Біографії Характеристики Аналіз

Як скласти матриці. Основні операції над матрицями (додавання, множення, транспонування) та їх властивості

1-й курс, вища математика, вивчаємо матриціта основні дії над ними. Тут ми систематизуємо основні операції, які можна проводити із матрицями. З чого почати знайомство із матрицями? Звичайно, з найпростішого – визначень, основних понять та найпростіших операцій. Запевняємо, матриці зрозуміють усі, хто приділить їм хоч трохи часу!

Визначення матриці

Матриця- Це прямокутна таблиця елементів. Ну а якщо простою мовою – таблиця чисел.

Зазвичай матриці позначаються великими латинськими літерами. Наприклад, матриця A , матриця B і так далі. Матриці можуть бути різного розміру: прямокутні, квадратні, також є матриці-рядки та матриці-стовпці, які називають векторами. Розмір матриці визначається кількістю рядків та стовпців. Наприклад, запишемо прямокутну матрицю розміру m на n , де m – кількість рядків, а n - Кількість стовпців.

Елементи, для яких i=j (a11, a22, .. ) утворюють головну діагональ матриці, і називаються діагональними.

Що можна робити із матрицями? Складати/віднімати, множити на число, множити між собою, транспонувати. Тепер про всі ці основні операції над матрицями по порядку.

Операції складання та віднімання матриць

Відразу попередимо, що можна складати лише матриці однакового розміру. В результаті вийде матриця того ж розміру. Складати (або віднімати) матриці просто – достатньо лише скласти їх відповідні елементи . Наведемо приклад. Виконаємо складання двох матриць A і розміром два на два.

Віднімання виконується за аналогією, тільки з протилежним знаком.

На довільне число можна помножити будь-яку матрицю. Щоб зробити це, потрібно помножити на це число кожен її елемент. Наприклад, помножимо матрицю A з першого прикладу на число 5:

Операція множення матриць

Перемножити між собою вдасться в повному обсязі матриці. Наприклад, у нас є дві матриці - A і B. Їх можна помножити одна на одну тільки в тому випадку, якщо число стовпців матриці А дорівнює кількості рядків матриці В. При цьому кожен елемент матриці, що стоїть в i-му рядку і j-му стовпці, буде дорівнює сумі творів відповідних елементів в i-му рядку першого множника і j-му стовпці другого. Щоб зрозуміти цей алгоритм, запишемо, як множаться дві квадратні матриці:

І приклад із реальними числами. Помножимо матриці:

Операція транспонування матриці

Транспонування матриці – це операція, коли відповідні рядки та стовпці змінюються місцями. Наприклад, транспонуємо матрицю A з першого прикладу:

Визначник матриці

Визначник, про детермінант – одне з основних понять лінійної алгебри. Колись люди вигадали лінійні рівняння, а за ними довелося вигадати і визначник. У результаті, розбиратися з усім цим доведеться вам, так що останній ривок!

Визначник – це чисельна характеристика квадратної матриці, яка потрібна на вирішення багатьох завдань.
Щоб порахувати визначник найпростішої квадратної матриці, потрібно обчислити різницю творів елементів головної та побічної діагоналей.

Визначник матриці першого порядку, тобто що складається з одного елемента, дорівнює цьому елементу.

А якщо матриця три на три? Тут уже складніше, але можна впоратися.

Для такої матриці значення визначника дорівнює сумі творів елементів головної діагоналі і творів елементів, що лежать на трикутниках з гранню паралельної головної діагоналі, від якої віднімається добуток елементів побічної діагоналі і добуток елементів, що лежать на трикутниках з гранню паралельної побічної діагоналі.

На щастя, обчислювати визначники матриць великих розмірів практично доводиться рідко.

Тут ми розглянули основні операції з матрицями. Звичайно, в реальному житті можна жодного разу так і не зустріти навіть натяку на матричну систему рівнянь або навпаки - зіткнутися з набагато складнішими випадками, коли доведеться дійсно поламати голову. Саме для таких випадків і існує професійний студентський сервіс. Звертайтеся за допомогою, отримуйте якісне та докладне рішення, насолоджуйтесь успіхами у навчанні та вільним часом.

У цій темі розглянемо поняття матриці, і навіть види матриць. Так як у цій темі чимало термінів, то я додам короткий зміст, щоб орієнтуватися у матеріалі було простіше.

Визначення матриці та її елемента. Позначення.

Матриця- Це таблиця з $ m $ рядків і $ n $ стовпців. Елементами матриці може бути об'єкти абсолютно різноманітної природи: числа, змінні чи, наприклад, інші матриці. Наприклад, матриця $\left(\begin(array) (cc) 5 & 3 \\ 0 & -87 \\ 8 & 0 \end(array) \right)$ містить 3 рядки і 2 стовпці; Елементами її є цілі числа. Матриця $\left(\begin(array) (cccc) a & a^9+2 & 9 & \sin x \\ -9 & 3t^2-4 & u-t & 8\end(array) \right)$ містить 2 рядки та 4 стовпці.

