Биографии Характеристики Анализ

Тождественно равные дроби. Тождества, определение, обозначение, примеры

Числа и выражения, из которых составлено исходное выражение, можно заменять тождественно равными им выражениями. Такое преобразование исходного выражения приводит к тождественно равному ему выражению.

Например, в выражении 3+x число 3 можно заменить суммой 1+2 , при этом получится выражение (1+2)+x , которое тождественно равно исходному выражению. Другой пример: в выражении 1+a 5 степень a 5 можно заменить тождественно равным ей произведением, например, вида a·a 4 . Это нам даст выражение 1+a·a 4 .

Данное преобразование, несомненно, искусственно, и обычно является подготовкой к каким-либо дальнейшим преобразованиям. Например, в сумме 4·x 3 +2·x 2 , учитывая свойства степени, слагаемое 4·x 3 можно представить в виде произведения 2·x 2 ·2·x . После такого преобразования исходное выражение примет вид 2·x 2 ·2·x+2·x 2 . Очевидно, слагаемые в полученной сумме имеют общий множитель 2·x 2 , таким образом, мы можем выполнить следующее преобразование - вынесение за скобки. После него мы придем к выражению: 2·x 2 ·(2·x+1) .

Прибавление и вычитание одного и того же числа

Другим искусственным преобразованием выражения является прибавление и одновременное вычитание одного и того же числа или выражения. Такое преобразование является тождественным, так как оно, по сути, эквивалентно прибавлению нуля, а прибавление нуля не меняет значения.

Рассмотрим пример. Возьмем выражение x 2 +2·x . Если к нему прибавить единицу и отнять единицу, то это позволит в дальнейшем выполнить еще одно тождественное преобразование - выделить квадрат двучлена : x 2 +2·x=x 2 +2·x+1−1=(x+1) 2 −1 .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.

Эта статья дает начальное представление о тождествах . Здесь мы определим тождество, введем используемое обозначение, и, конечно же, приведем различные примеры тождеств.

Навигация по странице.

Что такое тождество?

Логично начать изложение материала с определения тождества . В учебнике Макарычева Ю. Н. алгебра для 7 классов определение тождества дается так:

Определение.

Тождество – это равенство, верное при любых значениях переменных; любое верное числовое равенство – это тоже тождество.

При этом автор сразу оговаривается, что в дальнейшем это определение будет уточнено. Это уточнение происходит в 8 классе, после знакомства с определением допустимых значений переменных и ОДЗ . Определение становится таким:

Определение.

Тождества – это верные числовые равенства, а также равенства, которые верны при всех допустимых значениях входящих в них переменных.

Так почему, определяя тождество, в 7 классе мы говорим про любые значения переменных, а в 8 классе начинаем говорить про значения переменных из их ОДЗ? До 8 класса работа ведется исключительно с целыми выражениями (в частности, с одночленами и многочленами), а они имеют смысл для любых значений входящих в них переменных. Поэтому в 7 классе мы и говорим, что тождество – это равенство, верное при любых значениях переменных. А в 8 классе появляются выражения, которые уже имеют смысл не для всех значений переменных, а только для значений из их ОДЗ. Поэтому тождествами мы начинаем называть равенства, верные при всех допустимых значениях переменных.

Итак, тождество – это частный случай равенства. То есть, любое тождество является равенством. Но не всякое равенство является тождеством, а только такое равенство, которое верно для любых значений переменных из их области допустимых значений.

Знак тождества

Известно, что в записи равенств используется знак равенства вида «=», слева и справа от которого стоят некоторые числа или выражения. Если к этому знаку добавить еще одну горизонтальную черту, то получится знак тождества «≡», или как его еще называют знак тождественного равенства .

Знак тождества обычно применяют лишь тогда, когда нужно особо подчеркнуть, что перед нами не просто равенство, а именно тождество. В остальных случаях записи тождеств по виду ничем не отличаются от равенств.

Примеры тождеств

Пришло время привести примеры тождеств . В этом нам поможет определение тождества, данное в первом пункте.

Числовые равенства 2=2 и являются примерами тождеств, так как эти равенства верные, а любое верное числовое равенство по определению является тождеством. Их можно записать как 2≡2 и .

Тождествами являются и числовые равенства вида 2+3=5 и 7−1=2·3 , так как эти равенства являются верными. То есть, 2+3≡5 и 7−1≡2·3 .

Переходим к примерам тождеств, содержащих в своей записи не только числа, но и переменные.

Рассмотрим равенство 3·(x+1)=3·x+3 . При любом значении переменной x записанное равенство является верным в силу распределительного свойства умножения относительно сложения, поэтому, исходное равенство является примером тождества. Вот еще один пример тождества: y·(x−1)≡(x−1)·x:x·y 2:y , здесь область допустимых значений переменных x и y составляют все пары (x, y) , где x и y - любые числа, кроме нуля.

