Биографии Характеристики Анализ

Функции и типы нервных волокон. Нервные импульсы

Потенциал действия или нервный импульс, специфическая реакция, протекающая в виде возбуждающей волны и протекающей по всему нервному пути. Эта реакция является ответом на раздражитель. Главной задачей является передача данных от рецептора к нервной системе, а после этого она направляет эту информацию к нужным мышцам, железам и тканям. После прохождения импульса, поверхностная часть мембраны становится отрицательно заряженной, а внутренняя ее часть остается положительной. Таким образом, нервным импульсом называют последовательно передающиеся электрические изменения.

Возбуждающее действие и его распространение подвергается физико-химической природе. Энергия для проведения этого процесса образуется непосредственно в самом нерве. Происходит это из-за того, что прохождение импульса влечет образование тепла. Как только он прошел, начинается затихание или референтное состояние. В которою всего лишь долю секунды нерв не может проводить стимул. Скорость, с которой может поступать импульс колеблется в пределах от 3 м/с до 120 м/с.

Волокна, по которым проходит возбуждение, имеют специфическую оболочку. Грубо говоря, эта система напоминает электрический кабель. По своему составу оболочка может быть миелиновая и безмиелиновая. Самый главной составляющей миелиновой оболочки является – миелин, который играет роль диэлектрика.

Скорость прохождения импульса зависит от нескольких факторов, например, от толщины волокон, при чем оно толще, тем скорость развивается быстрее. Еще один фактором в повышении скорости проведения, является сам миелин. Но при этом он располагается не по всей поверхности, а участками, как бы нанизывается. Соответственно между этими участками есть те, которые остаются «голыми». По ним происходит утечка тока из аксона.

Аксоном называется отросток, с помощью него обеспечивается передача данных от одной клетки к остальным. Регулируется этот процесс с помощью синапса – непосредственной связи между нейронами или нейроном и клеткой. Еще существует, так называемое синаптическое пространство или щель. Когда поступает раздражительный импульс к нейрону, то в процессе реакции высвобождаются нейромедиаторы (молекулы химического состава). Они проходят через синаптическое отверстие, в итоге попадая на рецепторы нейрона или клетки, которой нужно донести данные. Для проведения нервного импульса необходимы ионы кальция, так как без этого не происходит высвобождение нейромедиатора.

Вегетативная система обеспечивается в основном безмиелиновыми тканями. По ним возбуждение распространяется постоянно и беспрерывно.

Принцип передачи основан на возникновении электрического поля, поэтому возникает потенциал, раздражающий мембрану соседнего участка и так по всему волокну.

При этом потенциал действия не передвигается, а появляется и исчезает в одном месте. Скорость передачи по таким волокнам составляет 1-2 м/с.

Законы проведения

В медицине присутствуют четыре основных закона:

  • Анатомо-физиологическая ценность. Проводится возбуждение только в том случае, если нет нарушения в целостности самого волокна. Если не обеспечивать единство, например, по причине ущемления, принятия наркотиков, то и проведение нервного импульса невозможно.
  • Изолированное проведение раздражения. Возбуждение может передаваться вдоль , никаким образом, не распространяясь на соседние.
  • Двустороннее проведение. Путь проведения импульса может быть только двух видов – центробежно и центростремительно. Но в действительности направление происходит в одном из вариантов.
  • Бездекрементное проведение. Импульсы не утихают, иными словами, проводятся без декремента.

Химия проведения импульса

Процесс раздражения так же контролируется ионами, в основном калием, натрием и некоторыми органическими соединениями. Концентрация расположения этих веществ разная, клетка заряжена внутри себя отрицательно, а на поверхности положительно. Этот процесс будет называться разностью потенциалов. При колебании отрицательного заряда, например, его уменьшении провоцируется разность потенциалов и этот процесс называется деполяризацией.

Раздражение нейрона влечет за собой открытие каналов натрия в месте раздражения. Это может способствовать вхождению положительно заряженных частиц во внутрь клетки. Соответственно отрицательный заряд снижается и происходит потенциал действия или происходит нервный импульс. После этого натриевые каналы снова прикрываются.

Часто встречается, что именно ослабление поляризации способствует открытию калиевых каналов, что провоцирует высвобождению положительно заряженных ионов калия. Этим действием уменьшается отрицательный заряд на поверхности клетки.

Потенциал покоя или электрохимическое состояние восстанавливается тогда, когда в работу включаются калий-натриевые насосы, с помощью которых ионы натрия выходят из клетки, а калия заходят в нее.

В результате можно сказать – при возобновлении электрохимических процессов и происходят импульсы, стремящиеся по волокнам.

