Биографии Характеристики Анализ

Случайные процессы и их характеристики. Случайные функции и их характеристики (примеры)

Мы имели много случаев убедиться в том, какое большое значение в теории вероятностей имеют основные числовые характеристики случайных величин: математическое ожидание и дисперсия - для одной случайной величины, математические ожидания и корреляционная матрица - для системы случайных величин. Искусство пользоваться числовыми характеристиками, оставляя по возможности в стороне законы распределения, - основа прикладной теории вероятностей. Аппарат числовых характеристик представляет собой весьма гибкий и мощный аппарат, позволяющий сравнительно просто решать многие практические задачи.

Совершенно аналогичным аппаратом пользуются и в теории случайных функций. Для случайных функций также вводятся простейшие основные характеристики, аналогичные числовым характеристикам случайных величин, и устанавливаются правила действий с этими характеристиками. Такой аппарат оказывается достаточным для решения многих практических задач.

В отличие от числовых характеристик случайных величин, предоставляющих собой определенные числа, характеристики случайных функций представляют собой в общем случае не числа, а функции.

Математическое ожидание случайной функции определяется следующим образом. Рассмотрим сечение случайной функции при фиксированном . В этом сечении мы имеем обычную случайную величину; определим ее математическое ожидание. Очевидно, в общем случае оно зависит от , т. е. представляет собой некоторую функцию :

. (15.3.1)

Таким образом, математическим ожиданием случайной функции называется неслучайная функция , которая при каждом значении аргумента равна математическому ожиданию соответствующего сечения случайной функции.

По смыслу математическое ожидание случайной функции есть некоторая средняя функция, около которой различным образом варьируются конкретные реализации случайной функции.

На рис. 15.3.1 тонкими линиями показаны реализации случайной функции, жирной линией - ее математическое ожидание.

Аналогичным образом определяется дисперсия случайной функции.

Дисперсией случайной функции называется неслучайная функция , значение которой для каждого равно дисперсии соответствующего сечения случайной функции:

. (15.3.2)

Дисперсия случайной функции при каждом характеризует разброс возможных реализаций случайной функции относительно среднего, иными словами, «степень случайности» случайной функции.

Очевидно, есть неотрицательная функция. Извлекая из нее квадратный корень, получим функцию - среднее квадратическое отклонение случайной функции:

. (15.3.3)

Математическое ожидание и дисперсия представляют собой весьма важные характеристики случайной функции; однако для описания основных особенностей случайной функции этих характеристик недостаточно. Чтобы убедиться в этом, рассмотрим две случайные функции и , наглядно изображенные семействами реализаций на рис. 15.3.2 и 15.3.3.

У случайных функций и примерно одинаковые математические ожидания и дисперсии; однако характер этих случайных функций резко различен. Для случайной функции (рис. 15.3.2) характерно плавное, постепенное изменение. Если, например, в точке случайная функция приняла значение, заметно превышающее среднее, то весьма вероятно, что и в точке она также примет значение больше среднего. Для случайной функции характерна ярко выраженная зависимость между ее значениями при различных . Напротив, случайная функция (рис. 15.3.3) имеет резко колебательный характер с неправильными, беспорядочными колебаниями. Для такой случайной функции характерно быстрое затухание зависимости между ее значениями по мере увеличения расстояния по между ними.

Очевидно, внутренняя структура обоих случайных процессов совершенно различна, но это различие не улавливается ни математическим ожиданием, ни дисперсией; для его описания необходимо вести специальную характеристику. Эта характеристика называется корреляционной функцией (иначе - автокорреляционной функцией). Корреляционная функция характеризует степень зависимости между сечениями случайной функции, относящимися к различным .

Пусть имеется случайная функция (рис. 15.3.4); рассмотрим два ее сечения, относящихся к различным моментам: и , т. е. две случайные величины и . Очевидно, что при близких значениях и величины и связаны тесной зависимостью: если величина приняла какое-то значение, то и величина с большой вероятностью примет значение, близкое к нему. Очевидно также, что при увеличении интервала между сечениями , зависимость величин и вообще должна убывать.

Степень зависимости величин и может быть в значительной мере охарактеризована их корреляционным моментом; очевидно, он является функцией двух аргументов и . Эта функция и называется корреляционной функцией.