А вот равенства x+1=x−1 и a+2·b=b+2·a не являются тождествами, так как существуют значения переменных, при которых эти равенства будут неверны. Например, при x=2 равенство x+1=x−1 обращается в неверное равенство 2+1=2−1 . Более того, равенство x+1=x−1 вообще не достигается ни при каких значениях переменной x . А равенство a+2·b=b+2·a обратится в неверное равенство, если взять любые различные значения переменных a и b . К примеру, при a=0 и b=1 мы придем к неверному равенству 0+2·1=1+2·0 . Равенство |x|=x , где |x| - переменной x , также не является тождеством, так как оно неверно для отрицательных значений x .

Примерами наиболее известных тождеств являются вида sin 2 α+cos 2 α=1 и a log a b =b .

В заключение этой статьи хочется отметить, что при изучении математики мы постоянно сталкиваемся с тождествами. Записи свойств действий с числами являются тождествами, например, a+b=b+a , 1·a=a , 0·a=0 и a+(−a)=0 . Также тождествами являются

Тождественные преобразования представляют собой работу, которую мы проводим с числовыми и буквенными выражениями, а также с выражениями, которые содержат переменные. Все эти преобразования мы проводим для того, чтобы привести исходное выражение к такому виду, который будет удобен для решения задачи. Основные виды тождественных преобразований мы рассмотрим в этой теме.

Yandex.RTB R-A-339285-1

Тождественное преобразование выражения. Что это такое?

Впервые встречаемся с понятием тождественных преобразованный мы на уроках алгебры в 7 классе. Тогда же мы впервые знакомимся с понятием тождественно равных выражений. Давайте разберемся с понятиями и определениями, чтобы облегчить усвоение темы.

Определение 1

Тождественное преобразование выражения – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.

Часто это определение используется в сокращенном виде, в котором опускается слово «тождественное». Предполагается, что мы в любом случае проводим преобразование выражения таким образом, чтобы получить выражение, тождественное исходному, и это не требуется отдельно подчеркивать.

Проиллюстрируем данное определение примерами.

Пример 1

Если мы заменим выражение x + 3 − 2 на тождественно равное ему выражение x + 1 , то мы проведем при этом тождественное преобразование выражения x + 3 − 2 .

Пример 2

Замена выражения 2 · a 6 на выражение a 3 – это тождественное преобразование, тогда как замена выражения x на выражение x 2 не является тождественным преобразованием, так как выражения x и x 2 не являются тождественно равными.

Обращаем ваше внимание на форму записи выражений при проведении тождественных преобразований. Обычно мы записываем исходное и полученное в ходе преобразования выражения в виде равенства. Так, запись x + 1 + 2 = x + 3 означает, что выражение x + 1 + 2 было приведено к виду x + 3 .

Последовательное выполнение действий приводит нас к цепочке равенств, которая представляет собой несколько расположенных подряд тождественных преобразований. Так, запись x + 1 + 2 = x + 3 = 3 + x мы понимаем как последовательное проведение двух преобразований: сначала выражение x + 1 + 2 привели к виду x + 3 , а его – к виду 3 + x .

Тождественные преобразования и ОДЗ

Ряд выражений, которые мы начинаем изучать в 8 классе, имеют смысл не при любых значениях переменных. Проведение тождественных преобразований в этих случаях требует от нас внимания к области допустимых значений переменных (ОДЗ). Выполнение тождественных преобразований может оставлять ОДЗ неизменной или же сужать ее.

Пример 3

При выполнении перехода от выражения a + (− b) к выражению a − b область допустимых значений переменных a и b остается прежней.

Пример 4

Переход от выражения x к выражению x 2 x приводит к сужению области допустимых значений переменной x от множества всех действительных чисел до множества всех действительных чисел, из которого был исключен ноль.

Пример 5

Тождественное преобразование выражения x 2 x выражением х приводит к расширению области допустимых значений переменной x от множества всех действительных чисел за исключением нуля до множества всех действительных чисел.

Сужение или расширение области допустимых значений переменных при проведении тождественных преобразований имеет значение при решении задач, так как может повлиять на точность проведения вычислений и привести к появлению ошибок.

Основные тождественные преобразования

Давайте теперь посмотрим, какими бывают тождественные преобразования и как они выполняются. Выделим те виды тождественных преобразований, с которыми нам приходится иметь дело чаще всего, в группу основных.

