряда SkQ, - демонстрировали менее значительные эффекты .

Эти вещества представляют собой липофильные положительно заряженные молекулы с присоединенным антиоксидантным «хвостом», которые благодаря своей структуре способны накапливаться в митохондриях (именно в этих органоидах эукариотических клеток происходит генерация активных форм кислорода). Однако соединения ряда SkQ продлевали жизнь подопытных мышей в среднем всего на 30%.

Рисунок 2. Слева - мышь, старение которой замедлено благодаря приему «ионов Скулачева», справа - мышь из контрольной группы .

Почему же фуллерены оказались столь эффективными в борьбе со старением?

Задавшись этим вопросом, мы стали рассматривать возможность существования дополнительного механизма биологического действия фуллеренов - кроме уже известного антиоксидантного. Подсказка обнаружилась при изучении одного из соединений ряда SkQ - SkQR1, содержащего остаток родамина. Это соединение относится к группе протонофоров - молекул, способных переносить протоны из межмембранного пространства через мембрану в матрикс митохондрии, снижая, таким образом, трансмембранный потенциал (Δψ). Как известно, именно этот потенциал, существующий благодаря разнице в содержании протонов по разные стороны мембраны, и обеспечивает выработку энергии в клетке. Однако он же и является источником генерации АФК. В сущности, активные формы кислорода здесь сродни «токсическим отходам» при производстве энергии. Хотя они имеют и ряд полезных функций , в основном АФК - источник повреждения ДНК, липидов и многих внутриклеточных структур.

Рисунок 3. Схема строения митохондрии (слева ), перенос протонов органическими кислотами - «мягкими разобщителями» (в центре ) - и динитрофенол - самый известный из «разобщителей» (справа ).

Есть сведения, что некоторое снижение митохондриального трансмембранного потенциала может быть полезным для клеток . Снижение его всего на 10% приводит к уменьшению продукции АФК в 10 раз ! Существуют так называемые «мягкие разобщители», повышающие протонную проводимость мембран, в результате чего происходит «разобщение» дыхания и фосфорилирования АТФ .

Пожалуй, самый известный «разобщитель» - DNF, или 2,4-динитрофенол (рис. 3). В 30-е годы ХХ века им очень активно пользовались при лечении ожирения. Собственно, динитрофенол - первый «жиросжигатель», использовавшийся в официальной медицине. Под его действием клетка переключается на альтернативный путь метаболизма, запуская «сжигание» жиров, а получаемая клеткой энергия не запасается в АТФ, как обычно, а излучается в виде тепла.

Поиск легких способов похудения будет актуален всегда, пока представители Homo Sapiens будут беспокоиться о своем внешнем виде; однако для нашего исследования более интересен тот факт, что подобные «мягкие разобщители» снижают выработку АФК и в небольших дозах могут способствовать продлению жизни .

Возникает вопрос - а могут ли фуллерены, кроме антиоксидантных свойств, проявлять еще и свойства «переносчиков» протонов, действуя, таким образом, сразу с двух сторон? Ведь шарообразная молекула фуллерена - полая изнутри, а значит, в ней вполне могут уместиться небольшие частицы - такие как протоны.

Моделирование in silico : что сделали физики

Для проверки этой гипотезы коллективом НОЦ «Наноразмерная структура вещества» были выполнены сложные расчеты. Как и в истории с открытием фуллерена, в нашем исследовании компьютерное моделирование предшествовало экспериментам. Моделирование возможности проникновения протона в фуллерен и распределения заряда в такой системе производилось на основе теории функционала плотности (DFT). Это широко используемый инструмент квантово-химических расчетов, позволяющий вычислять свойства молекул с высокой точностью.

При моделировании один или несколько протонов помещали вне фуллерена, а затем производился расчет наиболее оптимальной конфигурации - такой, при которой полная энергия системы будет минимальной. Результаты расчетов показали: протоны могут проникать внутрь фуллерена! Оказалось, внутри молекулы C 60 может накапливаться до шести протонов одновременно, а вот седьмой и последующие уже не смогут проникнуть внутрь и будут отталкиваться - дело в том, что «заряженный» протонами фуллерен приобретает положительный заряд (а, как известно, одноименно заряженные частицы отталкиваются).

Рисунок 4. Распределение положительного заряда внутри системы «фуллерен+протоны». Слева направо: два, четыре или шесть протонов внутри фуллерена. Цветом обозначено распределение заряда: от нейтрального (красный ) до слабоположительного (синий ).

