Биографии Характеристики Анализ

Треугольный вид матрицы. Свойства верхней треугольной матрицы

Верхняя треугольная матрица

Треугольная матрица - квадратная матрица , в которой все элементы ниже или выше главной диагонали равны нулю.

Пример верхнетреугольной матрицы

Верхнетреугольная матрица - квадратная матрица , в которой все элементы ниже главной диагонали равны нулю.

Нижнетреугольная матрица - квадратная матрица, в которой все элементы выше главной диагонали равны нулю.

Унитреугольная матрица (верхняя или нижняя) - треугольная матрица, в которой все элементы на главной диагонали равны единице.

Треугольные матрицы используются в первую очередь при решении линейных систем уравнений , когда матрица системы сводится к треугольному виду используя следующую теорему:

Решение систем линейных уравнений с треугольной матрицей (обратный ход) не представляет сложностей.

Свойства

  • Определитель треугольной матрицы равен произведению элементов на её главной диагонали.
  • Определитель унитреугольной матрицы равен единице.
  • Множество невырожденных верхнетреугольных матриц порядка n по умножению с элементами из поля k образует группу , которая обозначается UT (n , k ) или UT n (k ).
  • Множество невырожденных нижнетреугольных матриц порядка n по умножению с элементами из поля k образует группу, которая обозначается LT (n , k ) или LT n (k ).
  • Множество верхних унитреугольных матриц с элементами из поля k образует подгруппу UT n (k ) по умножению, которая обозначается SUT (n , k ) или SUT n (k ). Аналогичная подгруппа нижних унитреугольных матриц обозначается SLT (n , k ) или SLT n (k ).
  • Множество всех верхнетреугольных матриц с элементами из кольца k образует алгебру относительно операций сложения, умножения на элементы кольца и перемножения матриц. Аналогичное утверждение справедливо для нижнетреугольных матриц.
  • Группа UT n разрешима , а её унитреугольная подгруппа SUT n нильпотентна .

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Верхняя треугольная матрица" в других словарях:

    Треугольная матрица квадратная матрица, в которой все элементы ниже или выше главной диагонали равны нулю. Пример верхнетреугольной матрицы Верхнетреугольная матрица … Википедия

    Треугольная матрица квадратная матрица, в которой все элементы ниже или выше главной диагонали равны нулю. Пример верхнетреугольной матрицы Верхнетреугольная матрица квадратная матрица, в которой все элементы ниже главной диагонали равны нулю.… … Википедия

    Треугольная матрица квадратная матрица, в которой все элементы ниже или выше главной диагонали равны нулю. Пример верхнетреугольной матрицы Верхнетреугольная матрица квадратная матрица, в которой все элементы ниже главной диагонали равны нулю.… … Википедия

    Для улучшения этой статьи желательно?: Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Проставив сноски, внести более точные указания на источники. Добавить иллюстрации … Википедия

    Представление симметричной положительно определённой матрицы в виде, где нижняя треугольная матрица со строго положительными элементами на диагонали. Иногда разложение записывается в эквивалентной форме: , где верхняя треугольная матрица.… … Википедия

    SFLASH асимметричный алгоритм цифровой подписи рекомендованный проектом NESSIE European в 2003 году. SFLASH основан на Matsumoto Imai(MI) схеме, так же называемой C*. Алгоритм принадлежит к семейству многомерных схем с открытым ключом, то… … Википедия

    Процесс ортогонализации, алгоритм построения для данной линейно независимой системы векторов евклидова или эрмитова пространства V ортогональной системы ненулевых векторов, порождающих то же самое подпространство в V. Наиболее известным является… … Математическая энциклопедия

    Коэффициент корреляции - (Correlation coefficient) Коэффициент корреляции это статистический показатель зависимости двух случайных величин Определение коэффициента корреляции, виды коэффициентов корреляции, свойства коэффициента корреляции, вычисление и применение… … Энциклопедия инвестора

    Ослабления м е т о д, метод итерационного решения системы линейных алгебраич. уравнений Ах=b, элементарный шаг к рого состоит в изменении только одной компоненты вектора неизвестных, причем номера изменяемых компонент выбираются в нек ром циклич … Математическая энциклопедия

В которой все элементы ниже главной диагонали равны нулю.

Нижнетреугольная матрица - квадратная матрица, в которой все элементы выше главной диагонали равны нулю.