Электрические явления в живых тканях связаны с разностью концентраций ионов, несущих электрические заряды.

Согласно общепринятой мембранной теории происхождения биопотенциалов , разность потенциалов в живой клетке возникает потому, что ионы, несущие электрические заряды, распределяются по обе стороны полупроницаемой клеточной мембраны в зависимости от ее избирательной проницаемости к разным ионам. Активный перенос ионов против концентрационного градиента осуществляется с помощью так называемых ионных насосов , представляющих собой систему ферментов-переносчиков. Для этого используется энергия АТФ.

В результате работы ионных насосов концентрация ионов K + внутри клетки оказывается в 40-50 раз больше, а ионов Na + - в 9 раз меньше, чем в межклеточной жидкости. Ионы выходят на поверхность клетки, анионы остаются внутри нее, сообщая мембране отрицательный заряд. Таким образом создается потенциал покоя , при котором мембрана внутри клетки заряжена отрицательно по отношению к внеклеточной среде (ее заряд условно принимается за нуль). У различных клеток мембранный потенциал варьирует от -50 до -90 мВ.

Потенциал действия возникает в результате кратковременного колебания мембранного потенциала. Он включает две фазы:

  • Фаза деполяризации соответствует быстрому изменению мембранного потенциала примерно на 110 мВ. Это объясняется тем, что в месте возбуждения резко возрастает проницаемость мембраны для ионов Na + , так как открываются натриевые каналы. Поток ионов Na + устремляется в клетку, создавая разность потенциалов с положительным зарядом на внутренней и отрицательным на наружной поверхности мембраны. Мембранный потенциал в момент достижения пика составляет +40 мВ. Во время фазы реполяризации мембранный потенциал вновь достигает уровня покоя (мембрана реполяризуется), после чего наступает гиперполяризация до значения примерно -80 мВ.
  • Фаза реполяризации потенциала связана с закрытием натриевых и открытием калиевых каналов. Так как по мере выпада K + удаляются положительные заряды, мембрана реполяризуется. Гиперполяризация мембраны до уровня большего (более отрицательного), чем потенциал покоя, обусловлена высокой калиевой проницаемостью в фазу реполяризации. Закрытие калиевых каналов приводит к восстановлению исходного уровня мембранного потенциала; значения проницаемости для K + и Na + при этом также возвращаются к прежним.

Проведение нервного импульса

Разность потенциала, возникающая между возбужденным (деполяризованным) и покоящимися (нормально поляризованными) участками волокна, распространяются по всей его длине. В немиелинизированных нервных волокнах возбуждение передается со скоростью до 3 м/с. По аксонам, покрытым миелиновой оболочкой, скорость проведения возбуждения достигает 30-120 м/с. Такая высокая скорость объясняется тем, что деполяризующий ток не протекает через участки, покрытые изолирующей миелиновой оболочкой (участки между перехватами). Потенциал действия здесь распространяется скачкообразно.

Скорость проведения потенциала действия по аксону пропорциональна его диаметру. В волокнах смешанного нерва она варьирует от 120 м/с (толстые, диаметром до 20 мкм, миелинизированные волокна) до 0,5 м/с (самые тонкие, диаметром 0,1 мкм, безмякотные волокна).

Проведение нервных импульсов по нервным волокнам и через синапсы. Высоковольтный потенциал, возникающий при возбуждении рецептора в нервном волокне, в 5-10 раз больше порога раздражения рецептора. Проведение волны возбуждения по нервному волокну обеспечивается тем, что каждый последующий его участок раздражается высоковольтным потенциалом предыдущего участка. В мякотных нервных волокнах этот потенциал распространяется не непрерывно, а скачкообразно; он перескакивает через один или даже несколько перехватов Ранвье, в которых усиливается. Продолжительность проведения возбуждения между двумя соседними перехватами Ранвье равняется 5-10% длительности высоковольтного потенциала.


Проведение нервного импульса по нервному волокну происходит только при условии его анатомической непрерывности и нормального физиологического его состояния. Нарушение физиологических свойств нервного волокна сильным охлаждением или отравлением ядами и наркотиками прекращает проведение нервного импульса даже при анатомической его непрерывности.

Нервные импульсы проводятся изолированно по отдельным двигательным и чувствительным нервным волокнам, которые входят в состав смешанного нерва, что зависит от изолирующих свойств покрывающих их миелиновых оболочек. В безмякотных нервных волокнах биоток распространяется непрерывно вдоль волокна и благодаря соединительнотканой оболочке не переходит с одного волокна на другое. Нервный импульс может распространяться по нервному волокну в двух направлениях: центростремительном и центробежном. Следовательно, существуют три правила проведения нервного импульса в нервных волокнах: 1) анатомической непрерывности и физиологической целости, 2) изолированного проведения и 3) двустороннего проведения.