Таким образом, корреляционной функцией случайной функции называется неслучайная функция двух аргументов , которая при каждой паре значений , равна корреляционному моменту соответствующих сечений случайной функции:

, (15.3.4)

, .

Вернемся к примерам случайных функций и (рис. 15.3.2 и 15.3.3). Мы видим теперь, что при одинаковых математических ожиданиях и дисперсиях случайные функции и имеют совершенно различные корреляционные функции. Корреляционная функция случайной функции медленно убывает по мере увеличения промежутка ; напротив, корреляционная функция случайной функции быстро убывает с увеличением этого промежутка.

Выясним, во что обращается корреляционная функция , когда ее аргументы совпадают. Полагая , имеем:

, (15.3.5)

т. е. при корреляционная функция обращается в дисперсию случайной функции.

Таким образом, необходимость в дисперсии как отдельной характеристике случайной функции отпадает: в качестве основных характеристик случайной функции достаточно рассматривать ее математическое ожидание и корреляционную функцию.

Так как корреляционный момент двух случайных величин и не зависит от последовательности, в которой эти величины рассматриваются, то корреляционная функция симметрична относительно своих аргументов, т. е. не меняется при перемене аргументов местами:

. (15.3.6)

Если изобразить корреляционную функцию в виде поверхности, то эта поверхность будет симметрична относительно вертикальной плоскости , проходящей через биссектрису угла (рис. 15.3.5).

Заметим, что свойства корреляционной функции естественно вытекают из свойств корреляционной матрицы системы случайных величин. Действительно, заменим приближенно случайную функцию системой случайных величин . При увеличении и соответственном уменьшении промежутков между аргументами корреляционная матрица системы, представляющая собой таблицу о двух входах, в пределе переходит в функцию двух непрерывно изменяющихся аргументов, обладающую аналогичными свойствами. Свойство симметричности корреляционной матрицы относительно главной диагонали переходит в свойство симметричности корреляционной функции (15.3.6). По главной диагонали корреляционной матрицы стоят дисперсии случайных величин; аналогично при корреляционная функция обращается в дисперсию .

На практике, если требуется построить корреляционную функцию случайной функции , обычно поступают следующим образом: задаются рядом равноотстоящих значений аргумента и строят корреляционную матрицу полученной системы случайных величин. Эта матрица есть не что иное, как таблица значений корреляционной функции для прямоугольной сетки значений аргументов на плоскости . Далее, путем интерполирования или аппроксимации можно построить функцию двух аргументов .

Вместо корреляционной функции можно пользоваться нормированной корреляционной функцией:

, (15.3.7)

которая представляет собой коэффициент корреляции величин , . Нормированная корреляционная функция аналогична нормированной корреляционной матрице системы случайных величин. При нормированная корреляционная функция равна единице.

o Случайной функцией называется функция X(t), значение которой при любом значении аргумента t является случайной величиной.

Другими словами, случайной функцией называется функция, которая в результате опыта может принять тот или иной конкретный вид, при этом заранее не известно, какой именно.

o Конкретный вид, принимаемый случайной величиной в результате опыта, называется реализацией случайной функции.

Т.к. на практике аргумент t чаще всего является временным, то случайную функцию иначе называют случайным процессом.

На рисунке изображено несколько реализаций некоторого случайного процесса.

Если зафиксировать значение аргумента t, то случайная функция X(t) превратится в случайную величину, которую называют сечением случайной функции , соответствующим моменту времени t. Будем считать распределение сечения непрерывным. Тогда Х(t) при данном t определяется плотностью распределения p(x; t).

Очевидно, p(x; t) не является исчерпывающей характеристикой случайной функции X(t), поскольку она не выражает зависимости между сечениями X(t) в разные моменты времени t. Более полную характеристику дает функция -совместная плотность распределения системы случайных величин , где t 1 и t 2 -произвольные значения аргумента t случайной функции. Еще более полную характеристику случайной функции X(t) даст совместимая плотность распределения системы трех случайных величин и т.д.

o Говорят, что случайный процесс имеет порядок n , если он полностью определяется плотностью совместимого распределения n произвольных сечений процесса, т.е. системы n случайных величин , где X(t i)-сечение процесса, отвечающее моменту времени t i , но не определяется заданием совместного распределения меньшего, чем n, числа сечений.

o Если плотность совместного распределения произвольных двух сечений процесса вполне его определяет, то такой процесс называется марковским.