Унитреугольная матрица (верхняя или нижняя) - треугольная матрица, в которой все элементы на главной диагонали равны единице.

Треугольные матрицы используются в первую очередь при решении линейных систем уравнений , когда матрица системы сводится к треугольному виду используя следующую теорему:

Решение систем линейных уравнений с треугольной матрицей (обратный ход) не представляет сложностей.

Свойства

  • Определитель треугольной матрицы равен произведению элементов на её главной диагонали.
  • Определитель унитреугольной матрицы равен единице.
  • Множество невырожденных верхнетреугольных матриц порядка n по умножению с элементами из поля k образует группу , которая обозначается UT (n , k ) или UT n (k ).
  • Множество невырожденных нижнетреугольных матриц порядка n по умножению с элементами из поля k образует группу, которая обозначается LT (n , k ) или LT n (k ).
  • Множество верхних унитреугольных матриц с элементами из поля k образует подгруппу UT n (k ) по умножению, которая обозначается SUT (n , k ) или SUT n (k ). Аналогичная подгруппа нижних унитреугольных матриц обозначается SLT (n , k ) или SLT n (k ).
  • Множество всех верхнетреугольных матриц с элементами из кольца k образует алгебру относительно операций сложения, умножения на элементы кольца и перемножения матриц. Аналогичное утверждение справедливо для нижнетреугольных матриц.
  • Группа UT n разрешима , а её унитреугольная подгруппа SUT n нильпотентна .

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Треугольная матрица" в других словарях:

    треугольная матрица - — треугольная матрица Квадратная матрица, у которой равны нулю все элементы, расположенные под или над главной диагональю (ср. Диагональная матрица). В первом случае имеем… …

    Треугольная матрица - квадратная матрица, у которой равны нулю все элементы, расположенные под или над главной диагональю (ср. Диагональная матрица). В первом случае имеем верхнюю Т.м. во втором нижнюю …

    Квадратная матрица, у к рой все элементы, расположенные ниже (или выше) главной диагонали, равны нулю. В первом случае матрица наз. верхней треугольной матрицей, во втором нижней треугольной матрицей. Определитель Т. м. равен произведению всех ее … Математическая энциклопедия

    Треугольная матрица МОБ - матрица коэффициентов межотраслевого баланса (МОБ), соответствующая такой производственной системе, в которой любой продукт может затрачиваться в своем собственном производстве и в производстве любого следующего… … Экономико-математический словарь

    треугольная матрица МОБ - Матрица коэффициентов межотраслевого баланса (МОБ), соответствующая такой производственной системе, в которой любой продукт может затрачиваться в своем собственном производстве и в производстве любого следующего за ним продукта, но никакой… … Справочник технического переводчика

    Треугольная матрица квадратная матрица, в которой все элементы ниже или выше главной диагонали равны нулю. Пример верхнетреугольной матрицы Верхнетреугольная матрица квадратная матрица, в которой все элементы ниже главной диагонали равны нулю.… … Википедия

    Блочно-треугольная матрица - – матрица, которую можно разбить на подматрицы таким образом, чтобы по одну сторону ее «главной диагонали«, составленной из подматриц, стояли нули. Примерами блочно треугольных матриц могут служить… … Экономико-математический словарь

    блочно-треугольная матрица - Матрица, которую можно разбить на подматрицы таким образом, чтобы по одну сторону ее «главной диагонали«, составленной из подматриц, стояли нули. Примерами блочно треугольных матриц могут служить треугольная матрица и блочно диагональная матрица … Справочник технического переводчика

    Матрица - система элементов (чисел, функций и других величин), расположенных в виде прямоугольной таблицы, над которой можно производить определенные действия. Таблица имеет следующий вид: Элемент матрицы в общем виде обозначается aij это… … Экономико-математический словарь

    матрица - Логическая сеть, сконфигурированная в виде прямоугольного массива пересечений входных/выходных каналов. матрица Система элементов (чисел, функций и других величин), расположенных в виде прямоугольной… … Справочник технического переводчика

Матрица - это особый объект в математике. Изображается в форме прямоугольной или квадратной таблицы, сложенной из определенного числа строк и столбцов. В математике имеется большое разнообразие видов матриц, различающихся по размерам или содержанию. Числа ее строк и столбцов именуются порядками. Эти объекты употребляются в математике для упорядочивания записи систем линейных уравнений и удобного поиска их результатов. Уравнения с использованием матрицы решаются посредством метода Карла Гаусса, Габриэля Крамера, миноров и алгебраических дополнений, а также многими другими способами. Базовым умением при работе с матрицами является приведение к стандартному виду. Однако для начала давайте разберемся, какие виды матриц выделяют математики.

