Биографии Характеристики Анализ

Основы классической термодинамики и статистической физики. Термодинамика и статистическая физика

Термодинамика и статистическая физика

Методические указания и контрольные задания для студентов заочного обучения

Шелкунова З.В., Санеев Э.Л.

Методическое указания и контрольные задания для студентов заочного обучения инженерно-технических и технологических специальностей. Содержат разделы программ ”Статистическая физика”, ”Термодинамика”, примеры решения типовых задач и варианты контрольных заданий.

Ключевые слова: Внутренняя энергия, теплота, работа; изопроцессы, энтропия: функции распределения: Максвелла, Больцмана, Бозе – Эйнштейна; Ферми – Дирака; Энергия Ферми, теплоемкость, характеристическая температура Эйнштейна и Дебая.

Редактор Т.Ю.Артюнина

Подготовлено в печать г. Формат 6080 1/16

Усл.п.л. ; уч.-изд.л. 3,0; Тираж ____ экз. Заказ № .

___________________________________________________

РИО ВСГТУ, Улан-Удэ, Ключевская, 40а

Отпечатано на ротапринте ВСГТУ, Улан-Удэ,

Ключевская, 42.

Федеральное агентство по образованию

Восточно-Сибирский государственный

технологический университет

ФИЗИКА №4

(Термодинамика и статистическая физика)

Методические указания и контрольные задания

для студентов заочного обучения

Составитель: Шелкунова З.В.

Санеев Э.Л.

Издательство ВСГТУ

Улан-Удэ, 2009

Статистическая физика и термодинамика

Тема 1

Динамические и статистические закономерности в физике. Термодинамический и статистический методы. Элементы молекулярно-кинетической теории. Макроскопическое состояние. Физические величины и состояния физических систем. Макроскопические параметры как средние значения. Тепловое равновесие. Модель идеального газа. Уравнение состояния идеального газа. Понятие о температуре.

Тема 2

Явления переноса. Диффузия. Теплопроводность. Коэффициент диффузии. Коэффициент теплопроводности. Температуропроводность. Диффузия в газах, жидкостях и твердых телах. Вязкость. Коэффициент вязкости газов и жидкостей.

Тема 3

Элементы термодинамики. Первое начало термодинамики. Внутренняя энергия. Интенсивные и экстенсивные параметры.

Тема 4

Обратимые и необратимые процессы. Энтропия. Второе начало термодинамики. Термодинамические потенциалы и условия равновесия. Химический потенциал. Условия химического равновесия. Цикл Карно.

Тема 5

Функции распределения. Микроскопические параметры. Вероятность и флуктуации. Распределение Максвелла. Средняя кинетическая энергия частицы. Распределение Больцмана. Теплоемкость многоатомных газов. Ограниченность классической теории теплоемкости.

Тема 6

Распределение Гиббса. Модель системы в термостате. Каноническое распределение Гиббса. Статистический смысл термодинамических потенциалов и температуры. Роль свободной энергии.

Тема 7

Распределение Гиббса для системы с переменным числом частиц. Энтропия и вероятность. Определение энтропии равновесной системы через статистический вес микросостояния.

Тема 8

Функции распределения Бозе и Ферми. Формула Планка для разновесного теплового излучения. Порядок и беспорядок в природе. Энтропия как количественная мера хаотичности. Принцип возрастания энтропии. Переход от порядка к беспорядку о состоянии теплового равновесия.

Тема 9

Экспериментальные методы исследования колебательного спектра кристаллов. Понятие о фононах. Законы дисперсии для акустических и оптических фононов. Теплоемкость кристаллов при низких и высоких температурах. Электронные теплоемкость и теплопроводность.

Тема 10

Электроны в кристаллах. Приближение сильной и слабой связи. Модель свободных электронов. Уровень Ферми. Элементы зонной теории кристаллов. Функция Блоха. Зонная структура энергетического спектра электронов.

Тема 11

Поверхность Ферми. Число и плотность числа электронных состояний в зоне. Заполнения зон: металлы, диэлектрики и полупроводники. Электропроводность полупроводников. Понятие о дырочной проводимости. Собственные и примесные полупроводники. Понятие о p-n переходе. Транзистор.

Тема 12

Электропроводность металлов. Носители тока в металлах. Недостаточность классической электронной теории. Электронный ферми-газ в металле. Носители тока как квазичастицы. Явление сверхпроводимости. Куперовское спаривание электронов. Туннельный контакт. Эффект Джозефсона и его применение. Захват и квантование магнитного потока. Понятие о высокотемпературной проводимости.

СТАТИСТИЧЕСКАЯ ФИЗИКА. ТЕРМОДИНАМИКА

Основные формулы

1. Количество вещества однородного газа (в молях):

где N -число молекул газа; N A - число Авогадро; m -масса газа; -молярная масса газа.

Если система представляет смесь нескольких газов, то количество вещества системы

,

,

где i , N i , m i , i - соответственно количество вещества, число молекул, масса, молярная масса i -й компоненты смеси.

2. Уравнение Клапейрона-Менделеева (уравнение состояния идеального газа):

где m - масса газа; - молярная масса; R - универсальная газовая постоянная; = m/ - количество вещества; T -термодинамическая температура Кельвина.

3. Опытные газовые законы, являющиеся частными случаями уравнения Клапейрона-Менделеева для изопроцессов:

    закон Бойля-Мариотта

(изотермический процесс - Т =const; m=const):

или для двух состояний газа:

где p 1 и V 1 - давление и объем газа в начальном состоянии; p 2 и V 2

    закон Гей-Люссака (изобарический процесс - p=const, m=const ):

или для двух состояний:

где V 1 и Т 1 - объем и температура газа в начальном состоянии; V 2 и Т 2 - те же величины в конечном состоянии;

    закон Шарля (изохорический процесс - V=const, m=const ):

или для двух состояний:

где р 1 и Т 1 - давление и температура газа в начальном состоянии; р 2 и Т 2 - те же величины в конечном состоянии;

    объединенный газовый закон (m=const ):

где р 1 , V 1 , Т 1 - давление, объем и температура газа в начальном состоянии; р 2 , V 2 , Т 2 - те же величины в конечном состоянии.