Происходит это потому, что проникающие внутрь фуллеренового «шарика» протоны оттягивают на себя электронные облака атомов углерода, что приводит к перераспределению заряда в системе «протоны+фуллерен». Чем больше протонов проникает внутрь, тем сильнее положительный заряд на поверхности фуллерена, тогда как протоны, напротив, все сильнее приближаются к нейтральным значениям. Эту закономерность можно проследить и на рисунке 4: когда количество протонов внутри сферы превышает 4, они становятся нейтральными (желто-оранжевый цвет), ну а поверхность фуллерена всё сильнее «синеет».

Вначале расчеты были выполнены только в системе «фуллерен+протоны» (без учета влияния других молекул). Но ведь в клетке фуллерен находится не в вакууме, а в водной среде, заполненной множеством соединений разной степени сложности. Поэтому на следующем этапе моделирования физики добавили к системе 47 молекул воды, окружающих фуллерен, и проверили, не повлияет ли их присутствие на взаимодействие с протонами. Однако и в присутствии воды модель действовала успешно.

Биологи подтверждают гипотезу?

Известие о том, что фуллерены могут адсорбировать протоны, да еще и приобретают при этом положительный заряд, вдохновило биологов. Похоже, что эти уникальные молекулы и вправду действуют сразу несколькими путями: инактивируют активные формы кислорода (в частности, гидроксильные радикалы, присоединяя их по многочисленным двойным связям ), адресно накапливаются в митохондриях благодаря своим липофильным свойствам и приобретенному положительному заряду, и, вдобавок ко всему, снижают трансмембранный потенциал, перенося протоны внутрь митохондрий, подобно другим «мягким разобщителям» дыхания и окислительного фосфорилирования.

Для изучения антиоксидантных свойств фуллеренов мы использовали систему экспресс-тестов на основе биолюминесцентных бактериальных биосенсоров. Биосенсоры в данном случае - генетически-модифицированные бактерии, способные улавливать повышение внутриклеточной генерации АФК и «сигнализировать» об этом исследователям. При создании биосенсоров в генóм одного из безвредных штаммов кишечной палочки Escherichia coli вводится искусственная конструкция, состоящая из генов люминесценции (свечения), поставленных под контроль специфических промоторов - регуляторных элементов, «включающихся» при повышении внутриклеточной генерации активных форм кислорода, или же при действии иных стресс-факторов - например, при повреждении ДНК. Стоит начать действовать на клетку таким стресс-фактором - бактерия начинает светиться, и по уровню этого свечения можно с достаточной точностью определить уровень повреждений.

Рисунок 5. Светящиеся бактерии на чашке Петри (слева ) и принцип действия биосенсоров (справа ).

Такие модифицированные штаммы разрабатываются в ГосНИИ Генетики и широко применяются в генетической токсикологии при изучении механизмов действия излучений и окислительного стресса , действия антиоксидантов (в частности, SkQ1 ), а также для поиска новых перспективных антиоксидантов среди синтезируемых химиками веществ .

В нашем случае использование именно бактериальной модели обусловлено следующим: бактерии, как известно, относятся к прокариотам, и клетки их устроены проще, чем эукариотические. Процессы, происходящие в мембране митохондрий эукариот, у прокариот реализуются прямо в клеточной мембране; в этом смысле бактерии - «сами себе митохондрии». (Удивительное сходство строения этих органелл с бактериями даже послужило в свое время основой для так называемой симбиотической теории происхождения эукариот .) Следовательно, для изучения процессов, происходящих в митохондриях, подобная модель вполне подходит.

Первые же результаты показали, что водная суспензия фуллерена C 60 , для более эффективного растворения обработанная ультразвуком, при добавлении к культуре биосенсоров увеличивала их устойчивость к повреждению ДНК активными формами кислорода. Уровень таких повреждений в опыте был на 50–60% ниже, чем в контроле.

Кроме того, было зафиксировано снижение уровня спонтанной продукции супероксид-анион-радикала в клетках SoxS-lux штамма при добавлении суспензии C 60 . Особенностью этого штамма как раз и является связь уровня его свечения с количеством супероксид-анион-радикала. Именно такого эффекта следует ожидать от соединения, действующего по принципу «мягких разобщителей» - если снижается трансмембранный потенциал, то и АФК (в частности, супероксид) будут вырабатываться в меньших количествах.