Помимо основных тождественных преобразований существует ряд преобразований, которые относятся к выражениям конкретного вида. Для дробей это приемы сокращения и приведения к новому знаменателю. Для выражений с корнями и степенями все действия, которые выполняются на базе свойств корней и степеней. Для логарифмических выражений действия, которые проводятся на основе свойств логарифмов. Для тригонометрических выражений все действия с использованием тригонометрических формул. Все эти частные преобразования подробно разбираются в отдельных темах, которые можно найти на нашем ресурсе. В связи с этим в этой стстье мы на них останавливаться не будем.

Перейдем к рассмотрению основных тождественных преобразований.

Перестановка местами слагаемых, множителей

Начнем с перестановки слагаемых местами. С этим тождественным преобразованием мы имеем дело чаще всего. И основным правилом здесь можно считать следующее утверждение: в любой сумме перестановка слагаемых местами не отражается на результате.

Основано это правило на переместительном и сочетательном свойствах сложения. Эти свойства позволяют нам переставлять слагаемые местами и получать при этом выражения, которые тождественно равны исходным. Именно поэтому перестановка слагаемых местами в сумме является тождественным преобразованием.

Пример 6

У нас есть сумма трех слагаемых 3 + 5 + 7 . Если мы поменяем местами слагаемые 3 и 5 , то выражение примет вид 5 + 3 + 7 . Вариантов перестановки местами слагаемых в данном случае несколько. Все они приводят к получению выражений, тождественно равных исходному.

В качестве слагаемых в сумме могут выступать не только числа, но и выражения. Их точно так же, как и числа, можно переставлять местами, не влияя на конечный результат вычислений.

Пример 7

В сумме трех слагаемых 1 a + b , a 2 + 2 · a + 5 + a 7 · a 3 и - 12 · a вида 1 a + b + a 2 + 2 · a + 5 + a 7 · a 3 + (- 12) · a слагаемые можно переставить, например, так (- 12) · a + 1 a + b + a 2 + 2 · a + 5 + a 7 · a 3 . В свою очередь можно переставить местами слагаемые в знаменателе дроби 1 a + b , при этом дробь примет вид 1 b + a . А выражение под знаком корня a 2 + 2 · a + 5 тоже является суммой, в которой можно поменять местами слагаемые.

Точно так же, как и слагаемые, в исходных выражениях можно менять местами множители и получать тождественно верные уравнения. Проведение этого действия регулируется следующим правилом:

Определение 2

В произведении перестановка множителей местами не влияет на результат вычислений.

Основано это правило на переместительном и сочетательном свойствах умножения, которые подтверждают верность тождественного преобразования.

Пример 8

Произведение 3 · 5 · 7 перестановкой множителей можно представить в одном из следующих видов: 5 · 3 · 7 , 5 · 7 · 3 , 7 · 3 · 5 , 7 · 5 · 3 или 3 · 7 · 5 .

Пример 9

Перестановка множителей в произведении x + 1 · x 2 - x + 1 x даст x 2 - x + 1 x · x + 1

Раскрытие скобок

Скобки могут содержать записи числовых выражений и выражений с переменными. Эти выражения могут быть преобразованы в тождественно равные выражения, в которых скобок не будет вообще или их будет меньше, чем в исходных выражениях. Этот способ преобразования выражений называют раскрытием скобок.

Пример 10

Проведем действия со скобками в выражении вида 3 + x − 1 x для того, чтобы получить тождественно верное выражение 3 + x − 1 x .

Выражение 3 · x - 1 + - 1 + x 1 - x можно преобразовать в тождественно равное выражение без скобок 3 · x - 3 - 1 + x 1 - x .

Правила преобразования выражений со скобками мы подробно разобрали в теме «Раскрытие скобок», которая размещена на нашем ресурсе.

Группировка слагаемых, множителей

В случаях, когда мы имеем дело с тремя и большим количеством слагаемых, мы можем прибегнуть к такому виду тождественных преобразований как группировка слагаемых. Под этим способом преобразований подразумевают объединение нескольких слагаемых в группу путем их перестановки и заключения в скобки.

При проведении группировки слагаемые меняются местами таким образом, чтобы группируемые слагаемые оказались в записи выражения рядом. После этого их можно заключить в скобки.

Пример 11

Возьмем выражение 5 + 7 + 1 . Если мы сгруппируем первое слагаемое с третьим, то получим (5 + 1) + 7 .

Группировка множителей проводится аналогично группировке слагаемых.

Пример 12

В произведении 2 · 3 · 4 · 5 можно сгруппировать первый множитель с третьим, а второй – с четвертым, при этом придем к выражению (2 · 4) · (3 · 5) . А если бы мы сгруппировали первый, второй и четвертый множители, то получили бы выражение (2 · 3 · 5) · 4 .