Різні способи запису матриць: показати\сховати

Матриця може бути записана у круглих, а й у квадратних чи подвійних прямих дужках. Тобто, вказані нижче записи означають ту саму матрицю:

$$ \left(\begin(array) (cc) 5 & 3 \ 0 & -87 \ 8 & 0 \end(array) \right);\;\; \left[ \begin(array) (cc) 5 & 3 \\ 0 & -87 \\ 8 & 0 \end(array) \right]; \;\; \left \Vert \begin(array) (cc) 5 & 3 \\ 0 & -87 \\ 8 & 0 \end(array) \right \Vert $$

Твір $m\times n$ називають розміром матриці. Наприклад, якщо матриця містить 5 рядків та 3 стовпці, то говорять про матрицю розміру $5\times 3$. Матриця $\left(\begin(array)(cc) 5 & 3\0 & -87\8 & 0\end(array)\right)$ має розмір $3 \times 2$.

Зазвичай матриці позначаються великими літерами латинського алфавіту: $A$, $B$, $C$ і таке інше. Наприклад, $B=\left(\begin(array) (ccc) 5 & 3 \ 0 & -87 \ 8 & 0 \end(array) \right)$. Нумерація рядків йде зверху донизу; стовпців - зліва направо. Наприклад, перший рядок матриці $B$ містить елементи 5 та 3, а другий стовпець містить елементи 3, -87, 0.

Елементи матриць зазвичай позначаються дрібними літерами. Наприклад, елементи матриці $A$ позначаються $a_(ij)$. Подвійний індекс $ij$ містить інформацію про положення елемента у матриці. Число $i$ це номер рядка, а число $j$ - номер стовпця, на перетині яких знаходиться елемент $a_(ij)$. Наприклад, на перетині другого рядка і п'ятого стовпця матриці $A=\left(\begin(array) (cccccc) 51 & 37 & -9 & 0 & 9 & 97 \1 \ -17 & -15 & -13 & -11 & -8 & -5 \\ 52 & 31 & -4 & -1 & 17 & 90 \end(array) \right)$ розташований елемент $a_(25)= 59$:

Так само на перетині першого рядка і першого стовпця маємо елемент $a_(11)=51$; на перетині третього рядка та другого стовпця - елемент $a_(32)=-15$ тощо. Зауважу, що запис $a_(32)$ читається як "а три два", але не "а тридцять два".

Для скороченого позначення матриці $A$, розмір якої дорівнює $m\times n$, використовується запис $A_(m\times n)$. Можна записати і більш розгорнуто:

$$ A_(m\times n)=(a_(ij)) $$

де запис $(a_(ij))$ означає позначення елементів матриці $A$. У повністю розгорнутому вигляді матрицю $A_(m\times n)=(a_(ij))$ можна записати так:

$$ A_(m\times n)=\left(\begin(array)(cccc) a_(11) & a_(12) & \ldots & a_(1n) \\ a_(21) & a_(22) & \ldots & a_(2n) \\ \ldots & \ldots & \ldots & \ldots \\ a_(m1) & a_(m2) & \ldots & a_(mn) \end(array) \right) $$

Введемо ще один термін - рівні матриці.

Дві матриці однакового розміру $A_(m\times n)=(a_(ij))$ і $B_(m\times n)=(b_(ij))$ називаються рівними, якщо відповідні елементи рівні, тобто. $a_(ij)=b_(ij)$ для всіх $i=\overline(1,m)$ і $j=\overline(1,n)$.

Пояснення до запису $i=\overline(1,m)$: показати\приховати

Запис "$i=\overline(1,m)$" означає, що параметр $i$ змінюється від 1 до m. Наприклад, запис $i=\overline(1,5)$ говорить про те, що параметр $i$ приймає значення 1, 2, 3, 4, 5.

Отже, для рівності матриць потрібно виконання двох умов: збіг розмірів та рівність відповідних елементів. Наприклад, матриця $A=\left(\begin(array)(cc) 5 & 3\0 & -87\8 & 0\end(array)\right)$ не дорівнює матриці $B=\left(\ begin(array)(cc) 8 & -9\\0 & -87 \end(array)\right)$, оскільки матриця $A$ має розмір $3\times 2$, а розмір матриці $B$ становить $2\times 2 $. Також матриця $A$ не дорівнює матриці $C=\left(\begin(array)(cc) 5 & 3\98 & -87\\8 & ​​0\end(array)\right)$, оскільки $a_( 21) \ neq c_ (21) $ (тобто $ 0 \ neq 98 $). А ось для матриці $F=\left(\begin(array)(cc) 5 & 3\0 & -87\8 & 0\end(array)\right)$ можна сміливо записати $A=F$ оскільки і розміри, і відповідні елементи матриць $A$ та $F$ збігаються.

Приклад №1

Визначити розмір матриці $A=\left(\begin(array) (ccc) -1 & -2 & 1 \\ 5 & 9 & -8 \\ -6 & 8 & 23 \\ 11 & -12 & -5 \ \ 4 & 0 & -10 \\\end(array) \right)$. Вказати, чому рівні елементи $a_(12)$, $a_(33)$, $a_(43)$.