Пусть имеется случайная функция X(t). Возникает задача описания ее с помощью одной или нескольких неслучайных характеристик. В качестве первой из них естественно взять функцию -математическое ожидание случайного процесса. В качестве второй берется среднее квадратическое отклонение случайного процесса .

Эти характеристики являются некоторыми функциями от t. Первая из них-это средняя траектория для всех возможных реализаций. Вторая характеризует возможный разброс реализаций случайной функции около средней траектории. Но и этих характеристик недостаточно. Важно знать зависимость величин X(t 1) и X(t 2). Эту зависимость можно характеризовать с помощью корреляционной функции или корреляционного момента.

Пусть имеются два случайных процесса, по нескольку реализаций которых изображено на рисунках.

У этих случайных процессов примерно одинаковые математические ожидания и средние квадратичные отклонения. Тем не менее это различные процессы. Всякая реализация для случайной функции X 1 (t) медленно меняет свои значения с изменением t, чего нельзя сказать о случайной функции X 2 (t). У первого процесса зависимость между сечениями X 1 (t) и будет больше, чем зависимость для сечений X 2 (t) и второго процесса, т.е. убывает медленнее, чем , при увеличении Δt. Во втором случае процесс быстрее «забывает» свое прошлое.

Остановимся на свойствах корреляционной функции, которые вытекают из свойств корреляционного момента пары случайных величин.

Свойство 1. Свойство симметричности .

Свойство 2. Если к случайной функции X(t) прибавить неслучайное слагаемое , то от этого корреляционная функция не изменится, т.е. .

Действительно,

Свойство 3. , где -неслучайная функция.

Комплексной слуюйной функцией называютфункцию

Z (t )=X (t )+Y (t )i ,

где Х (t ) и Y (t )-действительные случайные функции действительного аргумента t .

Обобщим определения математического ожидания и дисперсии на комплексные случайные функции так, чтобы, в частности, при Y=0 эти характеристики совпали с ранее введенными характеристиками для действительных случайных функций, т. е. чтобы выполнялись требования:

m z (t )=m x (t )(*)

D z (t )=D x (t )(**)

Математическим , ожиданием , комплексной случайной функции Z (t )=Х (t )+Y (t )i называют комплексную функцию (неслучайную)

m z (t )=m x (t )+m y (t )i .

В частности, при Y=0 получим т z (t )=т x (t ),т.е. требование (*) выполняется.

Дисперсией комплексной случайной функции Z (t ) называют математическое ожидание квадрата модуля центрированной функции Z (t ):

D z (t )=M [| (t )| 2 ].

В частности, при Y==0 получим D z (t )= M [| (t )|] 2 =D x (t ), т. е. требование (**) выполняется.

Учитывая, что математическое ожидание суммы равно сумме математических ожиданий слагаемых, имеем

D z (t )=M [| (t )| 2 ]= M {[ (t )] 2 + [ (t ) 2 ]}= M [ (t )] 2 +M [ (t ) 2 ]= D x (t )+D y (t ).

Итак,дисперсия комплексной случайной функции равна сумме дисперсий ее действительной и мнимой частей:

D z (t )=D x (t )+D y (t ).

Известно, что корреляционная функция действительной случайной функции Х (t ) при разных значениях аргументов равна дисперсии D x (t ). Обобщим определение корреляционной функции на комплексные случайные функции Z (t ) так, чтобы при равных значениях аргументов t 1 =t 2 =t корреляционная функция K z (t , t ) была равна дисперсии D z (t ), т. е. чтобы выполнялось требование

K z (t , t )=D z (t ). (***)

Корреляционной функцией комплексной случайной функции Z (t ) называют корреляционный момент сечений (t 1)и (t 2)

K z (t 1 , t 2)= M .

В частности, при равных значениях аргументов

K z (t , t )= M =M [| | 2 ]= D z (t ).

т. е. требование (***) выполняется.

Если действительные случайные функции Х (t ) и Y (t )коррелированы, то

K z (t 1 , t 2)= K x (t 1 , t 2)+K y (t 1 , t 2)+ [R xy (t 2 ,t 1)]+ [ R xy (t 1 ,t 1)].