Слагаемые и множители, которые группируются, могут быть представлены как простыми числами, так и выражениями. Правила группировки были подробно разобраны в теме «Группировка слагаемых и множителей».

Замена разностей суммами, частных произведениями и обратно

Замена разностей суммами стала возможна благодаря нашему знакомству с противоположными числами. Теперь вычитание из числа a числа b можно рассматривать как прибавление к числу a числа − b . Равенство a − b = a + (− b) можно считать справедливым и на его основе проводить замену разностей суммами.

Пример 13

Возьмем выражение 4 + 3 − 2 , в котором разность чисел 3 − 2 мы можем записать как сумму 3 + (− 2) . Получим 4 + 3 + (− 2) .

Пример 14

Все разности в выражении 5 + 2 · x − x 2 − 3 · x 3 − 0 , 2 можно заменить суммами как 5 + 2 · x + (− x 2) + (− 3 · x 3) + (− 0 , 2) .

Мы можем переходить к суммам от любых разностей. Аналогично мы можем произвести обратную замену.

Замена деления на умножение на число, обратное делителю, становится возможным благодаря понятию взаимно обратных чисел. Это преобразование можно записать равенством a: b = a · (b − 1) .

Это правило было положено в основу правила деления обыкновенных дробей.

Пример 15

Частное 1 2: 3 5 можно заменить произведением вида 1 2 · 5 3 .

Точно также по аналогии деление может быть заменено умножением.

Пример 16

В случае с выражением 1 + 5: x: (x + 3) заменить деление на x можно на умножение на 1 x . Деление на x + 3 мы можем заменить умножением на 1 x + 3 . Преобразование позволяет нам получить выражение, тождественное исходному: 1 + 5 · 1 x · 1 x + 3 .

Замена умножения делением поводится по схеме a · b = a: (b − 1) .

Пример 17

В выражении 5 · x x 2 + 1 - 3 умножение можно заменить делением как 5: x 2 + 1 x - 3 .

Выполнение действий с числами

Выполнение действий с числами подчиняется правилу порядка выполнения действий. Сначала проводятся действия со степенями чисел и корнями из чисел. После этого мы заменяем логарифмы, тригонометрические и прочие функции на их значения. Затем выполняются действия в скобках. И затем уже можно проводить все остальные действия слева направо. Важно помнить, что умножение и деление проводят до сложения и вычитания.

Действия с числами позволяют преобразовать исходное выражение в тождественное равное ему.

Пример 18

Преобразуем выражение 3 · 2 3 - 1 · a + 4 · x 2 + 5 · x ,выполнив все возможные действия с числами.

Решение

Первым делом обратим внимание на степень 2 3 и корень 4 и вычислим их значения: 2 3 = 8 и 4 = 2 2 = 2 .

Подставим полученные значения в исходное выражение и получим: 3 · (8 - 1) · a + 2 · (x 2 + 5 · x) .

Теперь проведем действия в скобках: 8 − 1 = 7 . И перейдем к выражению 3 · 7 · a + 2 · (x 2 + 5 · x) .

Нам осталось выполнить умножение чисел 3 и 7 . Получаем: 21 · a + 2 · (x 2 + 5 · x) .

Ответ: 3 · 2 3 - 1 · a + 4 · x 2 + 5 · x = 21 · a + 2 · (x 2 + 5 · x)

Действиям с числами могут предшествовать другие виды тождественных преобразований, таких, например, как группировка чисел или раскрытие скобок.

Пример 19

Возьмем выражение 3 + 2 · (6: 3) · x · (y 3 · 4) − 2 + 11 .

Решение

Первым делом проведем замену частного в скобках 6: 3 на его значение 2 . Получим: 3 + 2 · 2 · x · (y 3 · 4) − 2 + 11 .

Раскроем скобки: 3 + 2 · 2 · x · (y 3 · 4) − 2 + 11 = 3 + 2 · 2 · x · y 3 · 4 − 2 + 11 .

Сгруппируем числовые множители в произведении, а также слагаемые, являющиеся числами: (3 − 2 + 11) + (2 · 2 · 4) · x · y 3 .

Выполним действия в скобках: (3 − 2 + 11) + (2 · 2 · 4) · x · y 3 = 12 + 16 · x · y 3

Ответ: 3 + 2 · (6: 3) · x · (y 3 · 4) − 2 + 11 = 12 + 16 · x · y 3

Если мы работаем с числовыми выражениями, то целью нашей работы будет нахождение значения выражения. Если же мы преобразуем выражения с переменными, то целью наших действий будет упрощение выражения.