Дана матриця містить 5 рядків і 3 стовпці, тому розмір $5\times 3$. Для цієї матриці можна також використовувати позначення $A_(5\times 3)$.

Елемент $a_(12)$ знаходиться на перетині першого рядка та другого стовпця, тому $a_(12)=-2$. Елемент $a_(33)$ знаходиться на перетині третього рядка та третього стовпця, тому $a_(33)=23$. Елемент $a_(43)$ знаходиться на перетині четвертого рядка та третього стовпця, тому $a_(43)=-5$.

Відповідь: $a_(12)=-2$, $a_(33)=23$, $a_(43)=-5$.

Види матриць залежно від їхнього розміру. Головна та побічна діагоналі. Слід матриці.

Нехай задана певна матриця $A_(m\times n)$. Якщо $m=1$ (матриця складається з одного рядка), то задану матрицю називають матриця-рядок. Якщо $n=1$ (матриця складається з одного стовпця), то таку матрицю називають матриця-стовпець. Наприклад, $\left(\begin(array) (ccccc) -1 & -2 & 0 & -9 & 8 \end(array) \right)$ - матриця-рядок, а $\left(\begin(array) (c) -1 \\ 5 \\ 6 \end(array) \right)$ - матриця-стовпець.

Якщо для матриці $A_(m\times n)$ правильна умова $m\neq n$ (тобто кількість рядків не дорівнює кількості стовпців), то часто говорять, що $A$ - прямокутна матриця. Наприклад, матриця $\left(\begin(array) (cccc) -1 & -2 & 0 & 9 \\ 5 & 9 & 5 & 1 \end(array) \right)$ має розмір $2\times 4$, тобто. містить 2 рядки та 4 стовпці. Так як кількість рядків не дорівнює кількості стовпців, то ця матриця прямокутна.

Якщо для матриці $A_(m\times n)$ правильна умова $m=n$ (тобто кількість рядків дорівнює кількості стовпців), то кажуть, що $A$ - квадратна матриця порядку $n$. Наприклад, $\left(\begin(array) (cc) -1 & -2 \\ 5 & 9 \end(array) \right)$ - квадратна матриця другого порядку; $\left(\begin(array) (ccc) -1 & -2 & 9 \\ 5 & 9 & 8 \\ 1 & 0 & 4 \end(array) \right)$ - квадратна матриця третього порядку. Загалом квадратну матрицю $A_(n\times n)$ можна записати так:

$$ A_(n\times n)=\left(\begin(array)(cccc) a_(11) & a_(12) & \ldots & a_(1n) \\ a_(21) & a_(22) & \ldots & a_(2n) \\ldots & \ldots & \ldots & \ldots \\ a_(n1) & a_(n2) & \ldots & a_(nn) \end(array) \right) $$

Говорять, що елементи $a_(11)$, $a_(22)$, $\ldots$, $a_(nn)$ знаходяться на головної діагоналіматриці $A_(n\times n)$. Ці елементи називаються головними діагональними елементами(чи просто діагональними елементами). Елементи $a_(1n)$, $a_(2 \; n-1)$, $\ldots$, $a_(n1)$ знаходяться на побічної (другорядної) діагоналі; їх називають побічними діагональними елементами. Наприклад, для матриці $C=\left(\begin(array)(cccc)2&-2&9&1\\5&9&8& 0\\1& 0 & 4 & -7 \\ -4 & -9 & 5 & 6\end(array) \right)$ маємо:

Елементи $c_(11)=2$, $c_(22)=9$, $c_(33)=4$, $c_(44)=6$ є головними діагональними елементами; елементи $c_(14)=1$, $c_(23)=8$, $c_(32)=0$, $c_(41)=-4$ - побічні діагональні елементи.

Сума головних діагональних елементів називається слідом матриціі позначається $\Tr A$ (або $\Sp A$):

$$ \Tr A=a_(11)+a_(22)+\ldots+a_(nn) $$

Наприклад, для матриці $ C = \ left ( \ begin (array) (cccc) 2 & -2 & 9 & 1 \ -9 & 5 & 6 \end(array)\right)$ маємо:

$$ \Tr C=2+9+4+6=21. $$

Поняття діагональних елементів також використовується для неквадратних матриць. Наприклад, для матриці $B=\left(\begin(array) (ccccc) 2 & -2 & 9 & 1 & 7 \\ 5 & -9 & 8 & 0 & -6 \\ 1 & 0 & 4 & - 7 & -6 \end(array) \right)$ головними діагональними елементами будуть $b_(11)=2$, $b_(22)=-9$, $b_(33)=4$.

Види матриць залежно від значень їх елементів.

Якщо всі елементи матриці $A_(m\times n)$ дорівнюють нулю, то така матриця називається нульовийі зазвичай позначається буквою $O$. Наприклад, $\left(\begin(array) (cc) 0 & 0 \\ 0 & 0 \\ 0 & 0 \end(array) \right)$, $\left(\begin(array) (ccc) 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end(array) \right)$ - нульові матриці.