Через 2-3 дня после отделения нервных волокон от тела нейрона они начинают перерождаться, или дегенерировать, и проведение нервных импульсов прекращается. Нервные волокна и миелин разрушаются и сохраняется только соединительнотканая оболочка. Если соединить перерезанные концы нервных волокон, или нерва, то после дегенерации тех участков, которые отделены от нервных клеток, начинается восстановление, или регенерация, нервных волокон со стороны тел нейронов, из которых они прорастают в сохранившиеся соединительнотканые оболочки. Регенерация нервных волокон приводит к восстановлению проведения импульсов.

В отличие от нервных волокон через нейроны нервной системы нервные импульсы проводятся только в одном направлении - от рецептора к работающему органу. Это зависит от характера проведения нервного импульса через синапсы. В нервном волокне над пресинаптической мембраной есть множество мельчайших пузырьков ацетилхолина. При достижении биотоком пресинаптической мембраны часть этих пузырьков лопается, и ацетилхолин проходит через мельчайшие отверстия в пресинаптической мембране в синаптическую щель.
В постсинаптической мембране имеются участки, обладающие особым сродством к ацетилхолину, который вызывает временное появление пор в постсинаптической мембране, отчего она становится временно проницаемой для ионов. В результате в постсинаптической мембране возникает возбуждение и высоковольтный потенциал, который распространяется по следующему нейрону или по иннервируемому органу. Следовательно, передача возбуждения через синапсы происходит химическим путем посредством посредника, или медиатора, ацетилхолина, а проведение возбуждения по следующему нейрону снова осуществляется электрическим путем.

Действие ацетилхолина на проведение нервного импульса через синапс кратковременно; он быстро разрушается, гидролизуется ферментом холинэстеразой.

Так как химическая передача нервного импульса в синапсе происходит в течение доли мсек, то в каждом синапсе нервный импульс на это время задерживается.

В отличие от нервных волокон, в которых информация передается по принципу «все или ничего», т. е. дискретно, в синапсах информация передается по принципу «больше или меньше», т. е. градуально. Чем больше до некоторого предела образуется медиатора ацетилхолина, тем выше частота высоковольтных потенциалов в последующем нейроне. После этого предела возбуждение переходит в торможение. Таким образом, цифровая информация, передаваемая по нервным волокнам, переходит в синапсах в измерительную информацию. Измерительные электронные машины,

в которых имеются определенные соотношения между реально измеряемыми количествами и теми величинами, которые они представляют, называются аналоговыми, работающими по принципу «больше или меньше»; можно считать, что в синапсах происходит аналогичный процесс и совершается его переход в цифровой. Следовательно, нервная система функционирует по смешанному типу: в ней совершаются и цифровые и аналоговые процессы.

Проведение нервного импульса по волокну происходит за счет распространения по оболочке отростка волны деполяризации. Большинство периферических нервов по своим двигательным и чувствительным волокнам обеспечивают проведение импульса со скоростью до 50-60 м/сек. Собственно деполяризация процесс достаточно пассивный, тогда как восстановление мембранного потенциала покоя и способности к проведению осуществляется путем функционирования NA/K и Са насосов. Для их работы необходима АТФ, обязательным условием образования которой является наличие сегментарного кровотока. Прекращение кровоснабжения нерва сразу блокирует проведение нервного импульса.

По особенностям строения и функциям нервные волокна подразделяются на два вида: безмиелиновые и миелиновые. Безмиелиновые нервные волокна не имеют миелиновой оболочки. Их диаметр 5-7 мкм, скорость проведения импульса 1-2 м/с. Миелиновые волокна состоят из осевого цилиндра, покрытого миелиновой оболочкой, образованной шванновскими клетками. Осевой цилиндр имеет мембрану и оксоплазму. Миелиновая оболочка состоит на 80 % из липидов и на 20 % из белка. Миелиновая оболочка не покрывает сплошь осевой цилиндр, а прерывается и оставляет открытыми участки осевого цилиндра, которые называются узловыми перехватами (перехваты Ранвье). Длина участков между перехватами различна и зависит от толщины нервного волокна: чем оно толще, тем длиннее расстояние между перехватами.