Вынесение за скобки общего множителя

В тех случаях, когда слагаемые в выражении имеют одинаковый множитель, то мы можем вынести этот общий множитель за скобки. Для этого нам сначала необходимо представить исходное выражение как произведение общего множителя и выражения в скобках, которое состоит из исходных слагаемых без общего множителя.

Пример 20

В числовом выражении 2 · 7 + 2 · 3 мы можем вынести общий множитель 2 за скобки и получить тождественно верное выражение вида 2 · (7 + 3) .

Освежить в памяти правил вынесения общего множителя за скобки вы можете в соответствующем разделе нашего ресурса. В материале подробно рассмотрены правила вынесения общего множителя за скобки и приведены многочисленные примеры.

Приведение подобных слагаемых

Теперь перейдем к суммам, которые содержат подобные слагаемые. Тут возможно два варианта: суммы, содержащие одинаковые слагаемые, и суммы, слагаемые которых отличаются числовым коэффициентом. Действия с суммами, содержащими подобные слагаемые, носит название приведения подобных слагаемых. Проводится оно следующим образом: мы выносим общую буквенную часть за скобки и проводим вычисление суммы числовых коэффициентов в скобках.

Пример 21

Рассмотрим выражение 1 + 4 · x − 2 · x . Мы можем вынести буквенную часть x за скобки и получить выражение 1 + x · (4 − 2) . Проведем вычисление значения выражения в скобках и получим сумму вида 1 + x · 2 .

Замена чисел и выражений тождественно равными им выражениями

Числа и выражения, из которых составлено исходное выражение, можно заменять тождественно равными им выражениями. Такое преобразование исходного выражения приводит к тождественно равному ему выражению.

Пример 22 Пример 23

Рассмотрим выражение 1 + a 5 , в котором степень a 5 мы можем заменить тождественно равным ей произведением, например, вида a · a 4 . Это нам даст выражение 1 + a · a 4 .

Выполненное преобразование искусственное. Оно имеет смысл лишь при подготовке к проведению других преобразований.

Пример 24

Рассмотрим преобразование суммы 4 · x 3 + 2 · x 2 . Здесь слагаемое 4 · x 3 мы можем представить как произведение 2 · x 2 · 2 · x . В результате исходное выражение принимает вид 2 · x 2 · 2 · x + 2 · x 2 . Теперь мы можем выделить общий множитель 2 · x 2 и вынести его за скобки: 2 · x 2 · (2 · x + 1) .

Прибавление и вычитание одного и того же числа

Прибавление и одновременное вычитание одного и того же числа или выражения являетс искусственным приемом преобразования выражений.

Пример 25

Рассмотрим выражение x 2 + 2 · x . Мы можем прибавить или отнять от него единицу, что позволит нам в последующем провести еще одно тождественное преобразование - выделить квадрат двучлена: x 2 + 2 · x = x 2 + 2 · x + 1 − 1 = (x + 1) 2 − 1 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

§ 2. Тождественные выражения, тождество. Тождественное преобразование выражения. Доказательства тождеств

Найдем значения выражений 2(х - 1) 2х - 2 для данных значений переменной х. Результаты запишем в таблицу:

Можно прийти к выводу, что значения выражений 2(х - 1) 2х - 2 для каждого данного значения переменной х равны между собой. По распределительным свойством умножения относительно вычитания 2(х - 1) = 2х - 2. Поэтому и для любого другого значения переменной х значение выражения 2(х - 1) 2х - 2 тоже будут равны между собой. Такие выражения называют тождественно равными.

Например, синонимами являются выражения 2х + 3х и 5х, так как при каждом значении переменной х эти выражения приобретают одинаковых значений (это вытекает из распределительной свойства умножения относительно сложения, поскольку 2х + 3х = 5х).

Рассмотрим теперь выражения 3х + 2у и 5ху. Если х = 1 и в = 1, то соответствующие значения этих выражений равны между собой:

3х + 2у =3 ∙ 1 + 2 ∙ 1 =5; 5ху = 5 ∙ 1 ∙ 1 = 5.

Однако можно указать такие значения х и у, для которых значения этих выражений не будут между собой равными. Например, если х = 2; у = 0, то

3х + 2у = 3 ∙ 2 + 2 ∙ 0 = 6, 5ху = 5 ∙ 20 = 0.

Следовательно, существуют такие значения переменных, при которых соответствующие значения выражений 3х + 2у и 5ху не равны друг другу. Поэтому выражения 3х + 2у и 5ху не являются тождественно равными.

Исходя из вышеизложенного, тождественностями, в частности, являются равенства: 2(х - 1) = 2х - 2 и 2х + 3х = 5х.