Нулевой тип

Все компоненты этого вида матрицы - нули. Между тем, число ее строк и столбцов абсолютно различно.

Квадратный тип

Количество столбцов и строк этого вида матрицы совпадает. Иначе говоря, она представляет собой таблицу формы "квадрат". Число ее столбцов (или строк) именуются порядком. Частными случаями считается существование матрицы второго порядка (матрица 2x2), четвертого порядка (4x4), десятого (10x10), семнадцатого (17x17) и так далее.

Вектор-стобец

Это один из простейших видов матриц, содержащий только один столбец, который включает в себя три численных значения. Она представляет ряд свободных членов (чисел, независимых от переменных) в системах линейных уравнений.

Вид, аналогичный предыдущему. Состоит из трех численных элементов, в свою очередь организованных в одну строку.

Диагональный тип

Числовые значения в диагональном виде матрицы принимают только компоненты главной диагонали (выделена зеленым цветом). Основная диагональ начинается с элемента, находящегося в правом верхнем углу, а заканчивается числом в третьем столбце третьей строки. Остальные компоненты равны нулю. Диагональный тип представляет собой только квадратную матрицу какого-либо порядка. Среди матриц диагонального вида можно выделить скалярную. Все ее компоненты принимают одинаковые значения.

Подвид диагональной матрицы. Все ее числовые значения являются единицами. Используя единичный тип матричных таблиц, выполняют ее базовые преобразования или находят матрицу, обратную исходной.

Канонический тип

Канонический вид матрицы считается одним из основных; приведение к нему часто необходимо для работы. Число строк и столбцов в канонической матрице различно, она необязательно принадлежит к квадратному типу. Она несколько похожа на единичную матрицу, однако в ее случае не все компоненты основной диагонали принимают значение, равное единице. Главнодиагональных единиц может быть две, четыре (все зависит от длины и ширины матрицы). Или единицы могут не иметься вовсе (тогда она считается нулевой). Остальные компоненты канонического типа, как и элементы диагонального и единичного, равны нулю.

Треугольный тип

Один из важнейших видов матрицы, применяемый при поиске ее детерминанта и при выполнении простейших операций. Треугольный тип происходит от диагонального, поэтому матрица также является квадратной. Треугольный вид матрицы подразделяют на верхнетреугольный и нижнетреугольный.

В верхнетреугольной матрице (рис. 1) только элементы, которые находятся над главной диагональю, принимают значение, равное нулю. Компоненты же самой диагонали и части матрицы, располагающейся под ней, содержат числовые значения.

В нижнетреугольной (рис. 2), наоборот, элементы, располагающиеся в нижней части матрицы, равны нулю.

Вид необходим для нахождения ранга матрицы, а также для элементарных действий над ними (наряду с треугольным типом). Ступенчатая матрица названа так, потому что в ней содержатся характерные "ступени" из нулей (как показано на рисунке). В ступенчатом типе образуется диагональ из нулей (необязательно главная), и все элементы под данной диагональю тоже имеют значения, равные нулю. Обязательным условием является следующее: если в ступенчатой матрице присутствует нулевая строка, то остальные строки, находящиеся ниже нее, также не содержат числовых значений.

Таким образом, мы рассмотрели важнейшие типы матриц, необходимые для работы с ними. Теперь разберемся с задачей преобразования матрицы в требуемую форму.

Приведение к треугольному виду

Как же привести матрицу к треугольному виду? Чаще всего в заданиях нужно преобразовать матрицу в треугольный вид, чтобы найти ее детерминант, по-другому называемый определителем. Выполняя данную процедуру, крайне важно "сохранить" главную диагональ матрицы, потому что детерминант треугольной матрицы равен именно произведению компонентов ее главной диагонали. Напомню также альтернативные методы нахождения определителя. Детерминант квадратного типа находится при помощи специальных формул. Например, можно воспользоваться методом треугольника. Для других матриц используют метод разложения по строке, столбцу или их элементам. Также можно применять метод миноров и алгебраических дополнений матрицы.

Подробно разберем процесс приведения матрицы к треугольному виду на примерах некоторых заданий.

Задание 1

Необходимо найти детерминант представленной матрицы, используя метод приведения его к треугольному виду.