В зависимости от скорости проведения возбуждения нервные волокна делятся на три типа: А, В, С. Наибольшей скорость проведения возбуждения обладают волокна типа А, скорость проведения возбуждения которых достигает 120 м/с, В имеет скорость от 3 до 14 м/с, С - от 0,5 до 2 м/с.

Выделяют 5 законов проведения возбуждения:

  • 1. Нерв должен сохранять физиологическую и функциональную непрерывность.
  • 2. В естественных условиях распространение импульса от клетки к периферии. Имеется 2-х стороннее проведение импульса.
  • 3. Проведение импульса изолированно, т.е. волокна покрытые миелином не передают возбуждение на соседние нервные волокна, а только вдоль нерва.
  • 4. Относительная неутомимость нерва в отличие от мышц.
  • 5. Скорость проведения возбуждения зависит от наличия или отсутствия миелина и длины волокна.
  • 3. Классификация повреждений периферических нервов

Повреждения бывают:

  • А) огнестрельные: -прямые (пулевые, осколочные)
  • -опосредованные
  • -пневмоповреждения
  • Б) неогнестрельные: резаные, колотые, укушенные, компрессионные, компрессионно-ишемические

Так же в литературе встречается разделение повреждений на открытые(резаные, колотые, рваные, рубленные, ушибленные, размозженные раны) и закрытые(сотрясение, ушиб, сдавленно, растяжение, раз рыв и вывих) травмы периферической нервной системы.

Синапсы – это струтуры, предназначенные для передачи импульса с одного нейрона на другой или на мышечные и железистые структуры. Сингапсы обеспечивают поляризацию проведения импульса по цепи нейронов. В зависимости от способа передачи импульса синапсы могут быть химическими или электрическими (электротони­ческими).

Химические синапсы передают импульс на другую клетку с помощью специальных биологически активных веществ - нейромедиаторов, находя­щихся в синаптических пузырьках. Терминаль аксона представляет собой пресинаптическую часть, а область второго ней­рона, или другой иннервируемой клетки, с которой она контактирует, - постсинаптическую часть. Область синаптического кон­такта между двумя нейронами состоит из пресинаптической мембраны, синаптической щели и постсинаптической мембраны.

Электрические, или электротонические, синапсы в нервной системе мле­копитающих встречаются относительно редко. В области таких синапсов цитоплазмы соседних нейронов связаны щелевидными соединениями (кон­тактами), обеспечивающими прохождение ионов из одной клетки в другую, а следовательно, электрическое взаимодействие этих клеток.

Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Тонкие волокна, бедные миелином, и безмиелиновые волокна проводят нервный импульс со скоростью 1-2 м/с, тогда как тол­стые миелиновые - со скоростью 5-120 м/с.

В безмиелиновом волокне волна деполяризации мембраны идет по всей аксолемме, не прерываясь, а в миелиновом возникает только в области перехвата. Таким образом, для миелиновых волокон характерно сальтатор-ное проведение возбуждения, т.е. прыжками. Между перехватами идет элек­трический ток, скорость которого выше, чем прохождение волны деполя­ризации по аксолемме.

№ 36 Сравнительная характеристика структурной организации рефлекторных дуг соматической и вегетативной нервной системы.

Рефлекторная дуга - это цепь нервных клеток, обязатель­но включающая первый - чувствительный и последний - дви­гательный (или секреторный) нейроны. Наиболее простыми рефлекторными дугами являются двух- и трехнейронные, замыкающиеся на уровне одного сег­мента спинного мозга. В трехнейронной рефлекторной дуге пер­вый нейрон представлен чувствительной клеткой, который движется вначале по периферическому отростку, а затем по центральному, направляясь к одному из ядер заднего рога спинного мозга. Здесь импульс передается следующему нейрону, отросток кото­рого направляется из заднего рога в передний, к клеткам ядер (двигательных) переднего рога. Этот нейрон выполняет провод­никовую (кондукторную) функцию. Он передает импульс от чув­ствительного (афферентного) нейрона к двигательному (эффе­рентному). Тело третьего нейрона (эфферентного, эффекторного, двига­тельного) лежит в переднем роге спинного мозга, а его аксон - в составе переднего корешка, а затем спинномозгового нерва простирается до рабочего органа (мышца).

С развитием спинного и головного мозга усложнились и связи в нервной системе. Образовались многоней­ронные сложные рефлекторные дуги , в построении и функциях которых участвуют нервные клетки, расположенные в вышележа­щих сегментах спинного мозга, в ядрах мозгового ствола, полу­шарий и даже в коре большого мозга. Отростки нервных кле­ток, проводящих нервные импульсы из спинного мозга к ядрам и коре головного мозга и в обратном направлении, образуют пучки, fasciculi.