Тождеством является каждое равенство, которым записано известные свойства действий над числами. Например,

а + b = b + а; (а + b) + с = а + (b + с); а(b + с) = ab + ас;

ab = bа; (аb)с = a(bc); a(b - с) = ab - ас.

Тождественностями есть и такие равенства:

а + 0 = а; а ∙ 0 = 0; а ∙ (-b) = -ab;

а + (-а) = 0; а ∙ 1 = а; а ∙ (-b) = аb.

1 + 2 + 3 = 6; 5 2 + 12 2 = 13 2 ; 12 ∙ (7 - 6) = 3 ∙ 4.

Если в выражении-5х + 2х - 9 свести подобные слагаемые, получим, что 5х + 2х - 9 = 7х - 9. В таком случае говорят, что выражение 5х + 2х - 9 заменили тождественным ему выражением 7х - 9.

Тождественные преобразования выражений с переменными выполняют, применяя свойства действий над числами. В частности, тождественными преобразованиями с раскрытие скобок, возведение подобных слагаемых и тому подобное.

Тождественные преобразования приходится выполнять при упрощении выражения, то есть замены некоторого выражения на тождественно равное ему выражение, которое должно короче запись.

Пример 1. Упростить выражение:

1) -0,3 m ∙ 5n;

2) 2(3х - 4) + 3(-4х + 7);

3) 2 + 5а - (а - 2b) + (3b - а).

1) -0,3 m ∙ 5n = -0,3 ∙ 5mn = -1,5 mn;

2) 2(3х 4) + 3(-4 + 7) = 6 x - 8 - 1 + 21 = 6x + 13;

3) 2 + 5а - (а - 2b) + (3b - a) = 2 + - а + 2 b + 3 b - а = 3а + 5b + 2.

Чтобы доказать, что равенство является тождеством (иначе говоря, чтобы доказать тождество, используют тождественные преобразования выражений.

Доказать тождество можно одним из следующих способов:

  • выполнить тождественные преобразования ее левой части, тем самым сведя к виду правой части;
  • выполнить тождественные преобразования ее правой части, тем самым сведя к виду левой части;
  • выполнить тождественные преобразования обеих ее частей, тем самым возведя обе части до одинаковых выражений.

Пример 2. Доказать тождество:

1) 2х - (х + 5) - 11 = х - 16;

2) 206 - 4а = 5(2а - 3b) - 7(2а - 5b);

3) 2(3x - 8) + 4(5х - 7) = 13(2x - 5) + 21.

Р а з в’ я з а н н я.

1) Преобразуем левую часть данного равенства:

2х - (х + 5) - 11 = - х - 5 - 11 = х - 16.

Тождественными преобразованиями выражение в левой части равенства свели к виду правой части и тем самым доказали, что данное равенство является тождеством.

2) Преобразуем правую часть данного равенства:

5(2а - 3b) - 7(2а - 5b) = 10а - 15 b - 14а + 35 b = 20b - 4а.

Тождественными преобразованиями правую часть равенства свели к виду левой части и тем самым доказали, что данное равенство является тождеством.

3) В этом случае удобно упростить как левую, так и правую части равенства и сравнить результаты:

2(3х - 8) + 4(5х - 7) = - 16 + 20х - 28 = 26х - 44;

13(2х - 5) + 21 = 26х - 65 + 21 = 26х - 44.

Тождественными преобразованиями левую и правую части равенства свели к одному и тому же виду: 26х - 44. Поэтому данное равенство является тождеством.

Какие выражения называют тождественными? Приведите пример тождественных выражений. Какое равенство называют тождеством? Приведите пример тождества. Что называют тождественным преобразованием выражения? Как доказать тождество?

  1. (Устно) Или есть выражения тождественно равными:

1) 2а + а и 3а;

2) 7х + 6 и 6 + 7х;

3) x + x + x и x 3 ;

4) 2(х - 2) и 2х - 4;

5) m - n и n - m;

6) 2а ∙ р и 2р ∙ а?

  1. Являются ли тождественно равными выражения:

1) 7х - 2х и 5х;

2) 5а - 4 и 4 - 5а;

3) 4m + n и n + 4m;

4) а + а и а 2 ;

5) 3(а - 4) и 3а - 12;

6) 5m ∙ n и 5m + n?

  1. (Устно) является Ли тождеством равенство:

1) 2а + 106 = 12аb;

2) 7р - 1 = -1 + 7р;

3) 3(х - у) = 3х - 5у?

  1. Раскройте скобки:
  1. Раскройте скобки:
  1. Сведите подобные слагаемые:
  1. Назовите несколько выражений, тождественных выражения 2а + 3а.
  2. Упростите выражение, используя переставляющейся и соединительную свойства умножения:

1) -2,5 х ∙ 4;

2) 4р ∙ (-1,5);

3) 0,2 х ∙ (0,3 г);

4)- х ∙ <-7у).