Данная нам матрица представляет собой квадратную матрицу третьего порядка. Следовательно, для ее преобразования в треугольную форму нам понадобится обратить в нуль два компонента первого столбца и один компонент второго.

Чтобы привести ее к треугольному виду, начнем преобразование с левого нижнего угла матрицы - с числа 6. Чтобы обратить его в нуль, умножим первую строку на три и вычтем ее из последней строки.

Важно! Верхняя строка не изменяется, а остается такой же, как и в исходной матрице. Записывать строку, в четыре раза большую исходной, не нужно. Но значения строк, компоненты которых нужно обратить в нуль, постоянно меняются.

Осталось только последнее значение - элемент третьей строки второго столбца. Это число (-1). Чтобы обратить его в нуль, из первой строки вычтем вторую.

Выполним проверку:

detA = 2 x (-1) x 11 = -22.

Значит, ответ к заданию: -22.

Задание 2

Нужно найти детерминант матрицы методом приведения его к треугольному виду.

Представленная матрица принадлежит к квадратному типу и является матрицей четвертого порядка. Значит, необходимо обратить в нуль три компонента первого столбца, два компонента второго столбца и один компонент третьего.

Начнем приведение ее с элемента, находящегося в нижнем углу слева, - с числа 4. Нам нужно обратить данное число в нуль. Удобнее всего сделать это, умножив на четыре верхнюю строку, а затем вычесть ее из четвертой. Запишем итог первого этапа преобразования.

Итак, компонент четвертой строки обращен в нуль. Перейдем к первому элементу третьей строки, к числу 3. Выполняем аналогичную операцию. Умножаем на три первую строку, вычитаем ее из третьей строки и записываем результат.

Нам удалось обратить в нуль все компоненты первого столбца данной квадратной матрицы, за исключением числа 1 - элемента главной диагонали, не требующего преобразования. Теперь важно сохранить полученные нули, поэтому будем выполнять преобразования со строками, а не со столбцами. Перейдем ко второму столбцу представленной матрицы.

Снова начнем с нижней части - с элемента второго столбца последней строки. Это число (-7). Однако в данном случае удобнее начать с числа (-1) - элемента второго столбца третьей строки. Чтобы обратить его в нуль, вычтем из третьей строки вторую. Затем умножим вторую строку на семь и вычтем ее из четвертой. Мы получили нуль вместо элемента, расположенного в четвертой строке второго столбца. Теперь перейдем к третьему столбцу.

В данном столбце нам нужно обратить в нуль только одно число - 4. Сделать это несложно: просто прибавляем к последней строке третью и видим необходимый нам нуль.

После всех произведенных преобразований мы привели предложенную матрицу к треугольному виду. Теперь, чтобы найти ее детерминант, нужно только произвести умножение получившихся элементов главной диагонали. Получаем: detA = 1 x (-1) x (-4) x 40 = 160. Следовательно, решением является число 160.

Итак, теперь вопрос приведения матрицы к треугольному виду вас не затруднит.

Приведение к ступенчатому виду

При элементарных операциях над матрицами ступенчатый вид является менее "востребованным", чем треугольный. Чаще всего он используется для нахождения ранга матрицы (т. е. количества ее ненулевых строк) или для определения линейно зависимых и независимых строк. Однако ступенчатый вид матрицы является более универсальным, так как подходит не только для квадратного типа, но и для всех остальных.

Чтобы привести матрицу к ступенчатому виду, сначала нужно найти ее детерминант. Для этого подойдут вышеназванные методы. Цель нахождения детерминанта такова: выяснить, можно ли преобразовать ее в ступенчатый вид матрицы. Если детерминант больше или меньше нуля, то можно спокойно приступать к заданию. Если же он равен нулю, выполнить приведение матрицы к ступенчатому виду не получится. В таком случае нужно проверить, нет ли ошибок в записи или в преобразованиях матрицы. Если подобных неточностей нет, задание решить невозможно.

Рассмотрим, как привести матрицу к ступенчатому виду на примерах нескольких заданий.

Задание 1. Найти ранг данной матричной таблицы.

Перед нами квадратная матрица третьего порядка (3x3). Мы знаем, что для нахождения ранга необходимо привести ее к ступенчатому виду. Поэтому сначала нам необходимо найти детерминант матрицы. Воспользуемся методом треугольника: detA = (1 x 5 x 0) + (2 x 1 x 2) + (6 x 3 x 4) - (1 x 1 x 4) - (2 x 3 x 0) - (6 x 5 x 2) = 12.