если Х (t ) и Y (t ) не коррелированы, то

K z (t 1 , t 2)= K x (t 1 , t 2)+K y (t 1 , t 2).

Обобщим определение взаимной корреляционной функции на комплексные случайные функции Z 1 (t )=Х 1 (t )+ Y 1 (t )i и Z 2 (t )=Х 2 (t )+ Y 2 (t )i так, чтобы, в частности, при Y 1 =Y 2 = 0 выполнялось требование

Взаимной корреляционной функцией двух комплексных случайных функций называют функцию (неслучайную)

В частности, при Y 1 =Y 2 =0 получим

т. е. требование (****) выполняется.

Взаимная корреляционная функция двух комплексных случайных функций выражается через взаимные корреляционные функции их действительных и мнимых частей следующей формулой:

Задачи

1. Найти математическое ожидание случайных функций:

a) X (t )=Ut 2 , где U- случайная величина, причем M (U )=5 ,

б ) Х (t )=U cos2t+Vt , где U и V- случайные величины, причем M (U )=3 , M (V )=4 .

Отв. а) m x (t)=5t 2 ; б) т x (t)=3 cos2t+4t.

2. К х (t 1 ,t 2) случайной функции X (t ). Найти корреляционные функции случайных функций:

a) Y (t )=X (t )+t; б) Y (t )=(t +1)X (t ); в) Y (t )=4X (t ).

Отв. a) К y (t 1 ,t 2)= К х (t 1 ,t 2); б) К y (t 1 ,t 2)=(t 1 +1)(t 2 +1) К х (t 1 ,t 2); в) К y (t 1 ,t 2)=16 К x (t 1 ,t 2)=.

3. Задана дисперсия D x (t ) случайной функции Х (t ). Найти дисперсию случайных функций: a) Y (t )(t )+e t б ) Y (t )=tX (t ).

Отв . a) D y (t )=D x (t ); б) D y (t )=t 2 D x (t ).

4. Найти: а) математическое ожидание; б) корреляционную функцию; в) дисперсию случайной функции Х (t )=Usin 2t , где U- случайная величина, причем M (U )=3 , D (U )=6 .

Отв . а)m x (t ) =3sin 2t; б) К х (t 1 ,t 2)= 6sin 2t 1 sin 2t 2 ; в) D x (t )=6sin 2 2t .

5. Найти нормированную корреляционную функцию случайной функции X (t ), зная ее корреляционную функцию К х (t 1 ,t 2)=3cos (t 2 -t 1).

Отв. ρ x (t 1 ,t 2)=cos(t 2 -t 1).

6. Найти: а) взаимную корреляционную функцию; б) нормированную взаимную корреляционную функцию двух случайных функций X (t )=(t +1)U , и Y(t )= (t 2 + 1)U , где U- случайная величина, причем D (U )=7.

Отв . a) R xy (t 1 ,t 2)=7(t 1 +l)(t 2 2 +l); б) ρ xy (t 1 ,t 2)=1.

7. Заданы случайные функции Х (t )= (t- 1)U и Y (t )=t 2 U , где U и V - некоррелированные случайные величины, причем M (U )=2, M (V )= 3, D (U )=4 , D (V )=5 . Найти: а) математическое ожидание; б) корреляционную функцию; в) дисперсию суммы Z (t )=X (t )+Y (t ).

Указание. Убедиться, что взаимная корреляционная функция заданных случайных функций равна нулю и, следовательно, Х (t ) и Y (t ) не коррелированы.

Отв . а) m z (t )=2(t - 1)+3t 2 ; б) К z (t 1 ,t 2)=4(t 1 - l)(t 2 - 1)+6t 1 2 t 2 2 ; в) D z (t )=4(t - 1) 2 +6t 4 .

8. Задано математическое ожидание m x (t )=t 2 +1 случайной функции Х (t ). Найти математическое ожидание ее производной.

9. Задано математическое ожидание m x (t )=t 2 +3 случайной функции Х (t ). Найти математическое ожидание случайной функции Y (t )=tХ" (t )+t 3 .

Отв. m y (t)=t 2 (t+2).

10. Задана корреляционная функция К х (t 1 ,t 2)= случайной функции X (t ). Найти корреляционную функцию ее производной.