Нехай матриця $A_(m\times n)$ має такий вигляд:

Тоді цю матрицю називають трапецієподібної. Вона може і не містити нульових рядків, але якщо вони є, то розташовуються в низу матриці. У більш загальному вигляді трапецієподібну матрицю можна записати так:

Повторюся, наявність нульових рядків наприкінці не є обов'язковою. Тобто. формально можна виділити такі умови для трапецієподібної матриці:

  1. Усі елементи, розташовані нижче головної діагоналі, дорівнюють нулю.
  2. Всі елементи від $a_(11)$ до $a_(rr)$, що лежать на головній діагоналі, не дорівнюють нулю: $a_(11)\neq 0, \; a_(22)\neq 0, \ldots, a_(rr)\neq 0$.
  3. Або всі елементи останніх $m-r$ рядків дорівнюють нулю, або $m=r$ (тобто нульових рядків немає взагалі).

Приклади трапецієподібних матриць:

Перейдемо до наступного визначення. Матрицю $A_(m\times n)$ називають ступінчастоюякщо вона задовольняє таким умовам:


Наприклад, ступінчастими матрицями будуть:

Для порівняння, матриця $\left(\begin(array) (cccc) 2 & -2 & 0 & 1 \\0 & 0 & 8 & 7\\0 & 0 & 4 & -7\\0 & 0 & 0 & 0 \end(array)\right)$ не є ступінчастою, оскільки у третього рядка нульова частина така сама, як і у другого рядка. Тобто, порушується принцип "чим нижче рядок - тим більша нульова частина". Додам, що трапецієподібна матриця є окремим випадком ступінчастої матриці.

Перейдемо до наступного визначення. Якщо всі елементи квадратної матриці, розташовані під головною діагоналлю, дорівнюють нулю, то таку матрицю називають верхньою трикутною матрицею. Наприклад, $\left(\begin(array) (cccc) 2 & -2 & 9 & 1 \\ 0 & 9 & 8 & 0 \\ 0 & 0 & 4 & -7 \\ 0 & 0 & 0 & 6 \end(array) \right)$ - Верхня трикутна матриця. Зауважте, що у визначенні верхньої трикутної матриці нічого не сказано про значення елементів, які розташовані над головною діагоналлю або на головній діагоналі. Вони можуть бути нульовими чи ні – це несуттєво. Наприклад, $\left(\begin(array) (ccc) 0 & 0 & 9 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end(array) \right)$ - теж верхня трикутна матриця.

Якщо всі елементи квадратної матриці, розташовані над головною діагоналлю, дорівнюють нулю, то таку матрицю називають нижньою трикутною матрицею. Наприклад, $\left(\begin(array) (cccc) 3 & 0 & 0 & 0 \\ -5 & 1 & 0 & 0 \\ 8 & 2 & 1 & 0 \\ 5 & 4 & 0 & 6 \ end(array) \right)$ - нижня трикутна матриця. Зверніть увагу, що у визначенні нижньої трикутної матриці нічого не сказано про значення елементів, розташованих під або на головній діагоналі. Вони можуть бути нульовими чи ні – це неважливо. Наприклад, $\left(\begin(array) (ccc) -5 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 9 \end(array) \right)$ і $\left(\begin (array) (ccc) 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end(array) \right)$ - теж нижні трикутні матриці.

Квадратна матриця називається діагональноїякщо всі елементи цієї матриці, що не лежать на головній діагоналі, дорівнюють нулю. Приклад: $\left(\begin(array) (cccc) 3 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 \ end(array) \right)$. Елементи на головній діагоналі можуть бути будь-якими (рівними нулю чи ні) – це несуттєво.

Діагональна матриця називається одиничною, якщо всі елементи цієї матриці, розташовані на головній діагоналі, дорівнюють 1. Наприклад, $\left(\begin(array) (cccc) 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end(array)\right)$ - одинична матриця четвертого порядку; $\left(\begin(array) (cc) 1 & 0 \\ 0 & 1 \end(array)\right)$ - одинична матриця другого порядку.

ВИЗНАЧЕННЯ МАТРИЦІ. ВИДИ МАТРИЦЬ

Матрицею розміром m× nназивається сукупність m·nчисел, розташованих у вигляді прямокутної таблиці з mрядків та nстовпців. Цю таблицю зазвичай укладають у круглі дужки. Наприклад, матриця може мати вигляд:

Для стислості матрицю можна позначати однією великою літерою, наприклад, Аабо У.

У загальному вигляді матрицю розміром m× nзаписують так

.

Числа, що становлять матрицю, називаються елементами матриці. Елементи матриці зручно постачати двома індексами a ij: перший вказує номер рядка, а другий номер стовпця. Наприклад, a 23– елемент стоїть у другому рядку, третьому стовпці.

Якщо в матриці число рядків дорівнює числу стовпців, то матриця називається квадратний, причому число її рядків або стовпців називається порядкомматриці. У наведених прикладах квадратними є друга матриця – її порядок дорівнює 3, і четверта матриця – її порядок 1.

Матриця, в якій число рядків не дорівнює числу стовпців, називається прямокутної. У прикладах це перша матриця та третя.

Розрізняються також матриці, що мають лише один рядок або один стовпець.

Матриця, яка має лише один рядок , називається матрицею – рядком(або рядковий), а матриця, у якої всього один стовпець, матрицею – стовпцем.

Матриця, всі елементи якої дорівнюють нулю, називається нульовийі позначається (0), або просто 0. Наприклад,

.

Головною діагоналлюквадратної матриці назвемо діагональ, що йде з лівого верхнього в нижній правий кут.

Квадратна матриця, у якої всі елементи, що лежать нижче за головну діагональ, рівні нулю, називається трикутноїматрицею.

.

Квадратна матриця, у якої всі елементи, крім, можливо, стоять на головній діагоналі, дорівнюють нулю, називається діагональноїматрицею. Наприклад, або .

Діагональна матриця, у якої всі діагональні елементи дорівнюють одиниці, називається одиничноюматрицею та позначається буквою E. Наприклад, одинична матриця 3-го порядку має вигляд .

ДІЇ НАД МАТРИЦЯМИ

Рівність матриць. Дві матриці Aі Bназиваються рівними, якщо вони мають однакову кількість рядків та стовпців та їх відповідні елементи рівні a ij = b ij. Так якщо і , то A=B, якщо a 11 = b 11 , a 12 = b 12 , a 21 = b 21і a 22 = b 22.

Транспонування. Розглянемо довільну матрицю Aз mрядків та nстовпців. Їй можна порівняти таку матрицю Bз nрядків та mстовпців, у яких кожен рядок є стовпцем матриці Aз тим же номером (отже, кожен стовпець є рядком матриці Aз тим самим номером). Отже, якщо , то .

Цю матрицю Bназивають транспонованоїматрицею A, а перехід від Aдо B транспонуванням.

Таким чином, транспонування – це зміна ролями рядків та стовпців матриці. Матрицю, транспоновану до матриці Aзазвичай позначають A T.

Зв'язок між матрицею Aта її транспонованої можна записати у вигляді .

Наприклад.Знайти матрицю транспоновану даною.

Додавання матриць.Нехай матриці Aі Bскладаються з однакового числа рядків та однакового числа стовпців, тобто. мають однакові розміри. Тоді для того, щоб скласти матриці Aі Bпотрібно до елементів матриці Aдодати елементи матриці B, що стоять на тих же місцях. Таким чином, сумою двох матриць Aі Bназивається матриця Cяка визначається за правилом, наприклад,

приклади.Знайти суму матриць:

Легко перевірити, що додавання матриць підпорядковується наступним законам: комутативному A+B=B+Aта асоціативному ( A+B)+C=A+(B+C).

Множення матриці на число.Для того, щоб помножити матрицю Aна число kпотрібно кожен елемент матриці Aпомножити цього числа. Таким чином, добуток матриці Aна число kє нова матриця, яка визначається за правилом або .

Для будь-яких чисел aі bта матриць Aі Bвиконуються рівності:

приклади.

Розмноження матриць.Ця операція здійснюється за своєрідним законом. Насамперед, зауважимо, що розміри матриць-співмножників повинні бути узгоджені. Перемножувати можна лише ті матриці, у яких число стовпців першої матриці збігається з числом рядків другої матриці (тобто довжина рядка першого дорівнює висоті стовпця другого). Творомматриці Aне матрицю Bназивається нова матриця C=AB, елементи якої складаються наступним чином:

Таким чином, наприклад, щоб отримати у твору (тобто в матриці C) елемент, що стоїть у 1-му рядку та 3-му стовпці з 13, Треба в 1-й матриці взяти 1-й рядок, у 2-й - 3-й стовпець, а потім елементи рядка помножити на відповідні елементи стовпця і отримані твори скласти. Інші елементи матриці-твору виходять за допомогою аналогічного добутку рядків першої матриці на стовпці другої матриці.

У випадку, якщо ми множимо матрицю A = (a ij)розміру m× nна матрицю B = (b ij)розміру n× p, то отримаємо матрицю Cрозміру m× pелементи якої обчислюються наступним чином: елемент c ijвиходить у результаті добутку елементів i-ого рядка матриці Aна відповідні елементи j-го стовпця матриці Bта їх складання.

З цього правила випливає, що завжди можна перемножувати дві квадратні матриці одного порядку, в результаті отримаємо квадратну матрицю того самого порядку. Зокрема, квадратну матрицю можна помножити саму себе, тобто. звести у квадрат.

Іншим важливим випадком є ​​множення матриці-рядки на матрицю-стовпець, причому ширина першої повинна дорівнювати висоті другий, в результаті отримаємо матрицю першого порядку (тобто один елемент). Справді,

.

приклади.

Отже, ці найпростіші приклади показують, що матриці, взагалі, не перестановочні друг з одним, тобто. A∙BB∙A . Тому при множенні матриць потрібно ретельно стежити за порядком множників.

Можна перевірити, що множення матриць підпорядковується асоціативному та дистрибутивному законам, тобто. (AB)C=A(BC)і (A+B)C=AC+BC.

Легко також перевірити, що при множенні квадратної матриці Aна одиничну матрицю Eтого ж порядку знову отримаємо матрицю A, причому AE=EA=A.

Можна відзначити такий цікавий факт. Як відомо твір 2-х відмінних від нуля чисел не дорівнює 0. Для матриць це може мати місця, тобто. добуток 2-х не нульових матриць може виявитися рівним нульовій матриці.

Наприклад, якщо , то

.

ПОНЯТТЯ ВИЗНАЧНИКІВ

Нехай дана матриця другого порядку – квадратна матриця, що складається з двох рядків та двох стовпців .

Визначником другого порядку, Що відповідає даній матриці, називається число, одержуване наступним чином: a 11 a 22 – a 12 a 21.

Визначник позначається символом .

Отже, щоб знайти визначник другого порядку, потрібно від твору елементів головної діагоналі відняти твір елементів по другій діагоналі.

приклади.Обчислити визначники другого порядку.

Аналогічно можна розглянути матрицю третього порядку та відповідний їй визначник.

Визначником третього порядку, відповідним даної квадратної матриці третього порядку, називається число, що позначається та одержується наступним чином:

.

Таким чином, ця формула дає розкладання визначника третього порядку за елементами першого рядка a 11 , a 12 , a 13та зводить обчислення визначника третього порядку до обчислення визначників другого порядку.

приклади.Обчислити визначник третього порядку.


Аналогічно можна запровадити поняття визначників четвертого, п'ятого тощо. систем, знижуючи їх порядок розкладанням за елементами 1-го рядка, причому символи "+" і "–" у доданків чергуються.

Отже, на відміну від матриці, яка є таблицею чисел, визначник це число, яке певним чином ставиться у відповідність матриці.


Даний методичний посібник допоможе Вам навчитися виконувати дії з матрицями: додавання (віднімання) матриць, транспонування матриці, множення матриць, знаходження зворотної матриці. Весь матеріал викладений у простій та доступній формі, наведено відповідні приклади, таким чином, навіть непідготовлена ​​людина зможе навчитися виконувати дії з матрицями. Для самоконтролю та самоперевірки Ви можете безкоштовно завантажити матричний калькулятор >>>.

Я намагатимуся мінімізувати теоретичні викладки, подекуди можливі пояснення «на пальцях» та використання ненаукових термінів. Любителі ґрунтовної теорії, будь ласка, не займайтеся критикою, наше завдання – навчитися виконувати дії з матрицями.

Для надшвидкої підготовки за темою (у кого «горить») є інтенсивний pdf-курс Матриця, визначник та залік!

Матриця – це прямокутна таблиця будь-яких елементів. В якості елементівми розглядатимемо числа, тобто числові матриці. ЕЛЕМЕНТ- Це термін. Термін бажано запам'ятати, він часто зустрічатиметься, не випадково я використав для його виділення жирний шрифт.

Позначення:матриці зазвичай позначають великими латинськими літерами

Приклад:розглянемо матрицю «два на три»:

Дана матриця складається з шести елементів:

Всі числа (елементи) всередині матриці існують самі по собі, тобто ні про яке віднімання не йдеться:

Це просто таблиця (набір) чисел!

Також домовимося не переставлятичисла, якщо іншого не сказано у поясненнях. У кожного числа своє місце розташування, і перетасовувати їх не можна!

Розглянута матриця має два рядки:

і три стовпці:

СТАНДАРТ: коли говорять про розміри матриці, то спочаткувказують кількість рядків, а потім – кількість стовпців. Ми тільки-но розібрали по кісточках матрицю «два на три».

Якщо кількість рядків та стовпців матриці збігається, то матрицю називають квадратний, наприклад: - матриця "три на три".

Якщо в матриці один стовпець або один рядок, такі матриці також називають векторами.

Насправді поняття матриці ми знаємо ще зі школи, розглянемо, наприклад, точку з координатами «ікс» і «ігрок»: . Фактично, координати точки записані в матрицю «один на два». До речі, ось Вам і приклад, чому порядок чисел має значення: і – це дві різні точки площини.

Тепер переходимо безпосередньо до вивчення дій із матрицями:

1) Дія перша. Винесення мінуса з матриці (внесення мінуса до матриці).

Повернемося до нашої матриці . Як ви напевно помітили, у цій матриці занадто багато негативних чисел. Це дуже незручно з погляду виконання різних дій з матрицею, незручно писати стільки мінусів, та й просто в оформленні виглядає некрасиво.

Винесемо мінус за межі матриці, змінивши у КОЖНОГО елемента матриці знак:

У нуля, як Ви знаєте, знак не змінюється, нуль – він і в Африці нуль.

Зворотній приклад: . Виглядає потворно.

Внесемо мінус у матрицю, змінивши у КОЖНОГО елемента матриці знак:

Ну ось, набагато симпатичніше вийшло. І, найголовніше, виконувати будь-які дії з матрицею буде ПРОЩЕ. Тому що є така математична народна прикмета: чим більше мінусів – тим більше плутанини та помилок.

2) Дія друга. Розмноження матриці на число.

Приклад:

Все просто, щоб помножити матрицю на число, потрібно коженелемент матриці помножити на це число. У цьому випадку – на трійку.

Ще один корисний приклад:

– множення матриці на дріб

Спочатку розглянемо те, що робити НЕ ТРЕБА:

Вносити дріб у матрицю НЕ ТРЕБА, по-перше, це тільки ускладнює подальші дії з матрицею, по-друге, ускладнює перевірку рішення викладачем (особливо, якщо - Остаточна відповідь завдання).

Тим паче, НЕ ТРЕБАділити кожен елемент матриці на мінус сім:

Зі статті Математика для чайників або з чого початиМи пам'ятаємо, що десяткових дробів з комою у вищій математиці намагаються всіляко уникати.

Єдине що бажанозробити в цьому прикладі – це внести мінус у матрицю:

А от якби ВСІелементи матриці ділилися на 7 без залишку, Тоді можна (і треба!) було б поділити.

Приклад:

В цьому випадку можна і ПОТРІБНОпомножити всі елементи матриці на , тому що всі числа матриці поділяються на 2 без залишку.

Примітка: теоретично вищої математики шкільного поняття «поділ» немає. Замість фрази "це поділити на це" завжди можна сказати "це помножити на дріб". Тобто поділ – це окремий випадок множення.

3) Дія третя. Транспонування матриці.

Щоб транспонувати матрицю, потрібно її рядки записати в стовпці транспонованої матриці.

Приклад:

Транспонувати матрицю

Рядок тут лише один і, згідно з правилом, його потрібно записати в стовпець:

– транспонована матриця.

Транспонована матриця зазвичай позначається надрядковим індексом або штрих праворуч угорі.

Покроковий приклад:

Транспонувати матрицю

Спочатку переписуємо перший рядок у перший стовпець:

Потім переписуємо другий рядок у другий стовпець:

І, нарешті, переписуємо третій рядок у третій стовпець:

Готово. Грубо кажучи, транспонувати це означає повернути матрицю набік.

4) Дія четверта. Сума (різниця) матриць.

Сума матриць дія нескладна.
НЕ ВСІ МАТРИЦІ МОЖНА СКЛАДАТИ. Для виконання складання (віднімання) матриць, необхідно, щоб вони були ОДНАКОВИМИ ЗА РОЗМІРОМ.

Наприклад, якщо дана матриця «два на два», то її можна складати тільки з матрицею «два на два» і жодною іншою!

Приклад:

Скласти матриці і

Для того, щоб скласти матриці, необхідно скласти їх відповідні елементи:

Для різниці матриць правило аналогічне, необхідно знайти різницю відповідних елементів.

Приклад:

Знайти різницю матриць ,

А як вирішити цей приклад простіше, щоб не заплутатися? Доцільно позбутися зайвих мінусів, для цього внесемо мінус у матрицю:

Примітка: теоретично вищої математики шкільного поняття «віднімання» немає. Замість фрази "від цього відняти це" завжди можна сказати "до цього додати негативне число". Тобто віднімання – це окремий випадок складання.

5) Дія п'ята. Розмноження матриць.

Які матриці можна множити?

Щоб матрицю можна було помножити на матрицю потрібно, щоб число стовпців матриці дорівнювало числу рядків матриці.

Приклад:
Чи можна помножити матрицю на матрицю?

Отже, множити дані матриці можна.

А от якщо матриці переставити місцями, то в даному випадку множення вже неможливо!

Отже, виконати множення неможливо:

Не так вже й рідко зустрічаються завдання з каверзою, коли студенту пропонується помножити матриці, множення яких свідомо неможливе.

Слід зазначити, що у ряді випадків можна множити матриці і так, і так.
Наприклад, для матриць, і можливо як множення, так і множення

Додавання матриць$A$ і $B$ це арифметична операція, в результаті якої, повинна виходити матриця $C$, кожен елемент якої дорівнює сумі відповідних елементів матриць, що складаються:

$$ c_(ij) = a_(ij) + b_(ij) $$

Більш детально формула складання двох матриць виглядає так:

$$ A + B = \begin(pmatrix) a_(11) & a_(12) & a_(13) \\ a_(21) & a_(22) & a_(23) \\ a_(31) & a_( 32) & a_(33) \end(pmatrix) + \begin(pmatrix) b_(11) & b_(12) & b_(13) \\ b_(21) & b_(22) & b_(23) \\ b_(31) & b_(32) & b_(33) \end(pmatrix) = $$

$$ = \begin(pmatrix) a_(11) + b_(11) & a_(12)+b_(12) & a_(13)+b_(13) \\ a_(21)+b_(21) & a_ (22)+b_(22) & a_(23)+b_(23) \\ a_(31)+b_(31) & a_(32)+b_(32) & a_(33)+b_(33) \ end(pmatrix) = C$$

Зверніть увагу, що складати та віднімати матриці можна тільки однакової розмірності. При сумі або різниці буде виходити матриця $ C $ такої ж розмірності як і складові (віднімаються) матриці $ A $ і $ B $. Якщо матриці $A$ і $B$ відрізняються один від одного розмірами, то додавання (віднімання) таких матриць буде помилкою!