4. Закон Дальтона, определяющий давление смеси газов:

р = р 1 + р 2 + ... +р n

где p i - парциальные давления компонент смеси; n - число компонентов смеси.

5. Молярная масса смеси газов:

где m i - масса i -го компонента смеси; i = m i / i - количество вещества i -го компонента смеси; n - число компонентов смеси.

6. Массовая доля  i i -го компонента смеси газа (в долях единицы или процентах):

где m - масса смеси.

7. Концентрация молекул (число молекул в единице объема):

где N -число молекул, содержащихся в данной системе;  - плотность вещества. Формула справедлива не только для газов, но и для любого агрегатного состояния вещества.

8. Основное уравнение кинетической теории газов:

,

где <> - средняя кинетическая энергия поступательного движения молекулы.

9. Средняя кинетическая энергия поступательного движения молекулы:

,

где k - постоянная Больцмана.

10. Средняя полная кинетическая энергия молекулы:

где i - число степеней свободы молекулы.

11. Зависимость давления газа от концентрации молекул и температуры:

p = nkT.

12. Скорости молекул:

средняя квадратичная ;

средняя арифметическая ;

наиболее вероятная ,

СТАТИСТИЧЕСКАЯ , раздел стати-стич. физики, посвященный обоснованию законов на основе законов взаимод. и движения составляющих систему частиц. Для систем в равновесном состоянии статистическая позволяет вычислять , записывать , условия фазовых и хим. . Неравновесная статистическая дает обоснование соотношений (ур-ний переноса энергии, импульса, массы и их граничных условий) и позволяет вычислять входящие в ур-ния переноса кинетич. коэффициенты. Статистическая устанавливает количеств. связь между микро- и макросвойствами физ. и хим. систем. Расчетные методы статистической используются во всех направлениях совр. теоретич. .

Основные понятия. Для статистич. описания макроскопич. систем Дж. Гиббсом (1901) предложено использовать понятия статистич. ансамбля и фазового пространства, что позволяет применять к решению задач методы теории вероятности. Статистич. ансамбль-совокупность очень большого числа одинаковых систем мн. частиц (т. е. "копий" рассматриваемой системы), находящихся в одном и том же макросостоянии, к-рое определяется ; микросостояния системы при этом могут различаться. Осн. статистич. ансамбли-микроканонич., канонич., большой канонич. и изобарно-изотермический.

Микроканонич. ансамбль Гиббса используетя при рассмотрении (не обменивающихся энергией E с ), имеющих постоянный объем V и число одинаковых частиц N (Е, V и N- системы). Канонич. ансамбль Гиббса используется для описания систем постоянного объема, находящихся в тепловом с (абс. т-ра Т) при постоянном числе частиц N ( V, Т, N ). Большой канонич. ансамбль Гиббса используется для описания , находящихся в тепловом с (т-ра Т) и материальном с резервуаром частиц (осуществляется обмен частицами всех через "стенки", окружающие систему объемом V). такой системы-V, Т и m -химический потенциал частиц. Изобарно-изотермич. ансамбль Гиббса используется для описания систем, находящихся в тепловом и мех. с при постоянном P ( Т, P, N ).

Фазовое пространство в статистич. механике-многомерное пространство, осями к-рого служат все обобщенные координаты q i и сопряженные им импульсы p i (i =1,2,..., М) системы с М степенями свободы. Для системы, состоящей из N , q i и p i соответствуют декартовой координатеи компоненте импульса (a = х, у, z) нек-рого j и М = 3N . Совокупность координат и импульсов обозначаются q и p соответственно. Состояние системы изображается точкой в фазовом пространстве размерности 2М, а изменение состояния системы во времени-движением точки вдоль линии, наз. фазовой траекторией. Для статистич. описания состояния системы вводятся понятия фазового объема (элемента объема фазового пространства) и ф-ции распределения f(p, q), к-рая характеризует плотность вероятности нахождения точки, изображающей состояние системы, в элементе фазового пространства вблизи точки с координатами р, q. В вместо фазового объема используют понятие дискретного энергетич. спектра системы конечного объема, т.к. состояние отдельной частицы определяется не импульсом и координатами, а волновой ф-цией, к-рой в стационарном динамич. состоянии системы соответствует энергетич. спектр .

Функция распределения классич. системы f(p, q)характеризует плотность вероятности реализации данного микро состояния (р, q) в элементе объема dГ фазового пространства. Вероятность пребывания N частиц в бесконечно малом объеме фазового пространства равна:

где dГ N - элемент фазового объема системы в единицах h 3N , h-постоянная Планка; делитель N! учитывает тот факт, что перестановка тождеств. частиц не меняет состояния системы. Ф-ция распределения удовлетворяет условию нормировки т f(p, q)dГ N = 1, т.к. система достоверно находится в к.-л. состоянии. Для квантовых систем ф-ция распределения определяет вероятность w i , N нахождения системы из N частиц в , задаваемом набором квантовых чисел i , с энергией E i,N при условии нормировки

Среднее значение в момент времени т (т.е. по бесконечно малому интервалу времени от т до т + dт)любой физ. величины А(р, q), являющейся ф-цией координат и импульсов всех частиц системы, с помощью ф-ции распределения вычисляется по правилу (в т.ч. и для неравновесных процессов):

Интегрирование по координатам проводится по всему объему системы, а интегрирование по импульсам от - , до +, . Состояние термодинамич. системы следует рассматривать как предел т: , . Для равновесных состояний ф-ции распределения определяются без решения ур-ния движения составляющих систему частиц. Вид этих ф-ций (одинаковый для классич. и квантовых систем) был установлен Дж. Гиббсом (1901).

В микроканонич. ансамбле Гиббса все микросостояния с данной энергией Е равновероятны и ф-ция распределения для классич. систем имеет вид:

f(p,q) = Ad ,

где d -дельта-ф-ция Дирака, Н(р,q)-ф-ция Гамильтона, представляющая собой сумму кинетич. и потенц. энергий всех частиц; постоянная А определяется из условия нормировки ф-ции f(p, q). Для квантовых систем при точности задания , равной величине D E, в соответствии с между энергией и временем (между импульсом и координатой частицы), ф-ция w (E k) = -1 , если ЕE k E + D E, и w (E k) = 0, если E k < Е и E k > E + D E. Величина g(E, N, V)-т. наз. статистич. , равный числу в энергетич. слое D E. Важное соотношение статистической -связь системы со статистич. :

S(E, N, V) = klng(E, N, V), где k-Больцмана постоянная.

В канонич. ансамбле Гиббса вероятность нахождения системы в микросостоянии, определяемом координатами и импульсами всех N частиц или значениями E i,N , имеет вид: f(p, q) = exp {/kT}; w i,N = exp[(F - E i,N)/kT], где F-своб. энергия (), зависящая от значений V, Т, N:

F = -kTlnZ N ,

где Z N -статистич. сумма (в случае квантовой системы) или статистич. интеграл (в случае классич. системы), определяемые из условия нормировки ф-ций w i,N или f(p, q):


Z N = т exp[-H(р, q)/kT]dpdq/(N!h 3N)

(сумма по г по всем системы, а интегрирование проводится по всему фазовому пространству).

В большом канонич. ансамбле Гиббса ф-ция распределения f(p, q) и статистич. сумма X , определяемая из условия нормировки, имеют вид:

где W -термодинамич. потенциал, зависящий от переменных V, Т, m (суммирование ведется по всем целым положит. N ). В изобарно-изотермич. ансамбле Гиббса ф-ция распределения и статистич. сумма Q, определяемая из условия нормировки, имеют вид:

где G- системы (изобарно-изотермич. потенциал, своб. ).

Для вычисления термодинамич. ф-ции можно использовать любое распределение: они эквивалентны друг другу и соответствуют разным физ. условиям. Микроканонич. распределение Гиббса применяется гл. обр. в теоретич. исследованиях. Для решения конкретных задач рассматривают ансамбли, в к-рых есть обмен энергией со средой (канонич. и изобарно-изотермич.) или обмен энергией и частицами (большой канонич. ансамбль). Последний особенно удобен для изучения фазового и хим. . Статистич. суммы Z N и Q позволяют определить F, G, а также термодинамич. св-ва системы, получаемые дифференцированием статистич. суммы по соответствующим параметрам (в расчете на 1 в-ва): внутр. энергию U = RT 2 (9 lnZ N /9 T) V , H = RT 2 (9 lnQ/9 T) P , S = RlnZ N + RT(9 lnZ N /9 T) V = = R ln Q + RT(9 ln Q/9 T) P , при постоянном объеме С V = 2RT(9 lnZ N /9 T) V + RT 2 (9 2 lnZ N /9 T 2) V , при постоянном С Р = 2RT (9 lnZ N /9 T) P + + RT 2 (9 2 lnZ N /9 T 2) P и т.д. Соотв. все эти величины приобретают и статистич. смысл. Так, отождествляется со средней энергией системы, что позволяет рассматривать как при движении составляющих систему частиц; своб. энергия связана со статистич. суммой системы, энтропия-с числом микросостояний g в данном макросостоянии, или статистич. макросостояния, и, следовательно, с его вероятностью. Смысл как меры вероятности состояния сохраняется по отношению к произвольным (неравновесным) состояниям. В состоянии изолир. системы имеет максимально возможное значение при заданных внеш. условиях (Е, V, N), т. е. равновесное состояние является наиб. вероятным состоянием (с макс. статистич. ). Поэтому переход из неравновесного состояния в равновесное есть процесс перехода из менее вероятных состояний в более вероятное. В этом заключается статистич. смысл закона возрастания , согласно к-рому может только увеличиваться (см. ). При т-ре абс. нуля любая система находится в осн. состоянии, в к-ром w 0 = 1 и S = 0. Это утверждение представляет собой (см. ). Существенно, что для однозначного определения нужно пользоваться квантовым описанием, т.к. в классич. статистике м. б. определена только с точностью до произвольного слагаемого.

Идеальные системы. Расчет статистич. сумм большинства систем представляет сложную задачу. Она существенно упрощается в случае , если вкладом потенц. энергии в полную энергию системы можно пренебречь. В этом случае полная ф-ция распределения f(p, q) для N частиц идеальной системы выражается через произведение одно-частичных ф-ций распределения f 1 (p, q):


Распределение частиц по микросостояниям зависит от их кинетич. энергии и от квантовых св-в системы, обусловлен ных тождественностью частиц. В все частицы разделяются на два класса: фермионы и бозоны. Тип статистики, к-рой подчиняются частицы, однозначно связан с их .

Статистика Ферми-Дирака описывает распределение в системе тождеств. частиц с полуцелым 1 / 2 , 3 / 2 ,... в единицах ђ = h/2p . Частица (или квазичастица), подчиняющаяся указанной статистике, наз. фермионом. К фер-мионам относятся в , и , с нечетным , с нечетной разностью и числа , квазичастицы (напр., и дырки в ) и т.д. Данная статистика была предложена Э.Ферми в 1926; в том же году П.Дирак выяснил ее квантовомех. смысл. Волновая ф-ция системы фермионов антисимметрична, т.е. меняет свой знак при перестановке координат и любой тождеств. частиц. В каждом может находиться не более одной частицы (см. ). Среднее число частиц n i фермионов, находящихся в состоянии с энергией E i , определяется ф-цией распределения Ферми-Дирака:

n i ={1+exp[(E i -m )/kT]} -1 ,

где i-набор квантовых чисел, характеризующих состояние частицы.

Статистика Бозе-Эйнштейна описывает системы тождеств. частиц с нулевым или целочисленным (0, ђ, 2ђ, ...). Частица или квазичастица, подчиняющаяся указанной статистике, наз. бозоном. Данная статистика была предложена Ш. Бозе (1924) для фотонов и развита А. Эйнштейном (1924) применительно к , рассматриваемым как составные частицы из четного числа фермионов, напр. с четным суммарным числом и (дейтрон, ядро 4 Не и т.д.). К бозонам относятся также фононы в и жидком 4 Не, экситоны в и . Волновая ф-ция системы симметрична относительно перестановки любой тождеств. частиц. Числа заполнения ничем не ограничены, т.е. в одном состоянии может находиться любое число частиц. Среднее число частиц n i бозонов, находящихся в состоянии с энергией Е i описывается ф-цией распределения Бозе-Эйнштейна:

n i ={exp[(E i -m )/kT]-1} -1 .

Статистика Больцмана представляет собой частный случай квантовой статистики, когда можно пренебречь квантовыми эффектами (высокие т-ры). В ней рассматривается распределение частиц по импульсам и координатам в фазовом пространстве одной частицы, а не в фазовом пространстве всех частиц, как в распределениях Гиббса. В качестве миним. единицы объема фазового пространства, имеющего шесть измерений (три координаты и три проекции импульса частицы), в соответствии с квантовомех. , нельзя выбрать объем меньший, чем h 3 . Среднее число частиц n i , находящихся в состоянии с энергией E i , описывается ф-цией распределения Больцмана:

n i =exp[(m -E i)/kT].

Для частиц, к-рые движутся по законам классич. механики во внеш. потенц. поле U(r), статистически равновесная ф-ция распределения f 1 (p,r) по импульсам p и координатам r частиц имеет вид: f 1 (p,r) = A ехр{ - [р 2 /2m + U(r)]/kT}. Здесь р 2 /2т-кинетич. энергия массой ш, постоянная А определяется из условия нормировки. Данное выражение часто наз. распределением Максвелла-Больцмана, а распределением Больцмана наз. ф-цию

n(r) = n 0 ехр[-U(r)]/kT],

где n(r) = т f 1 (p, r)dp - плотность числа частиц в точке r (n 0 -плотность числа частиц в отсутствие внеш. поля). Распределение Больцмана описывает распределение кул в поле тяготения (барометрич. ф-ла), и высокодисперсных частиц в поле центробежных сил, в невырожденных , а также используется для расчета распределения в разбавл. р-рах (в объеме и на границе с ) и т. п. При U(r) = 0 из распределения Максвелла - Больц-мана следует распределение Максвелла, описывающее распределение по скоростям частиц, находящихся в ста-тистич. (Дж. Максвелл, 1859). Согласно этому распределению, вероятное число в единице объема компоненты скоростей к-рых лежат в интервалах от u i до u i + du i (i = x, у, z), определяется ф-цией:

Распределение Максвелла не зависит от взаимод. между Частицами и справедливо не только для , но и для (если для них возможно классич. описание), а также для броуновских частиц, взвешенных в и . Его используют для подсчета числа столкновений между собой в ходе хим. р-ции и с пов-сти.

Сумма по состояниям . Статистич. сумма в канонич. ансамбле Гиббса выражается через сумму по состояниям одной Q 1:

где Е i - энергияi-го квантового уровня (i = О соответствует нулевому уровню ), g i -статистич. i-го уровня. В общем случае отдельные виды движения , и групп в , а также движение как целого взаимосвязаны, однако приближенно их можно рассматривать как независимые. Тогда сумма по состояниям м. б. представлена в виде произведения отдельных составляющих, связанных с по-ступат. движением (Q пост) и с внутримол. движениями (Q вн):

Q 1 = Q пост ·Q вн, Q пост = l (V/N),

где l = (2p mkТ/h 2) 3/2 . Для Q вн представляет собой сумму по электронным и ядерным состояниям ; для Q вн - сумма по электронным, ядерным, колебат. и вращат. состояниям. В области т-р от 10 до 10 3 К обычно используют приближенное описание, в к-ром каждый из указанных типов движения рассматривается независимо: Q вн = Q эл ·Q яд ·Q вращ ·Q кол /g , где g - число , равное числу тождество. конфигураций, возникающих при вращении , состоящей из одинаковых или групп .

Сумма по состояниям электронного движения Q эл равна статистич. Р т осн. электронного состояния . Во мн. случаях осн. уровень невырожден и отделен от ближайшего возбужденного уровня значит. энергией: (Р т = 1). Однако в ряде случаев, напр. для О 2 , Р т = з, в осн. состоянии момент кол-ва движения отличен от нуля и имеет место , а энергии м. б. достаточно низкими. Сумма по состояниям Q яд, обусловленная вырождением ядерных , равна:

где s i -спин ядра i, произведение беретсяпо всем . Сумма по состояниям колебат. движения где v i -частоты мальных колебаний, n-число в . Сумму по состояниям вращат. движений многоатомной с большими моментами инерции можно рассматривать классически [высокотемпературное приближение, T/q i 1, где q i = h 2 /8p 2 kI i (i = x, у, z), I t -главный момент инерции вращения вокруг оси i]: Q вр = (p T 3 /q x q y q z) 1/2 . Для линейных с моментом инерции I статистич. сумма Q вр = T/q , где q = h 2 /8p 2 *kI.

При расчетах при т-рах выше 10 3 К необходимо учитывать ангармонизм колебаний , эффекты взаимод. колебат. и вращат. степеней свободы (см. ), а также электронных состояний, заселенности возбужденных уровней и т. д. При низких т-рах (ниже 10 К) необходимо учитывать квантовые эффекты (особенно для двухатомных ). Так, вращат. движение гетеро-ядерной АВ описывается по ф-ле:

l-номервращат. состояния, а для гомоядерных А 2 (особенно для Н 2 , D 2 , Т 2) ядерные и вращат. степени свободы взаимод. друг с другом: Q яд. вращ . Q яд ·Q вращ.

Знание суммы по состояниям позволяет рассчитать термодинамич. св-ва и , в т.ч. хим. , равновесную степень ионизации и т.п. Важное значение в теории абс. скоростей р-ций имеет возможность расчета процесса образования активир. комплекса (переходного состояния), к-рое представляется как модифицир. частица, одна из колебат. степеней свободы к-рой заменена степенью свободы поступат. движения.

Неидеальные системы. В взаимод. друг с другом. В этом случае сумма по состояниям ансамбля не сводится к произведению сумм по состояниям отдельных . Если считать, что межмол. взаимод. не влияют на внутр. состояния , статистич. сумма системы в классич. приближении для , состоящего из N тождеств. частиц, имеет вид:

где

Здесь <2 N -конфигурац. интеграл, учитывающий взаимод. . Наиб, часто потенц. энергия U рассматривается в виде суммы парных потенциалов: U = =где U(r ij)- потенциал центр. сил, зависящий от расстояния r ij между i и j. Учитывают также многочастичные вклады в потенц. энергию, эффекты ориентации и т.д. Необходимость расчета конфигурац. интеграла возникает при рассмотрении любых конденсир. фаз и границ раздела фаз. Точное решение задачи мн. тел практически невозможно, поэтому для расчета статистич. суммы и всех термодинамич. св-в, получаемых из статистич. суммы дифференцированием по соответствующим параметрам, используют разл. приближенные методы.

Согласно т. наз. методу групповых разложений, состояние системы рассматривается в виде совокупности комплексов (групп), состоящих из разного числа , и конфигурац. интеграл распадается на совокупность групповых интегралов. Такой подход позволяет представить любую термодинамич. ф-цию в виде ряда по степеням плотности. Наиб. важное соотношение такого рода - вириальное ур-ние состояния.

Для теоретич. описания св-в плотных , и , р-ров неэлектролитов и и границ раздела в этих системах более удобным, чем прямой расчет статистич. суммы, является метод n-частичных ф-ций распределения. В нем вместо подсчета статистич. каждого состояния с фиксир. энергией используют соотношения между ф-циями распределения f n , к-рые характеризуют вероятность нахождения частиц одновременно в точках пространства с координатами r 1 ,..., r n ; при n = N f N = b т f(p, r)dp (здесь и ниже q i = r i). Одночастичная ф-ция f 1 (r 1) (n = 1) характеризует распределение плотности в-ва. Для это периодич. ф-ция с максимумами в узлах кристаллич. структуры; для или в отсутствие внеш. поля это постоянная величина, равная макроскопич. плотности в-ва р. Двухчастичная ф-ция распределения (п = 2) характеризует вероятность нахождения двух частиц в точках 1 и 2, она определяет т. наз. корреляционную ф-цию g(|r 1 - r 2 |) = f 2 (r 1 , r 2)/r 2 , характеризующую взаимную корреляцию в распределении частиц. Соответствующую опытную информацию дает .

Ф-ции распределения размерности n и n + 1 связаны бесконечной системой зацепляющихся интегродифференц. ур-ний Боголюбова-Борна-Грина-Кирквуда-Ивона, решение к-рых чрезвычайно сложно, поэтому эффекты корреляции между частицами учитывают введением разл. аппроксимаций, к-рые определяют, каким бразом ф-ция f n выражается через ф-ции меньшей размерности. Соотв. разработано неск. приближенных методов расчета ф-ций f n , а через них-всех термодинамич. характеристик рассматриваемой системы. Наиб. применение имеют приближения Перкус-Иевика и гиперцепное.

Решеточные модели конденсир. состояния нашли широкое применение при термодинамич. рассмотрении практически всех физ.-хим. задач. Весь объем системы разбивается на локальные области с характерным размером порядка размера u 0 . В общем случае в разных моделях размер локальной области м. б. как больше, так и меньше u 0 ; в большинстве случаев они совпадают. Переход к дискретному распределению в пространстве существенно упрощает подсчет разл. . Решеточные модели учитывают взаимод. друг с другом; энергия взаимод. описывается энергетич. параметрами. В ряде случаев решеточные модели допускают точные решения, что позволяет оценить характер используемых приближений. С их помощью возможно рассмотрение многочастичных и специфич. взаимод., ориентац. эффектов и т. п. Решеточные модели являются основными при изучении и проведении прикладных расчетов и , сильно неоднородных систем.

Численные методы определения термодинамич. св-в приобретают все большее значение по мере развития вычислит. техники. В методе Монте-Карло осуществляется прямой расчет многомерных интегралов, что позволяет непосредственно получить статистич. среднее наблюдаемой величины А(r1.....r N) по любому из статистич. ансамблей (напр., А - энергия системы). Так, в канонич. ансамбле термодинамич. среднее имеет вид:

Данный метод применим практически ко всем системам; получаемые с его помощью средние величины для ограниченных объемов (N = 10 2 -10 5) служат хорошим приближением для описания макроскопич. объектов и могут рассматриваться как точные результаты.

В методе мол. динамики состояния системы рассматривается с помощью численного интегрирования ур-ний Ньютона для движения каждой частицы (N = = 10 2 -10 5) при заданных потенциалах межчастичного взаимодействия. Равновесные характеристики системы получаются при усреднении по фазовым траекториям (по скоростям и координатам) на больших временах, после установления максвелловского распределения частиц по скоростям (т. наз. период термализации).

Ограничения в использовании численных методов в осн. определяются возможностями ЭВМ. Спец. вычислит. приемы позволяют обходить сложности, связанные с тем, что рассматривается не реальная система, а небольшой объем; это особенно важно при учете дальнодействующих потенциалов взаимод., переходов и т.п.

Физическая кинетика - раздел статистич. физики, к-рый дает обоснование соотношениям , описывающим перенос энергии, импульса и массы, а также влияние на эти процессы внеш. полей. Кинетич. коэффициенты-макроскопич. характеристики сплошной среды, определяющие зависимости потоков физ. величин (теплоты, импульса, массы компонентов и др.) от вызывающих эти потоки градиентов т-ры, гидродинамич. скорости и др. Необходимо различать коэффициенты Онсагера, входящие в ур-ния, связывающие потоки с термодинамич. силами (термодинамич. ур-ния движения), и коэффициенты переноса ( , и т. п.), входящие в ур-ния переноса. Первые м. б. выражены через вторые с помощью соотношений между макроскопич. характеристиками системы, поэтому в дальнейшем будут рассматриваться лишь коэф. переноса.

Для расчета макроскопич. коэф. переноса необходимо провести усреднение по вероятностям реализаций элементарных переноса с помощью неравновесной ф-ции распределения. Главная сложность заключается в том, что аналит. вид ф-ции распределения f(р, q, т) (т-время) неизвестен (в отличие от равновесного состояния системы, к-рое описывается с помощью ф-ций распределения Гиббса, получаемых при т : , ). Рассматривают n-частичные ф-ции распределения f n (r , q, т), к-рые получают из ф-ций f(р, q, т) усреднением по координатам и импульсам остальных (N - п) частиц:

Для них м. б. составлена система ур-ний, позволяющая описать произвольные неравновесные состояния. Решение этой системы ур-ний очень сложно. Как правило, в кинетич. теории и газообразных квазичастиц в (фермионов и бозонов) используется лишь ур-ние для одно-частичной ф-ции распределения f 1 . В предположении об отсутствии корреляции между состояниями любых частиц (гипотеза мол. хаоса) получено т. наз. кинетич. ур-ние БоЛьцмана (Л. Больцман, 1872). Это ур-ние учитывает изменение ф-ции распределения частиц под действием внеш. силы F(r, т) и парных столкновений между частицами:

где f 1 (u, r, т) и -ф-ции распределения частиц до столкновения, f " 1 (u", r, т) и-ф-ции распределения после столкновения; u и-скорости частиц до столкновения, u" и -скорости тех же частиц после столкновения, и = |u -|-модуль относит. скорости сталкивающихся частиц, q - угол между относит. скоростью u - сталкивающихся частиц и линией, соединяющей их центры, s (u,q )dW -дифференц. эффективное сечение рассеяния частиц на телесный угол dW в лаб. системе координат, зависящее от закона взаимод. частиц. Для модели в виде упругих жестких сфер, имеющих радиус R, принимается s = 4R 2 cosq . В рамках классич. механики дифференц. сечение выражается через параметры столкновения b и e (соотв. прицельное расстояние и азимутальный угол линии центров): s dW = bdbde , а рассматриваются как центры сил с потенциалом, зависящим от расстояния. Для квантовых выражение для дифференц. эффективного сечения получают на основе , с учетом влияния эффектов на вероятность столкновения.

Если система находится в статистич. , интеграл столкновений Stf равен нулю и решением кинетич. ур-ния Больцмана будет распределение Максвелла. Для неравновесных состояний решения кинетич. уравнения Больцмана обычно ищут в виде разложения в ряд ф-ции f 1 (u, r, т) по малым параметрам относительно ф-ции распределения Максвелла. В простейшем (релаксационном) приближении интеграл столкновений аппроксимируется как Stгазах; для (обычная молекул жидкостях од-ночастичная ф-ция распределения f 1 не раскрывает специфики явлений и требуется рассмотрение двухчастичной ф-ции распределения f 2 . Однако для достаточно медленных процессов и в случаях, когда масштабы пространств. неодно-родностей значительно меньше масштаба корреляции между частицами , можно использовать локально равновесную одночастичную ф-цию распределения с т-рой, хим. потенциалами и гидродинамич. скоростью, к-рые соответствуют рассматриваемому малому объему . К ней можно найти поправку, пропорциональную градиентам т-ры, гидродинамич. скорости и хим. потенциалам компонентов, и вычислить потоки импульсов, энергии и в-ва, а также обосновать ур-ния Навье-Стокса, и . В этом случае коэф. переноса оказываются пропорциональными пространственно-временным корреляц. ф-циям потоков энергии, импульса и в-ва каждого компонента.

Для описания в-ва в и на границах раздела с широко используется решеточная модель конденсир. фазы. состояния системы описывается осн. кинетич. ур-нием (master equation) относительно ф-ции распределения P(q, т):

где P(q,т)= т f(p,q,т)du- ф-ция распределения, усредненная по импульсам (скоростям) всех N частиц, описывающая распределение частиц по узлам решеточной структуры (их число равно N y , N < N y), q- номер узла или его координата. В модели "решеточного " частица может находиться в узле (узел занят) или отсутствовать (узел свободен); W(q : q")-вероятность перехода системы в единицу времени из состояния q, описываемого полным набором координат частиц, в др. состояние q". Первая сумма описывает вклад всех процессов, в к-рых осуществляется переход в данное состояние q, вторая сумма-выход из этого состояния. В случае равновесного распределения частиц (т : , ) P(q) = exp[-H(q)/kT]/Q, где Q-статистич. сумма, H(q)-энергия системы в состоянии q. Вероятности перехода удовлетворяют детального принципу: W(q": q)exp[-H(q")/kT] = W(q : q")ехр[-H(q)/kТ]. На базе ур-ний для функций P(q,т) строят кинетич. ур-ния для n-частичных ф-ций распределения, к-рые получают путем усреднения по расположениям всех остальных (N - п) частиц. Для малых h в-ва через границу с , роста , фазовым превращениям и т. п. Для межфазного переноса, из-за различий в характерных временах протекания элементарных процессов миграции частиц, важную роль играет вид граничных условий на границах раздела фаз.

Для малых систем (число узлов N y = 10 2 - 10 5) система ур-ний относительно ф-ции P(q,т) м. б. решена численно методом Монте-Карло. Этап системы к равновесному состоянию позволяет рассмотреть разл. переходные процессы при исследовании кинетики фазовых превращений, роста , кинетики поверхностных р-ций и т.д. и определить их динамич. характеристики, в т. ч. и коэф. переноса.

Для расчета коэф. переноса в газообразных, жидких и твердых фазах, а также на границах раздела фаз активно используются разнообразные варианты метода мол. динамики, к-рый позволяет детально проследить за системы от времен ~10 -15 с до ~10 -10 с (на временах порядка 10 -10 - 10 -9 с и более используются т. наз. ур-ния Ланжевена, это ур-ния Ньютона, содержащие в правой части стохастич. слагаемое).

Для систем с хим. р-циями на характер распределения частиц большое влияние оказывает соотношение между характерными временами переноса и их хим. превращения. Если скорость хим. превращения мала, распределение частиц не сильно отличается от случая, когда р-ция отсутствует. Если скорость р-ции велика, ее влияние на характер распределения частиц велико и использовать средние частиц (т.е. ф-ции распределения с n = 1), как это делается при использовании , нельзя. Необходимо более детально описывать распределение с помощью ф-ций распределения f n с n > 1. Важное значение при описании реакц. потоков частиц на пов-сти и скоростей имеют граничные условия (см. ).

Лит.: Кубо Р., Статистическая механика, пер. с англ., М.,1967; Зубарев Д. Н., Неравновесная статистическая , М., 1971; Исихара А., Статистическая физика, пер. с англ., М., 1973; Ландау Л. Д., Лифшиц E. М L

Материал из FFWiki.

Предмет Термодинамика и статистическая физика Семестр 7-8 Тип лекция, семинар Отчётность экзамен Кафедра Кафедра квантовой статистики и теории поля

О предмете

Термодинамика и статфизика. Первый вопрос, когда видишь этот предмет в расписании: как так? Действительно, на 1 курсе уже рассказывали молекулярную физику, где были и все 3 начала термодинамики, и потенциалы, и распределение Максвелла. Казалось бы, что еще нового может быть в природе?

Оказывается, то, что было на 1 курсе - детский лепет по сравнению с настоящей термодинамикой и статфизикой. Той, с помощью которой Ландау посчитал жидкий гелий и получил Нобелевскую премию.

Важно не попасть впросак, подумав, что раз на 1 лекции рассказывают то, что вы знали еще в школе, то и дальше так будет. Уже с середины сентября вы станете свидетелями потрясающих фокусов-подгонов с частными производными, а к концу осеннего семестра пойдут весьма зубодробительные темы по статфизике:

  • Расчет стат.сумм и распределений Гиббса
  • Квантовые газы - ферми- и бозе- газы с разных условиях
  • Фазовые переходы и их свойства
  • Неидеальные газы - цепочки Боголюбова, модели плазмы и электролитов

Автор сих слов хотя и смог подготовиться на отл за 4 дня перед экзаменами, но весьма в этом раскаивается и не советует никому повторять такое насилие над своим мозгом:) Задачи и вопросы к экзамену известны с начала года и очень полезно подготовить часть материала заранее.

В весеннем семестре есть как простые, так и сложные темы. Например, теория для броуновского движения выписывается весьма легко. А вот в конце курса идут разнообразные кинетические уравнения, с которыми разобраться гораздо сложнее.

Экзамен

Экзамен осенью проходит весьма прилично, списывать особо не дают. Преподаватели в большинстве своем не валят, но и халявы особой не замечено. Нужно знать теормин. В диплом идет оценка за экзамен весной. Весенний экзамен по своему материалу сложнее осеннего, но принимают обычно более лояльно. Однако теормин также следует знать хорошо.

В билете и осенью, и весной находится 2 теоретических вопроса и одна задача.

Будьте аккуратны на статах, несколько человек (число варьируется от 2 до 10!) регулярно заканчивают учебу несдачей этого экзамена. И это не кто попало, а прожжёные четверокурсники.

Материалы

Осенний семестр

Весенний семестр

  • Ответы на вопросы к экзамену, теория (pdf) - аккуратно набранные на компьютеры ответы на теоретические вопросы экзамена.
  • - решения задач
  • Решения задач к экзамену(pdf) - еще решения задач

Литература

Задачники

  • Задания по термодинамике и статистической физике для студентов 4-го курса физического факультета МГУ(осенний семестр - теория равновесных систем) (pdf)

Молекулярная физика представляет собой раздел физики, изучающий строение и свойства вещества, исходя из так называемых молекулярно-кинетических представлений. Согласно этим представлениям, любое тело - твердое, жидкое или газообразное - состоит из большого количества весьма малых обособленных частиц - молекул. Молекулы всякого вещества находятся в беспорядочном, хаотическом, не имеющем какого-либо преимущественного направления движении. Его интенсивность зависит от температуры вещества.

Непосредственным доказательством существования хаотического движения молекул служит броуновское движение. Это явление заключается в том, что весьма малые (видимые только в микроскоп) взвешенные в жидкости частицы всегда находятся в состоянии непрерывного беспорядочного движения, которое не зависит от внешних причин и оказывается проявлением внутреннего движения вещества. Броуновские частицы совершают движение под влиянием беспорядочных ударов молекул.

Молекулярно-кинетическая теория ставит себе целью истолковать те свойства тел, которые непосредственно наблюдаются на опыте (давление, температуру и т. п.), как суммарный результат действия молекул. При этом она пользуется статистическим методом, интересуясь не движением отдельных молекул, а лишь такими средними величинами, которые характеризуют движение огромной совокупности частиц. Отсюда другое ее название - статистическая физика.

Изучением различных свойств тел и изменений состояния вещества занимается также термодинамика.

Однако в отличие от молекулярно-кинетической теории термодинамики изучает макроскопические свойства тел и явлений природы, не интересуясь их микроскопической картиной. Не вводя в рассмотрение молекулы и атомы, не входя в микроскопическое рассмотрение процессов, термодинамика позволяет делать целый ряд выводов относительно их протекания.

В основе термодинамики лежит несколько фундаментальных законов (называемых началами термодинамики), установленных на основании обобщения большой совокупности опытных фактов. В силу этого выводы термодинамики имеют весьма общий характер.

Подходя к рассмотрению изменений состояния вещества с различных точек зрения, термодинамика и молекулярно-кинетическая теория взаимно дополняют друг друга, образуя по существу одно целое.

Обращаясь к истории развития молекулярно-кинетических представлений, следует прежде всего отметить, что представления об атомистическом строении вещества были высказаны еще древними греками. Однако у древних греков эти идеи были не более чем гениальной догадкой. В XVII в. атомистика возрождается вновь, но уже не как догадка, а как научная гипотеза. Особенное развитие эта гипотеза получила в трудах гениального русского ученого и мыслителя М. В. Ломоносова (1711-1765), который предпринял попытку дать единую картину всех известных в его время физических и химических явлений. При этом он исходил из корпускулярного (по современной терминологии - молекулярного) представления о строении материи. Восставая против господствовавшей в его время теории теплорода (гипотетической тепловой жидкости, содержание которой в теле определяет степень егонагретости), Ломоносов «причину тепла» видит во вращательном движении частиц тела. Таким образом, Ломоносовым были по существу сформулированы молекулярно-кинетические представления.

Во второй половине XIX в. и в начале XX в. благодаря трудам ряда ученых атомистика превратилась в научную теорию.

В результате изучения материала главы 9 студент должен: знать основные постулаты статистической термодинамики; уметь рассчитывать суммы по состояниям и знать их свойства; пользоваться терминами и определениями, приведенными в главе;

владеть специальной терминологией; навыками расчета термодинамических функций идеальных газов статистическими методами.

Основные постулаты статистической термодинамики

Термодинамический метод не применим к системам, состоящих из малого числа молекул, так как в таких системах исчезает различие между теплотой и работой. Одновременно исчезает однозначность направления процесса:

Для очень малого числа молекул оба направления процесса становятся равноценными. Для изолированной системы - приращение энтропии или равно приведенной теплоте (для равновесно-обратимых процессов), или больше ее (для неравновесных). Такая дуалистичность энтропии может быть объяснена с точки зрения упорядоченности - неупорядоченности движения или состояния составляющих систему частиц; следовательно, качественно энтропию можно рассматривать как меру неупорядоченности молекулярного состояния системы. Эти качественные представления количественно развиваются статистической термодинамикой. Статистическая термодинамика является частью более общего раздела науки - статистической механики.

Основные принципы статистической механики были развиты в конце XIX в. в трудах Л. Больцмана и Дж. Гиббса.

При описании систем, состоящих из большого числа частиц, можно использовать два подхода: микроскопический и макроскопический. Макроскопический подход используется классической термодинамикой, где состояния систем, содержащих единственное чистое вещество, определяется в общем случае тремя независимыми переменными: Т (температура), V (объем), N (число частиц). Однако, с микроскопической точки зрения, система, содержащая 1 моль вещества, включает 6,02 10 23 молекул. Кроме того, в первом подходе подробно характеризуется микросостояние системы,

например координаты и импульсы каждой частицы в каждый момент времени. Микроскопическое описание требует решения классических или квантовых уравнений движения для огромного числа переменных. Так, каждое микросостояние идеального газа в классической механике описывается 6N переменными (N - число частиц): ЗN координат и ЗN проекций импульса.

Если система находится в равновесном состоянии, то ее макроскопические параметры постоянны, тогда как микроскопические параметры изменяются со временем. Это означает, что каждому макросостоянию соответствует несколько (на самом деле - бесконечно много) микросостояний (рис. 9.1).

Рис. 9.1.

Статистическая термодинамика устанавливает связь между этими двумя подходами. Основная идея заключается в следующем: если каждому макросостоянию соответствует много микросостояиий, то каждое из них вносит в макросостояние свой вклад. Тогда свойства макросостояния можно рассчитать как среднее но всем микросостояниям, т.е. суммируя их вклады с учетом статистического веса.

Усреднение по микросостояниям проводят с использованием понятия статистического ансамбля. Ансамбль - это бесконечный набор идентичных систем, находящихся во всех возможных микросостояниях, соответствующих одному макросостоянию. Каждая система ансамбля - это одно микросостояние. Весь ансамбль описывается некоторой функцией распределения по координатам и импульсам р(р, q , t), которая определяется следующим образом: р(p, q, t)dpdq - это вероятность того, что система ансамбля находится в элементе объема dpdq вблизи точки (р , q) в момент времени t.

Смысл функции распределения состоит в том, что она определяет статистический вес каждого микросостояния в макросостояпии.

Из определения следуют элементарные свойства функции распределения:

Многие макроскопические свойства системы можно определить как среднее значение функций координат и импульсов f(p, q) по ансамблю:

Например, внутренняя энергия - это среднее значение функции Гамильтона Н(р, q):

(9.4)

Существование функции распределения составляет суть основного постулата классической статистической механики: макроскопическое состояние системы полностью задается некоторой функцией распределения , которая удовлетворяет условиям (9.1) и (9.2).

Для равновесных систем и равновесных ансамблей функция распределения не зависит явно от времени: р = р(p, q). Явный вид функции распределения зависит от типа ансамбля. Различают три основных тина ансамблей:

где k = 1,38 10 -23 Дж/К - постоянная Больцмана. Значение константы в выражении (9.6) определяется условием нормировки.

Частным случаем канонического распределения (9.6) является распределение Максвелла по скоростям ь которое справедливо для газов:

(9.7)

где m - масса молекулы газа. Выражение р(v)dv описывает вероятность того, что молекула имеет абсолютное значение скорости в интервале от v до v + d&. Максимум функции (9.7) дает наиболее вероятную скорость молекул, а интеграл

среднюю скорость молекул.

Если система имеет дискретные уровни энергии и описывается квантовомеханически, то вместо функции Гамильтона Н(р, q) используют оператор Гамильтона Н, а вместо функции распределения - оператор матрицы плотности р:

(9.9)

Диагональные элементы матрицы плотности дают вероятность того, что система находится в і-м энергетическом состоянии и имеет энергию Е{.

(9.10)

Значение константы определяется условием нормировки:

(9.11)

Знаменатель этого выражения называют суммой по состояниям. Он имеет ключевое значение для статистической оценки термодинамических свойств системы. Из выражений (9.10) и (9.11) можно найти число частиц N jf имеющих энергию

(9.12)

где N - общее число частиц. Распределение частиц (9.12) по уровням энергии называют распределением Больцмана, а числитель этого распределения - больцмановским фактором (множителем). Иногда это распределение записывают в другом виде: если существует несколько уровней с одинаковой энергией £, то их объединяют в одну группу путем суммирования больцмановских множителей:

(9.13)

где gj - число уровней с энергией Ej , или статистический вес.

Многие макроскопические параметры термодинамической системы можно вычислить с помощью распределения Больцмана. Например, средняя энергия определяется как среднее по уровням энергии с учетом их статистических весов:

(9.14)

3) большой канонический ансамбль описывает открытые системы, находящиеся в тепловом равновесии и способные обмениваться веществом с окружающей средой. Тепловое равновесие характеризуется температурой Т, а равновесие по числу частиц - химическим потенциалом р. Поэтому функция распределения зависит от температуры и химического потенциала. Явное выражение для функции распределения большого канонического ансамбля мы здесь использовать не будем.

В статистической теории доказывается, что для систем с большим числом частиц (~10 23) все три типа ансамблей эквивалентны друг другу. Использование любого ансамбля приводит к одним и тем же термодинамическим свойствам, поэтому выбор того или иного ансамбля описания термодинамической системы диктуется только удобством математической обработки функций распределения.