11. Задана корреляционная функция К х (t 1 ,t 2)= случайной функции Х (t ). Найти взаимные корреляционные функции.

Основные задачи

Можно выделить два основных вида задач, решение которых требует использования теории случайных функций.

Прямая задача {анализ): заданы параметры некоторого устройства и его вероятностные характеристики (математические ожидания, корреляционные функции, законы распределения) поступающей на его «вход» функции (сигнала, процесса); требуется определить характеристики на «выходе» устройства (по ним судят о «качестве» работы устройства).

Обратная задача {синтез): заданы вероятностные характеристики «входной» и «выходной» функций; требуется спроектировать оптимальное устройство (найти его параметры), осуществляющее преобразование заданной входной функции в такую выходную функцию, которая имеет заданные характеристики. Решение этой задачи требует кроме аппарата случайных функций привлечения и других дисциплин и в настоящей книге не рассматривается.

Определение случайной функции

Случайной функцией называют функцию неслучайного аргумента t, которая при каждом фиксированном значении аргумента является случайной величиной. Случайные функции аргумента t обозначают прописными буквами X{t), Y{t) и т.д.

Например, если U - случайная величина, то функция Х{!)=С U - случайная. Действительно, при каждом фиксированном значении аргумента эта функция является случайной величиной: при t { = 2

получим случайную величину Х х = AU, при t 2 = 1,5 - случайную величину Х 2 = 2,25 U и т.д.

Для краткости дальнейшего изложения введем понятие сечения.

Сечением случайной функции называют случайную величину, соответствующую фиксированному значению аргумента случайной функции. Например, для случайной функции X(t) = t 2 U, приведенной выше, при значениях аргумента 7, = 2 и t 2 = 1,5 были получены соответственно случайные величины X { = AUn Х 2 = 2,2577, которые и являются сечениями заданной случайной функции.

Итак, случайную ф у н к ц и ю можно рассматр и - вать как совокупность случайных величин {Х(?)}, зависящих от параметра t. Возможно и другое истолкование случайной функции, если ввести понятие ее реализации.

Реализацией (траекторией , выборочной функцией) случайной функции X(t) называют неслучайную функцию аргумента t , равной которой может оказаться случайная функция в результате испытания.

Таким образом, если в опыте наблюдают случайную функцию, то в действительности наблюдают одну из возможных ее реализаций; очевидно, при повторении опыта будет наблюдаться другая реализация.

Реализации функции X(t) обозначают строчными буквами x t (t) t x 2 (t) и т.д., где индекс указывает номер испытания. Например, если X(t) = (/sin t, где U - непрерывная случайная величина, которая в первом испытании приняла возможное значение и { = 3, а во втором испытании и 2 = 4,6, то реализациями X(t) являются соответственно неслучайные функции х { (t ) = 3sin t и х 2 (t) = 4,6sin t.

Итак, случайную функцию можно рассматривать как совокупность ее возможных реализаций.

Случайным (стохастическим ) процессом называют случайную функцию аргумента t, который истолковывается как время. Например, если самолет должен лететь с заданной постоянной скоростью, то в действительности вследствие воздействия случайных факторов (колебание температуры, изменение силы ветра и др.), учесть влияние которых заранее нельзя, скорость изменяется. В этом примере скорость самолета - случайная функция от непрерывно изменяющегося аргумента (времени), т.е. скорость есть случайный процесс.

Заметим, что если аргумент случайной функции изменяется дискретно, то соответствующие ему значения случайной функции (случайные величины) образуют случайную последовательность.

Аргументом случайной функции может быть не только время. Например, если измеряется диаметр ткацкой нити вдоль ее длины, то вследствие воздействия случайных факторов диаметр нити изменяется. В этом примере диаметр - случайная функция от непрерывно изменяющегося аргумента (длины нити).

Очевидно, задать случайную функцию аналитически (формулой), вообще говоря, невозможно. В частных случаях, если вид случайной функции известен, а определяющие ее параметры - случайные величины, задать ее аналитически можно. Например, случайными являются функции:

X{t) = sin Qf, где Q - случайная величина,

X(t) = Г/sin t, где U - случайная величина,

X(t) = Г/sin Qt, где О. и }