У формулі складаються матриці 3 на 3, отже, і вийти повинна матриця 3 на 3.

Віднімання матрицьповністю аналогічно за алгоритмом додавання, тільки знак мінус. Кожен елемент шуканої матриці $C$ виходить завдяки віднімання відповідних елементів матриць $A$ і $B$:

$$ c_(ij) = a_(ij) - b_(ij) $$

Запишемо докладну формулу віднімання двох матриць:

$$ A - B = \begin(pmatrix) a_(11) & a_(12) & a_(13) \\ a_(21) & a_(22) & a_(23) \\ a_(31) & a_( 32) & a_(33) \end(pmatrix) - \begin(pmatrix) b_(11) & b_(12) & b_(13) \\ b_(21) & b_(22) & b_(23) \\ b_(31) & b_(32) & b_(33) \end(pmatrix) = $$

$$ = \begin(pmatrix) a_(11) - b_(11) & a_(12)-b_(12) & a_(13)-b_(13) \\ a_(21)-b_(21) & a_ (22)-b_(22) & a_(23)-b_(23) \\ a_(31)-b_(31) & a_(32)-b_(32) & a_(33)-b_(33) \ end(pmatrix) = C$$

Варто також помітити, що не можна складати і віднімати матриці зі звичайними числами, а також з іншими якимись елементами

Буде корисно знати для подальших розв'язків задач з матрицями знати властивості додавання (віднімання).

Властивості

  1. Якщо матриці $ A, B, C $ однакові за розміром, тоді для них діє властивість асоціативності: $ $ A + (B + C) = (A + B) + C $ $
  2. Для кожної матриці існує нульова матриця, що позначається $O$, при додаванні (відніманні) з якої вихідна матриця не змінюється: $$ A \pm O = A $$
  3. Для кожної ненульової матриці $A$ є протилежна матриця $(-A)$ сума з якої звертається в нуль: $$A+(-A) = 0$$
  4. При складанні (відніманні) матриць припустима властивість комутативності, тобто матриці $A$ і $B$ можна міняти місцями: $$A+B=B+A$$$$A-B=B-A$$

Приклади рішень

Приклад 1

Дано матриці $A = \begin(pmatrix) 2&3 \- -1& 4 \end(pmatrix) $ і $ B = \begin(pmatrix) 1&-3 \\ 2&5 \end(pmatrix) $.

Виконати додавання матриць, а потім віднімання.

Рішення

Насамперед перевіряємо матриці на розмірність. У матриці $ A $ розмірність $ 2 \times 2 $, у другої матриці $ B $ розмірність теж $ 2 \times 2 $. Це означає, що з даними матрицями можна провести спільну операцію зі складання та віднімання.

Нагадаємо, що для суми потрібно виконати попарне додавання відповідних елементів матриць $ A \text( і ) B $.

$$ A + B = \begin(pmatrix) 2&3 \\ -1& 4 \end(pmatrix) + \begin(pmatrix) 1&-3 \\ 2&5 \end(pmatrix) = $$

$$ = \begin(pmatrix) 2 + 1 & 3 + (-3) \\ -1 + 2 & 4 + 5 \end(pmatrix) = \begin(pmatrix) 3 & 0 \\ 1 & 9 \end( pmatrix) $$

Аналогічно сумі знаходимо різницю матриць за допомогою заміни знака "плюс" на "мінус":

$$ A - B = \begin(pmatrix) 2&3 \\ -1& 4 \end(pmatrix) + \begin(pmatrix) 1&-3 \\ 2&5 \end(pmatrix) = $$

$$ = \begin(pmatrix) 2 - 1 & 3 - (-3) \\ -1 - 2 & 4 - 5 \end(pmatrix) = \begin(pmatrix) 1 & 6 \\ -3 & -1 \ end(pmatrix) $$

Якщо не вдається вирішити своє завдання, то надсилайте його до нас. Ми надамо детальне рішення. Ви зможете ознайомитися з ходом обчислення та отримати інформацію. Це допоможе вчасно отримати залік у викладача!

Відповідь

$$ A + B = \begin(pmatrix) 3 & 0 \\ 1 & 9 \end(pmatrix); A - B = \begin(pmatrix) 1 & 6 \\ -3 & -1 \end(pmatrix) $$

У статті: "Складання та віднімання матриць" були дані визначення, правила, зауваження, властивості операцій та практичні приклади рішення.