Детерминант = 12. Он больше нуля, значит, матрицу можно привести к ступенчатому виду. Приступим к ее преобразованиям.

Начнем его с элемента левого столбца третьей строки - числа 2. Умножаем верхнюю строку на два и вычитаем ее из третьей. Благодаря этой операции как нужный нам элемент, так и число 4 - элемент второго столбца третьей строки - обратились в нуль.

Мы видим, что в результате приведения образовалась треугольная матрица. В нашем случае продолжить преобразование нельзя, так как остальные компоненты не удастся обратить в нуль.

Значит, делаем вывод, что количество строк, содержащих числовые значения, в данной матрице (или ее ранг) - 3. Ответ к заданию: 3.

Задание 2. Определить количество линейно независимых строк данной матрицы.

Нам требуется найти такие строки, которые нельзя какими-либо преобразованиями обратить в нуль. Фактически нам нужно найти количество ненулевых строк, или ранг представленной матрицы. Для этого выполним ее упрощение.

Мы видим матрицу, не принадлежащую к квадратному типу. Она имеет размеры 3x4. Начнем приведение также с элемента левого нижнего угла - числа (-1).

Дальнейшие ее преобразования невозможны. Значит, делаем вывод, что количество линейно независимых строк в ней и ответ к заданию - 3.

Теперь приведение матрицы к ступенчатому виду не является для вас невыполнимым заданием.

На примерах данных заданий мы разобрали приведение матрицы к треугольному виду и ступенчатому виду. Чтобы обратить в нуль нужные значения матричных таблиц, в отдельных случаях требуется проявить фантазию и правильно преобразовать их столбцы или строки. Успехов вам в математике и в работе с матрицами!

Cтраница 2


Треугольной матрицей называется матрица, у которой все элементы по одну сторону от главной или побочной диагонали равны нулю. Чему равен определитель треугольной матрицы.  

Треугольной матрицей называется матрица, у которой все элементы, стоящие по одну сторону от главной или побочной диагонали, равны нулю. Чему равен определитель треугольной матрицы.  

Операции по выполнению прямого хода метода Гаусса в соответствии с теоремами линейной алгебры не изменяют величины определителя. Очевидно, что определитель треугольной матрицы равен произведению ее диагональных элементов.  

Это интуитивное представление находит в некоторых случаях точное количественное выражение. Например, мы знаем (см. (6) из § 1), что определитель треугольной матрицы (верхней или нижней) равен произведению элементов, стоящих на главной диагонали.  

Треугольные матрицы имеют много замечательных свойств, в силу которых они широко используются в построении самых различных методов решения задач алгебры. Так, например, для квадратных матриц сумма и произведение одноименных треугольных матриц есть треугольная матрица того же наименования, определитель треугольной матрицы равен произведению диагональных элементов, собственные значения треугольной матрицы совпадают с ее диагональными элементами, треугольная матрица легко обращается и обратная к ней также будет треугольной.  

Ранее уже отмечалось, что непосредственное нахождение определителя требует большого объема вычислений. Вместе с тем легко вычисляется определитель треугольной матрицы: он равен произведению ее диагональных элементов.  

Чем больше нулей среди элементов матрицы А и чем лучше они расположены, тем легче вычислять определитель det А. Это интуитивное представление находит в некоторых случаях точное количественное вьфажение. Например, мы знаем (см. (6) из § 1), что определитель треугольной матрицы (верхней или нижней) равен произведению элементов, стоящих на главной диагонали.  

Например, умножение определителя на скаляр эквивалентно умножению элементов любой строки или любого столбца матрицы на этот скаляр. Из уравнения (40) и из того, что разложение применимо к алгебраическому дополнению так же, как к определителю, следует, что определитель треугольной матрицы равен произведению ее диагональных элементов.  

Эта возможность вытекает из трех основных свойств определителей. Прибавление кратного одной строки к другой не меняет определителя. Перестановка двух строк изменяет знак определителя. Определитель треугольной матрицы равен попросту произведению ее диагональных элементов. DECOMP использует последнюю компоненту вектора ведущих элементов, чтобы поместить туда значение 1, если было произведено четное число перестановок, и значение - 1, если нечетное. Чтобы получить определитель, это значение нужно умножить на произведение диагональных элементов выходной матрицы.