  1. Упростите выражение:

1) -2р ∙ 3,5;

2) 7а ∙ (-1,2);

3) 0,2 х ∙ (-3у);

4) - 1 m ∙ (-3n).

  1. (Устно) Упростите выражение:

1) 2х - 9 + 5х;

2) 7а - 3b + 2а + 3b;

4) 4а ∙ (-2b).

  1. Сведите подобные слагаемые:

1) 56 - 8а + 4b - а;

2) 17 - 2р + 3р + 19;

3) 1,8 а + 1,9 b + 2,8 а - 2,9 b;

4) 5 - 7с + 1,9 г + 6,9 с - 1,7 г.

1) 4(5х - 7) + 3х + 13;

2) 2(7 - 9а) - (4 - 18а);

3) 3(2р - 7) - 2(г - 3);

4) -(3m - 5) + 2(3m - 7).

  1. Раскройте скобки и сведите подобные слагаемые:

1) 3(8а - 4) + 6а;

2) 7р - 2(3р - 1);

3) 2(3x - 8) - 5(2x + 7);

4) 3(5m - 7) - (15m - 2).

1) 0,6 x + 0,4(x - 20), если x = 2,4;

2) 1,3(2а - 1) - 16,4, если а = 10;

3) 1,2(m - 5) - 1,8(10 - m), если m = -3,7;

4) 2x - 3(x + у) + 4у, если x = -1, у = 1.

  1. Упростите выражение и найдите его значение:

1) 0,7 x + 0,3(x - 4), если x = -0,7;

2) 1,7(у - 11) - 16,3, если в = 20;

3) 0,6(2а - 14) - 0,4(5а - 1), если а = -1;

4) 5(m - n) - 4m + 7n, если m = 1,8; n = -0,9.

  1. Докажите тождество:

1) -(2х - у)=у - 2х;

2) 2(x - 1) - 2x = -2;

3) 2(x - 3) + 3(x + 2) = 5x;

4) с - 2 = 5(с + 2) - 4(с + 3).

  1. Докажите тождество:

1) -(m - 3n) = 3n - m;

2) 7(2 - р) + 7р = 14;

3) 5а = 3(а - 4) + 2(а + 6);

4) 4(m - 3) + 3(m + 3) = 7m - 3.

  1. Длина одной из сторон треугольника а см, а длина каждой из двух других сторон на 2 см больше нее. Запишите в виде выражения периметр треугольника и упростите выражение.
  2. Ширина прямоугольника равна х см, а длина на 3 см больше ширины. Запишите в виде выражения периметр прямоугольника и упростите выражение.

1) х - (х - (2х - 3));

2) 5m - ((n - m) + 3n);

3) 4р - (3р - (2р - (г + 1)));

4) 5x - (2x - ((у - х) - 2у));

5) (6а - b) - (4 a – 33b);

6) - (2,7 m - 1,5 n) + (2n - 0,48 m).

  1. Раскройте скобки и упростите выражение:

1) а - (а - (3а - 1));

2) 12m - ((а - m) + 12а);

3) 5y - (6у - (7у - (8у - 1)));

6) (2,1 a - 2,8 b) - (1a – 1b).

  1. Докажите тождество:

1) 10x - (-(5x + 20)) = 5(3x + 4);

2) -(- 3р) - (-(8 - 5р)) = 2(4 - г);

3) 3(а - b - с) + 5(а - b) + 3с = 8(а - b).

  1. Докажите тождество:

1) 12а - ((8а - 16)) = -4(4 - 5а);

2) 4(х + у - <) + 5(х - t) - 4y - 9(х - t).

  1. Докажите, что значение выражения

1,8(m - 2) + 1,4(2 - m) + 0,2(1,7 - 2m) не зависит от значения переменной.

  1. Докажите, что при любом значении переменной значение выражения

а - (а - (5а + 2)) - 5(а - 8)

является одним и тем же числом.

  1. Докажите, что сумма трех последовательных четных чисел делится на 6.
  2. Докажите, что если n - натуральное число, то значение выражения -2(2,5 n - 7) + 2 (3n - 6) является четным числом.

Упражнения для повторения

  1. Сплав массой 1,6 кг содержит 15 % меди. Сколько кг меди содержится в этом сплаве?
  2. Сколько процентов составляет число 20 от своего:

1) квадрата;

  1. Турист 2 ч шел пешком и 3 ч ехал на велосипеде. Всего турист преодолел 56 км. Найдите, с какой скоростью турист ехал на велосипеде, если она на 12 км/ч больше за скорость, с которой он шел пешком.