Полученные результаты, конечно, весьма предварительны, и работы еще продолжаются, именно поэтому в подзаголовке данного раздела и стоит вопросительный знак. Время покажет, сможем ли мы со временем заменить его на уверенный восклицательный. Ясно одно - в ближайшее время фуллерены неизбежно окажутся в фокусе внимания научных коллективов, изучающих проблемы старения и занимающихся поиском геропротекторов - веществ, замедляющих старение. И кто знает, не станут ли эти крохотные «шарики» надеждой на продление столь короткой пока человеческой жизни?

Работа проводилась в лаборатории экспериментального мутагенеза и лаборатории промышленных микроорганизмов НИИ биологии ЮФУ, а также в НОЦ «Наноразмерная структура вещества», ЮФУ, под руководством проф. А.В. Солдатова. Основные результаты моделирования системы «фуллерен+протоны» и биологические эффекты описаны, соответственно, в работах:

  1. Chistyakov V.A., Smirnova Yu.O., Prazdnova E.V., Soldatov A.V. (2013). Possible Mechanisms of Fullerene C60 Antioxidant Action . Biomed. Res. Int. 2013, 821498 и
  2. Prazdnova E.V., Chistyakov V.A., Smirnova Yu.O., Soldatov A.V., Alperovich I.G. (2013). Possible Mechanisms of Fullerene C60 Antioxidant Action. In: II German-Russian Interdisciplinary Workshop «Nanodesign: Physics, Chemistry and Computer modeling». Rostov-on-Don, 2013, 23.

Литература

  1. Соколов В. И., Станкевич И. В. (1993). Фуллерены - новые аллотропные формы углерода: структура, электронное строение и химические свойства. Успехи химии 62б, 455;
  2. Buseck P.R., Tsipursky S.J., Hettich R. (1992). Fullerenes from the Geological Environment . Science 257, 215–217; ;
  3. Око планет: «В космосе впервые обнаружен фуллерен »;
  4. Андриевский Г.В., Клочков В.К., Деревянченко Л.И. Токсична ли молекула фуллерена С 60 ? Или к вопросу: «Какой свет будет дан фуллереновым нанотехнологиям - Красный или все-таки зеленый?» . Электронный журнал «Вся медицина в Интернете!»;
  5. Ширинкин С.В., Чурносов М.И., Андриевский Г.В., Васильченко Л.В. (2009). Перспективы использования фуллеренов в качестве антиоксидантов в патогенетической терапии бронхиальной астмы. Клиническая медицина № 5 (2009), 56–58 ;
  6. Baati T., Bourasset F., Gharb N., et al. (2012) . Biochemistry (Moscow) 73, 1329–1342; ;et al. (2009). Peculiarities of the antioxidant and radioprotective effects of hydrated C 60 fullerene nanostructures in vitro and in vivo . Free Radic. Biol. Med. 47, 786–793; ;
  7. Xiao Y., Wiesner M.R. (2012). Characterization of surface hydrophobicity of engineered nanoparticles . J. Hazard. Mat. 215, 146–151; ;
  8. Zavilgelsky G.B., Kotova V.Y., Manukhov I.V. (2007). Action of 1,1-dimethylhydrazine on bacterial cells is determined by hydrogen peroxide . Mutat. Res. 634, 172–176; ;
  9. Празднова Е.В., Севрюков А.В., Новикова Е.В. (2011). Детекция сырой нефти при помощи бактериальных Lux-биосенсоров. Известия ВУЗов. Северо-Кавказский регион. Естественные науки № 4 (2011), 80–83; ;
  10. Празднова Е.В., Чистяков В.А., Сазыкина М.А., Сазыкин И.С., Кхатаб З.С. (2012). Перекись водорода и генотоксичность ультрафиолетового излучения с длиной волны 300–400 нм. Известия ВУЗов. Северо-Кавказский регион. Естественные науки № 1 (2012), 85–87; ;
  11. Чистяков В.А., Празднова Е.В., Гутникова Л.В., Сазыкина М.А., Сазыкин И.С. (2012). Супероксидустраняющая активность производного пластохинона - 10-(6’-пластохинонил) децилтрифенилфосфония (SkQ1). Биохимия 77, 932–935; ;
  12. Олудина Ю.Н и др. (2013). Синтез модифицированных пространственно-затрудненных фенолов и исследование их способности защищать ДНК бактерий от повреждения ультрафиолетом B. Химико-фармацевтический журнал (в печати);
  13. Кулаев И.С. (1998). Происхождение эукариотических клеток . Соросовский Образовательный Журнал № 5 (1998), 17–22. .

Открытие фуллеренов - новой формы существования одного из самых распространенных элементов на Земле - углерода, признано одним из удивительных и важнейших открытий в науке XX столетия. Несмотря на давно известную уникальную способность атомов углерода связываться в сложные, часто разветвленные и объемные молекулярные структуры, составляющую основу всей органической химии, фактическая возможность образования только из одного углерода стабильных каркасных молекул все равно оказалось неожиданной. Экспериментальное подтверждение того, что молекулы подобного типа, состоящие из 60 и более атомов, могут возникать в ходе естественно протекающих в природе процессов, произошло в 1985 г. И задолго до этого некоторые авторы предполагали стабильность молекул с замкнутой углеродной сферой. Однако эти предположения носили сугубо умозрительный, чисто теоретический характер. Вообразить, что такие соединения могут быть получены путем химического синтеза, было довольно трудно. Поэтому данные работы остались незамеченными, и внимание на них было обращено только задним числом, уже после экспериментального обнаружения фуллеренов. Новый этап наступил в 1990 г., когда был найден метод получения новых соединений в граммовых количествах, и описан метод выделения фуллеренов в чистом виде. Очень скоро после этого были определены важнейшие структурные и физико-химические характеристики фуллерена С 60 - наиболее легко образующегося соединения среди известных фуллеренов. За свое открытие - обнаружение углеродных кластеров состава C 60 и C 70 - Р. Керл, Р. Смолли и Г. Крото в 1996 г. были удостоены Нобелевской премии по химии. Ими же и была предложена структура фуллерена C 60 , известная всем любителям футбола.

Как известно, оболочка футбольного мяча скроена из 12 пентагонов и 20 гексагонов. Теоретически возможно 12500 вариантов расположения двойных и ординарных связей. Наиболее стабильный изомер (показанный на рисунке) имеет структуру усеченного икосаэдра, в которой отсутствуют двойные связи в пентагонах. Этот изомер С 60 получил название «Бакминстерфуллерен» в честь известного архитектора по имени R. Buckminster Fuller, создавшего сооружения, куполообразный каркас которых сконструирован из пентагонов и гексагонов. Вскоре была предложена структура для С 70 , напоминающая мяч для игры в регби (с вытянутой формой).

В углеродном каркасе атомы C характеризуются sp 2 -гибридизацией, причем каждый атом углерода связан с тремя соседними атомами. Валентность 4 реализуется за счет p-связей между каждым атомом углерода и одним из его соседей. Естественно, предполагается, что p-связи могут быть делокализованы, как в ароматических соединениях. Такие структуры могут быть построены при n≥20 для любых четных кластеров. В них должно содержаться 12 пентагонов и (n-20)/2 гексагонов. Низший из теоретически возможных фуллеренов C 20 представляет собой не что иное, как додекаэдр - один из пяти правильных многогранников, в котором имеется 12 пятиугольных граней, а шестиугольные грани вовсе отсутствуют. Молекула такой формы имела бы крайне напряженную структуру, и поэтому ее существование энергетически невыгодно.

Таким образом, с точки зрения стабильности, фуллерены могут быть разбиты на два типа. Границу между ними позволяет провести т.н. правило изолированных пентагонов (Isolated Pentagon Rule, IPR). Это правило гласит, что наиболее стабильными являются те фуллерены, в которых ни одна пара пентагонов не имеет смежных ребер. Другими словами, пентагоны не касаются друг друга, и каждый пентагон окружен пятью гексагонами. Если располагать фуллерены в порядке увеличения числа атомов углерода n, то Бакминстерфуллерен - C 60 является первым представителем, удовлетворяющим правилу изолированных пентагонов, а С 70 - вторым. Среди молекул фуллеренов с n>70 всегда есть изомер, подчиняющийся IPR, и число таких изомеров быстро возрастает с ростом числа атомов. Найдено 5 изомеров для С 78 , 24 - для С 84 и 40 - для C 90 . Изомеры, имеющие в своей структуре смежные пентагоны существенно менее стабильны.

Химия фуллеренов

В настоящее время преобладающая часть научных исследований связана с химией фуллеренов. На основе фуллеренов уже синтезировано более 3 тысяч новых соединений. Столь бурное развитие химии фуллеренов связано с особенностями строения этой молекулы и наличием большого числа двойных сопряженных связей на замкнутой углеродной сфере. Комбинация фуллерена с представителями множества известных классов веществ открыла для химиков-синтетиков возможность получения многочисленных производных этого соединения.

В отличие от бензола, где длины C-C связей одинаковы, в фуллеренах можно выделить связи более «двойного» и более «одинарного» характера, и химики часто рассматривают фуллерены как электронодефицитные полиеновые системы, а не как ароматические молекулы. Если обратиться к С 60 , то в нем присутствует два типа связей: более короткие (1.39 Å) связи, пролегающие вдоль общих ребер соседствующих шестиугольных граней, и более длинные (1.45 Å), расположенные по общих ребрам пяти- и шестиугольных граней. При этом ни шестичленные, ни, тем более, пятичленные циклы не обнаруживают ароматических свойств в том смысле, в каком их проявляют бензол или иные плоские сопряженные молекулы, подчиняющиеся правилу Хюккеля. Поэтому обычно более короткие связи в С 60 считают двойными, более длинные же - одинарными. Одна из важнейших особенностей фуллеренов состоит в наличии у них необычно большого числа эквивалентных реакционных центров, что нередко приводит к сложному изомерному составу продуктов реакций с их участием. Вследствие этого большинство химических реакций с фуллеренами не являются селективными, и синтез индивидуальных соединений бывает весьма затруднен.

Среди реакций получения неорганических производных фуллерена наиболее важными являются процессы галогенирования и получения простейших галогенпроизводных, а также реакции гидрирования. Так, эти реакции были одними из первых, проведенных с фуллереном C 60 в 1991 г. Рассмотрим основные типы реакций, ведущие к образоваению данных соединений.

Сразу после открытия фуллеренов большой интерес вызвала возможность их гидрирования с образованием «фуллеранов». Первоначально представлялось возможным присоединение к фуллерену шестидесяти атомов водорода. Впоследствии в теоретических работах было показано, что в молекуле С 60 Н 60 часть атомов водорода должна оказаться внутри фуллереновой сферы, так как шестичленные кольца, подобно молекулам циклогексана, должны принять конформации «кресла» или «ванны». Поэтому известные на настоящий момент молекулы полигидрофуллеренов содержат от 2 до 36 атомов водорода для фуллерена C 60 и от 2 до 8 - для фуллерена C 70 .

При фторировании фуллеренов обнаружен полный набор соединений С 60 F n , где n принимает четные значения вплоть до 60. Фторпроизводные с n от 50 до 60 называются перфторидами и обнаружены среди продуктов фторирования масс-спектрально в чрезвычайно малых концентрациях. Существуют также гиперфториды, то есть продукты состава C 60 F n , n>60, где углеродный каркас фуллерена оказывается частично разрушенным. Предполагается, что подобное имеет место и в перфторидах. Вопросы синтеза фторидов фуллеренов различного состава являются самостоятельной интереснейшей проблемой, изучением которой наиболее активно занимаются в химического факультета МГУ им. М.В. Ломоносова.

Активное изучение процессов хлорирования фуллеренов в различных условиях началось уже в 1991 году. В первых работах авторы пытались получить хлориды С 60 путем взаимодействия хлора и фуллерена в различных растворителях. К настоящему же времени выделено и охарактеризовано несколько индивидуальных хлоридов фуллеренов C 60 и C 70 , полученных путем применения различных хлорирующих агентов.

Первые попытки бромирования фуллерена были предприняты уже в 1991 году. Фуллерен С 60 , помещенный в чистый бром при температуре 20 и 50 O С, увеличивал массу на величину, соответствующую присоединению 2-4 атомов брома на одну молекулу фуллерена. Дальнейшие исследования бромирования показали, что при взаимодействии фуллерена С 60 с молекулярным бромом в течение нескольких дней получается ярко-оранжевое вещество, состав которого, как было определено, методом элементного анализа, был С 60 Br 28 . Впоследствии было синтезировано несколько бромпроизводных фуллеренов, отличающихся широким набором значений числа атомов брома в молекуле. Для многих из них характерно образование клатратов с включением молекул свободного брома.

Интерес к перфторалкилпроизводным, в частности трифторметилированным производным фуллеренов связан, в первую очередь, с ожидаемой кинетической стабильностью этих соединений по сравнению со склонными к реакциям нуклеофильного S N 2’-замещения галогенпроизводными фуллеренов. Кроме того, перфторалкилфуллерены могут представлять интерес как соединения с высоким сродством к электрону, обусловленным даже более сильными, чем у атомов фтора, акцепторными свойствами перфторалкильных групп. К настоящему времени число выделенных и охарактеризованных индивидуальных соединений состава C 60/70 (CF 3) n , n=2-20 превышает 30, причем интенсивно ведутся работы по модификации фуллереновой сферы многими другими фторсодержащими группами - CF 2 , C 2 F 5 , C 3 F 7 .

Создание же биологически активных производных фуллерена, которые могли бы найти применение в биологии и медицине, связано с приданием молекуле фуллерена гидрофильных свойств. Одним из методов синтеза гидрофильных производных фуллерена является введение гидроксильных групп и образования фуллеренолов или фуллеролов, содержащих до 26 групп ОН, а также, вероятно, кислородные мостики, аналогичные наблюдаемым в случае оксидов. Такие соединения хорошо растворимы в воде и могут быть использованы для синтеза новых производных фуллерена.

Что же касается оксидов фуллеренов, то соединения С 60 О и С 70 О присутствуют всегда в исходных смесях фуллеренов в экстракте в небольших количествах. Вероятно, кислород присутствует в камере при электродуговом разряде и часть фуллеренов окисляется. Оксиды фуллерена хорошо разделяются на колонках с различными адсорбентами, что позволяет контролировать чистоту образцов фуллеренов, и отсутствие или присутствие оксидов в них. Однако низкая стабильность оксидов фуллеренов препятствуют их систематическому изучению.

Что можно отметить относительно органической химии фуллеренов, так это то, что, будучи электронодефицитным полиеном, фуллерен С 60 проявляет склонность к реакциям радикального, нуклеофильного и циклоприсоединения. Особенно перспективными в плане функционализации фуллереновой сферы являются разнообразные реакции циклоприсоединения. В силу своей электронной природы С 60 способен принимать участие в реакциях -циклоприсоединения, причем наиболее характерными являются случаи, когда n=1, 2, 3 и 4.

Основной проблемой, решаемой химиками-синтетиками, работающими в области синтеза производных фуллеренов, и по сей день остается селективность проводимых реакций. Особенности стереохимии присоединения к фуллеренам состоят в огромном числе теоретически возможных изомеров. Так, например, у соединения C 60 X 2 их 23, у С 60 X 4 уже 4368, среди них 8 - продукты присоединения по двум двойным связям. 29 изомеров С 60 X 4 не будут, однако, иметь химического смысла, обладая триплетным основным состоянием, возникающим в связи с наличием sp2-гибридизованного атома углерода в окружении трех sp 3 -гибридизованных атомов, образующих С-Х связи. Максимальное число теоретически возможных изомеров без учета мультиплетности основного состояния будет наблюдаться в случае С 60 X 30 и составит 985538239868524 (1294362 из них - продукты присоединения по 15 двойным связям), тогда как число несинглетных изомеров той же природы, что и в приведенном выше примере, не поддается простому учету, но из общих соображений должно постоянно увеличивать с ростом числа присоединенных групп. В любом случае, число теоретически допустимых изомеров в большинстве случаев огромно, при переходе же к менее симметричным С 70 и высшим фуллеренам оно дополнительно возрастает в разы или на порядки.

На самом же деле, многочисленные данные квантово-химических расчетов показывают, что большинство реакций галогенирования и гидрирования фуллеренов протекают с образованием если и не наиболее стабильных изомеров, то, по крайней мере, незначительно отличающихся от них по энергии. Наибольшие расхождения наблюдаются в случае низших гидридов фуллеренов, изомерный состав которых, как было показано выше, может даже слегка зависеть от пути синтеза. Но при этом стабильность образующихся изомеров все равно оказывается крайне близкой. Изучение этих закономерностей образования производных фуллеренов представляет собой интереснейшую задачу, решение которой приводит к новым достижениям в области химии фуллеренов и их производных.

Человек должен защищать свой дом от дождя и холода; свой сад от вредителей; воздух от выхлопных газов; воду от примесей, попадающих от вредных производств, то есть, человек, живя в окружающей его среде, должен защищать среду его обитания от творения рук своих, от «себя самого».

Кто же спасёт человека? Красота?

По мнению ученых, есть некий её вид, который может облегчить наше существование.

Это красота многоатомных молекул углерода , получивших название «фуллерены».

Фуллерены – это необычные молекулы, напоминающие по форме футбольный мяч . Как и мяч, они полые внутри и их даже хотели назвать «футболены», но поиграть в футбол фуллереном невозможно, так как его размер – 1 нанометр, то есть одна миллиардная часть метра.

Фуллерены – четвёртая, ранее неизвестная, модификация углерода (первые три – это графит, алмаз, карбон). Она была открыта в 1985 году, причем совершенно случайно. Английский химик и астрофизик Харолд Крото, изучая межзвёздную пыль, заинтересовался имевшимися там углеродными частицами. Испытывая трудности в их анализе, он обратился за помощью к американским коллегам Роберту Керлу и Ричарду Смолли, которые занимались испарением веществ с помощью лазера. Все трое с энтузиазмом взялись за дело. Испаряя графит для получения искомых частиц, они с удивлением обнаружили в остатках неизвестные молекулы углерода, похожие на футбольный мяч. Харолду Крото, инициатору свей этой истории, оболочка новой молекулы напомнила знаменитое произведение американского архитектора Р.Б.Фуллера – геодезический купол американского павильона на всемирной выставке ЭКСПО-67. Крото и предложил назвать новые частицы в честь Фуллера. Так появилось слово «фуллерены».

Исследователи сразу же послали сообщение о своём открытии в журнал «Nature».

Открытие новых молекул вызвало невероятный интерес к их дальнейшим исследованиям. Разразился «фуллереновый бум», который привёл к созданию нанотехнологий, а с их помощью – к разработке невиданных ранее материалов и соединений, предназначенных для разных областей науки, техники, медицины и фармакологии.

В 1996 году Р.Керл, Х.Крото, Р.Смолли за открытие фуллеренов получили Нобелевскую премию в области химии. Фуллерены произвели настоящую революцию! И, хотя пока её результаты заметны только в науке и технике, не за горами переворот и в медицине.

Революция заключается в качественном скачке от микро…, миллионной части метра, к нано…, его миллиардной части. Перед нами открываются перспективы получения новых веществ с помощью нанотехнологий и, конечно же, появление наномедицины («нано» в переводе означает «карлик»). Возможно, слово «наномедицина» ещё не встретишь в словарях, но эта отрасль уже заявила право на существование.

Маленькое, но точное:

Рассмотрим свойства фуллеренов с точки зрения применения в медицине.

Одно из самых замечательных свойств этих веществ – то, что они способны создавать водные растворы. Встроив самый устойчивый из фуллеренов (он называется С60) в молекулу воды, учёным удалось создать водную среду, очень похожую на среду в здоровых клетках организма. Вода со встроенным фуллереном нейтрализует свободные радикалы, то есть является антиоксидантом. Свободные радикалы – причина возникновения множества болезней. Эти молекулы, образующиеся в нашем организме, повреждают хромосомы и приводят к старению клеток, раковым заболеваниям, снижению иммунитета. Им противостоят антиоксиданты – полезные вещества, которые соединяются со свободными радикалами и предотвращают их разрушительное действие.

Обычные антиоксиданты – вещества штучные, одноразового действия. Скажем, молекула витамина, соединяясь со свободным радикалом, образует безвредное соединение и выбывает из игры. На один радикал одна молекула? Не густо! А фуллереновый мячик – долгоиграющий: он остаётся в игре всё время, обладая магическим свойством притягивать к себе свободные радикалы. Кроме этого, такие «прилипшие» радикалы соединяются между собой и образуют безвредные вещества. Благодаря присутствию фуллерена этот процесс невероятно ускоряется, и тогда злосчастные радикалы массами выбывают из игры. Фуллереновые растворы во много раз эффективнее обычных антиоксидантов. Между тем исследователи говорят, что фуллерен – не лекарство в обычном смысле слова, так как лекарство способствует лечению определённой болезни, а растворы фуллерена действуют гораздо шире, в объёме всего организма.


Медицина с приставкой «нано»

Возможности этих наношариков поистине неисчерпаемы и не ограничиваются борьбой только со свободными радикалами. Фуллерены способны создавать целые комплекты биоактивных соединений. Заполнив полость фуллерена целительным веществом, можно этот шарик, как в лузу, загнать в необходимую точку. Такие фуллерены, шутливо названные фаршированными, могут быть использованы для доставки антибиотиков, витаминов и гормонов к больным клеткам. Особенно упорно ведутся работы по созданию фуллереновых препаратов для лечения болезней мозга. Впервые в мире фуллереновый антиоксидант для лечения повреждённых мозговых клеток синтезировали в Тель-Авивском университете. Его применение дало положительные результаты в экспериментах пока с животными. Предполагаются дальнейшие разработки этой методики для лечения рассеянного склероза и болезни Альцгеймера. Проводятся эксперименты с фуллеренами для доставки лекарств через кожу без применения уколов. Разрабатываются методы разрушения всемогущими фуллеренами геномов вирусов, проникающих в живую клетку. Перспективны работы по применению фуллеренов в качестве противоядия. Продолжать можно долго… Во всём мире ведутся исследования фуллереновых препаратов против раковых заболеваний и результаты вселяют надежду!

Жаль, что до окончательного триумфа живительных наношариков, не дожил один из их первооткрывателей – Ричард Смолли. Он скончался в 2005 году.

Исследования целительных углеродных образований продолжаются, хотя пока не вышли за пределы лабораторий.

Аспидный камень и фуллерены:

Выдающиеся открытия поначалу часто обрастают легендами, и кажется, будто они могут творить чудеса.

В России «фуллереновая лихорадка» началась в конце 90-х годов прошлого века. Она была связана с углеродистой сланцевой породой - шунгитом, залежи которого обнаружены в Карелии.

По одной из версий, советский геолог С.Ципурский, узнав об открытии фуллеренов, передал шунгит, который привёз из Карелии, для исследования в лабораторию Аризонского университета в Америке. О результатах этого исследования, проведённого с участием самого Ципурского, была опубликована статья в научном журнале в 1992 году. В ней говорилось, что в шунгите действительно обнаружено незначительное содержание фуллеренов. Это стало сенсацией, вызвавшей дальнейшее исследование шунгита в лечебных целях.

Впрочем, о целебных свойствах шунгита издавна ходили легенды. Этот сланец зловещего чёрного цвета в старину звался аспидным камнем. Потом он получил название «шунгит» - от карельской деревни Шуньга, где через залежи этой породы пробивался ключ с целебной водой. Местные старики говорили, шунгит от ста болячек исцелит. По преданию, здесь излечилась от многочисленных хворей боярыня Ксения Романова, сосланная в эти края Борисом Годуновым. Это была мать первого русского царя Михаила Фёдоровича. В память о ней чудодейственный источник был назван «Царевич ключ». Однако, после освобождения Ксении о нём забыли. Ксения Романова была прабабкой Петра первого и, вероятно, до него дошли семейные предания о целебных свойствах аспидного камня. Возможно, камень обладал к тому же и антисептическими свойствами. Так или иначе, но есть сведения, что Пётр повелел держать в солдатских ранцах аспидный камень и опускать его в котелки с водой, «дабы сохранить крепость живота своего». «Крепость живота» явно не смогли сохранить солдаты шведской армии, потерпевшие поражения в Полтавской битве: жарким летом 1709 года их изрядно потрепала разразившаяся тогда эпидемия дизентерии.

Шунгитовые породы применяются в строительстве и металлургии, а в последнее время шунгит с успехом используется в фильтрах для очистки воды.

В 2003 году, то есть через десять лет после первой сенсационной публикации, в журнале Американского геологического общества вышла статья, которая сообщала, что тщательные проверки не подтвердили наличия фуллеренов в шунгите. Кроме того, даже если бы они там были, целительный эффект создавал бы не сам камень, а его водный раствор.

Органическая электроника:

Учёные Технологического Института Джорджии (Georgia Institute of Technology) в результате проведённых исследований, создали матрицу быстродействующих полевых транзисторов на основе фуллеренов С60.

Профессор Bernard Kippelen отметил, что органические полупроводники – абсолютно новый, современный и очень перспективный материал в наноэлектронике.

Область применения органической наноэлектроники огромна: от дисплеев и активных электронных бигбордов, до RFID-меток и гибких компьютеров.

Нанокосметика: клетки красоты:

Нанотехнологии ещё только изучаются, но уже появилась целая линия косметических товаров , использующих замечательные свойства фуллеренов. На упаковках таких средств обычно пишут: «содержит фуллерены» или «содержит С60» (это самая устойчивая молекула из этой группы). Производители утверждают, что кремы с фуллеренами ощутимо улучшают состояние зрелой кожи, замедляют процесс старения, поддерживают упругость и свежесть лица.

В заключении:

Наномедицина совершенно новое направление в борьбе с болезнями. И, несмотря на то, что её идеи и проекты находятся ещё на стадии лабораторных исследований, нет сомнений, что наномедицине принадлежит будущее.