Интересные задачи для учеников ленивых

  1. В чемпионате города по футболу участвуют 11 команд. Каждая команда играет с другими по одному матчу. Докажите, что в любой момент соревнований найдется команда, которая проведет к этому моменту четное число матчей или не провела еще ни одного.

После того, как мы разобрались с понятием тождеств, можно переходить к изучению тождественно равных выражений. Цель данной статьи – объяснить, что это такое, и показать на примерах, какие выражения будут тождественно равными другим.

Yandex.RTB R-A-339285-1

Тождественно равные выражения: определение

Понятие тождественно равных выражений обычно изучается вместе с самим понятием тождества в рамках школьного курса алгебры. Приведем основное определение, взятое из одного учебника:

Определение 1

Тождественно равными друг другу будут такие выражения, значения которых будут одинаковы при любых возможных значениях переменных, входящих в их состав.

Также тождественно равными считаются такие числовые выражения, которым будут отвечать одни и те же значения.

Это достаточно широкое определение, которое будет верным для всех целых выражений, смысл которых при изменении значений переменных не меняется. Однако позже возникает необходимость уточнения данного определения, поскольку помимо целых существуют и другие виды выражений, которые не будут иметь смысла при определенных переменных. Отсюда возникает понятие допустимости и недопустимости тех или иных значений переменных, а также необходимость определять область допустимых значений. Сформулируем уточненное определение.

Определение 2

Тождественно равные выражения – это те выражения, значения которых равны друг другу при любых допустимых значениях переменных, входящих в их состав. Числовые выражения будут тождественно равными друг другу при условии одинаковых значений.

Фраза «при любых допустимых значениях переменных» указывает на все те значения переменных, при которых оба выражения будут иметь смысл. Это положение мы объясним позже, когда будем приводить примеры тождественно равных выражений.

Можно указать еще и такое определение:

Определение 3

Тождественно равными выражениями называются выражения, расположенные в одном тождестве с левой и правой стороны.

Примеры выражений, тождественно равных друг другу

Используя определения, данные выше, рассмотрим несколько примеров таких выражений.

Для начала возьмем числовые выражения.

Пример 1

Так, 2 + 4 и 4 + 2 будут тождественно равными друг другу, поскольку их результаты будут равны (6 и 6).

Пример 2

Точно так же тождественно равны выражения 3 и 30: 10 , (2 2) 3 и 2 6 (для вычисления значения последнего выражений нужно знать свойства степени).

Пример 3

А вот выражения 4 - 2 и 9 - 1 равными не будут, поскольку их значения разные.

Перейдем к примерам буквенных выражений. Тождественно равными будут a + b и b + a , причем от значений переменных это не зависит (равенство выражений в данном случае определяется переместительным свойством сложения).

Пример 4

Например, если a будет равно 4 , а b – 5 , то результаты все равно будут одинаковы.

Еще один пример тождественно равных выражений с буквами – 0 · x · y · z и 0 . Какими бы ни были значения переменных в этом случае, будучи умноженными на 0 , они дадут 0 . Неравные выражения – 6 · x и 8 · x , поскольку они не будут равны при любом x .

В том случае, если области допустимых значений переменных будут совпадать, например, в выражениях a + 6 и 6 + a или a · b · 0 и 0 , или x 4 и x , и значения самих выражений будут равны при любых переменных, то такие выражения считаются тождественно равными. Так, a + 8 = 8 + a при любом значении a , и a · b · 0 = 0 тоже, поскольку умножение на 0 любого числа дает в итоге 0 . Выражения x 4 и x будут тождественно равными при любых x из промежутка [ 0 , + ∞) .

Но область допустимого значения в одном выражении может отличаться от области другого.

Пример 5

Например, возьмем два выражения: x − 1 и x - 1 · x x . Для первого из них областью допустимых значений x будет все множество действительных чисел, а для второго – множество всех действующих чисел, за исключением нуля, ведь тогда мы получим 0 в знаменателе, а такое деление не определено. У этих двух выражений есть общая область значений, образованная пересечением двух отдельных областей. Можно сделать вывод, что оба выражения x - 1 · x x и x − 1 будут иметь смысл при любых действительных значениях переменных, за исключением 0 .

Основное свойство дроби также позволяет нам заключить, что x - 1 · x x и x − 1 будут равными при любом x, которое не является 0 . Значит, на общей области допустимых значений эти выражения будут тождественно равны друг другу, а при любом действительном x говорить о тождественном равенстве нельзя.

Если мы заменяем одно выражение на другое, которое является тождественно равным ему, то этот процесс называется тождественным преобразованием. Это понятие очень важно, и подробно о нем мы поговорим в отдельном материале.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter