Биографии Характеристики Анализ

Теплообмен при конденсации и кипении. Теплоотдача при кипении однокомпонентных жидкостей

При кипении жидкостей тепло от горячей стенки передается пристенному слою. Пузырьки пара, образование которых проходит в конкретных точках поверхности кипения (центрах парообразования), в процессе роста и отрыва, оттесняют частицы перегретого слоя в ядро кипящей жидкости. За счёт этого тепла и идет нагрев жидкости (если она еще недогрета до температуры кипения) и рост паровых пузырьков, оторвавшихся от поверхности нагрева. Величина перегрева пристенного слоя жидкости зависит от тепловой нагрузки, свойств кипящей жидкости и состояния поверхности нагрева и определяется условиями существования паровых пузырьков.

Для того чтобы паровой пузырек не был раздавлен жидкостью, давление внутри пузырька должно быть выше давления над зеркалом жидкости на величину гидростатического давления на глубинœе погружения пузырька плюс давление, создаваемое силами поверхностного натяжения на границе раздела жидкость-пар.
Размещено на реф.рф
Последняя величина обратно пропорциональна диаметру пузырька. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, отрывной диаметр парового пузырька определяется давлением пара внутри него, ĸᴏᴛᴏᴩᴏᴇ будет равно давлению насыщенных паров окружающих слоев жидкости. С другой стороны, отрывной диаметр парового пузырька определяется размером центра парообразования, который представляет собой царапины, поры или впадины на твердой поверхности. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, чем крупнее центр парообразования, тем меньшие перегревы пристенного слоя требуются для отрыва паровых пузырьков. При увеличении температуры поверхности нагрева начинают действовать центры парообразования с меньшими размерами, увеличивается число действующих центров парообразования, возрастает число отрывающихся пузырьков, растет турбулизация жидкости, увеличивается интенсивность теплообмена.

На рисунке 2.8 приведена зависимость коэффициента теплоотдачи от разности температур стенки и насыщенных паров, которую называют кривой кипения . При температурных напорах до 1¼2 °С тепло передается преимущественно теплопроводностью (зона 1). При увеличении напора до 3¼4 °С существенную роль играет свободная конвекция (зона 2), а при более высоких перегревах до 7¼9 °С начинают действовать отдельные, наиболее крупные центры парообразования. Здесь количество тепла, передаваемое естественной конвекцией, и тепло, передаваемое по механизму теплоотдачи при кипении, соизмеримы. Паровые пузырьки всплывают в жидкости, не касаясь друг друга. Это режим неразвитого пузырчатого кипения (зона 3). Здесь коэффициент теплоотдачи пропорционален Ñt 0,2 ¼ 0,3 . При дальнейшем увеличении температуры стенки возрастает число действующих центров парообразования, жидкость интенсивно перемешивается, наблюдается развитое пузырчатое кипение (зона 4). В начале зоны слияние пузырьков наблюдается только в верхних слоях жидкости. В зоне развитого кипения коэффициент теплоотдачи пропорционален Ñt 1,5 ¼ 2,2 . По мере увеличения температуры, область слияния пузырьков опускается к поверхности нагрева, а в точке К, называемой критической , происходит кризис кипения . Действующих центров парообразования появляется так много, что паровые пузырьки сливаются друг с другом уже в момент отрыва и образуют нестабильную паровую пленку. Наступает пленочный режим кипения (зона 6). Теплопроводность паровой пленки значительно ниже, чем теплопроводность жидкости, в связи с этим коэффициент теплоотдачи при пленочном кипении резко снижается и в дальнейшем практически не меняется. Между режимами развитого пузырчатого и пленочного кипения находится довольно узкая переходная зона (зона 5). При очень больших температурных напорах существенным оказывается влияние лучистого теплообмена и коэффициент теплоотдачи вновь начинает расти (зона 7).

Для определœения коэффициента теплоотдачи при кипении предложено большое число зависимостей, которые плохо согласуются друг с другом. Авторы учебника рекомендуют формулы:

a=А×j×q 0,7 р 0,171 и a=(Аj) 3,33 Ñt 2,33 р 0,57 , (2.42)

где А – постоянный сомножитель (при кипении в большом объёме А=3,02, при кипении в трубах А=3,15); q – удельная тепловая нагрузка, Вт/м 2 ; Ñt – температурный напор, °С; р – давление, бар; j – относительный коэффициент теплоотдачи:

для воды j=1,

для индивидуальных веществ j=(р кр /221,2) 0,52 ,

для индивидуальных веществ и смесей j=(0,018r/М) 0,47 (m в /m) 0,06 ,

для растворов солей j=18(n в /n) 0,23 (р/р s) 0,06 ,

где р кр – критическое давление веществ, бар; r – плотность вещества, кг/м 3 ; М – молекулярная масса вещества; m в и m – динамическая вязкость воды и вещества, Па×с; n в и m – кинœематическая вязкость воды и вещества, м 2 /с; р s – давление насыщенных водяных паров при температуре кипения раствора.

Для определœения критического удельного теплового потока (Вт/м 2) рекомендуется формула

q к =0,15r(r¢¢) 0,5 0,25 . (2.43)

При кипении пленок, стекающих по поверхности нагрева, возможны два режима течения пленки. При ламинарном течении (при q<4000 Вт/м 2) пленки кипение не происходит, а идет испарение жидкости с её поверхности и коэффициент теплоотдачи определяется толщиной d, скоростью w и физическими свойствами пленки жидкости

При турбулентном потоке пленки в ней наблюдается пузырьковое кипение жидкости и коэффициент теплоотдачи вычисляется по формуле

a=16,35(l/d)(dw/n) 0,26 0,69 при q=4000¼15000 Вт/м 2 ;

и a=2,6(l/d)(dw/n) 0,2 0,32 при q>15000 Вт/м 2 . (2.45)

Кипением называется процесс парообразования, происходящий при температуре кипения (насыщения) в толще жидкости. При этом поглощается теплота фазового перехода, вследствие чего для поддержания процесса необходимо непрерывно подводить тепло, т.е. кипение связано с теплообменом. При кипении паровая фаза образуется в виде пузырей. В нагретой не кипящей жидкости в отсутствие вынужденного течения теплота через пограничный слой передается свободной конвекцией и теплопроводностью. При кипении перенос массы вещества и теплоты из пограничного слоя в объем жидкости осуществляется еще и паровыми пузырьками, которые, всплывая, вызывают интенсивное перемешивание жидкости и турбулизацию пограничного слоя.Поскольку обычно подвод теплоты осуществляется через поверхность теплообмена, то и пузыри возникают на этой поверхности. Если поверхность погружена в большой объем жидкости, вынужденное движение которой отсутствует, то такой процесс называют кипением в большом объеме. В теплоэнергетике чаще всего встречаются процессы кипения на поверхности нагрева (поверхности труб, стенки котлов и т.п.).

Режимы кипения. Различают два режима кипения: пузырьковый режим, когда пар образуется на поверхности в виде отдельных периодически зарождающихся пузырьков, и пленочный режим кипения, когда количество пузырьков у поверхности становится настолько большое, что они сливаются в единую паровую пленку, через которую теплота от нагретой поверхности передается в объем жидкости теплопроводностью. Поскольку коэффициент теплопроводности пара примерно в 30 раз меньше такового для воды, то термическое сопротивление теплопроводности через паровую пленку резко возрастает, что может привести к пережогу поверхности теплообмена. Поэтому этот режим в теплоэнергетических установках не допускается.

Условия, необходимые для возникновения процесса кипения . Для возникновения кипения необходимо и достаточно два условия: наличие перегрева жидкости относительно температуры насыщения при давлении жидкости и наличие центров парообразования, в качестве которых могут выступать различные включения в жидкости (твердые частицы и пузырьки газов), а также углубления и впадины на поверхности теплообмена, что связано с шероховатостью.

Пусть жидкость находится в сосуде с обогреваемым дном. Если жидкость кипит, то температура пара над жидкостью равна . Температура в самой жидкости всегда несколько больше . По мере приближения к обогреваемому дну температура практически не изменяется. Лишь в непосредственной близости от дна происходит ее резкое увеличение до .

Из рисунка следует, что наибольший перегрев () наблюдается у поверхности теплообмена, но здесь же находятся центры парообразования в виде шероховатости. Этим и объясняется, почему пузыри образуются именно на поверхности теплообмена.


Для того чтобы пузырек развивался, т.е. увеличивался в объеме за счет испарения жидкости с поверхности пузырька во внутрь него, давление пара в нем должно быть больше давления, обусловленного окружающей жидкостью и силой поверхностного натяжения.

Давление и температура насыщения связаны жесткой зависимостью: чем больше давление, тем выше температура насыщения. Отсюда становится понятно, почему одним из условий возникновения кипения (образования пузырьков пара) является перегрев жидкости. Объем пузырька увеличивается до тех пор, пока подъемная сила, стремящаяся оторвать его, не будет больше сил, удерживающих его на поверхности. Размер пузырька в момент его отрыва характеризуется отрывным диаметром. Оторвавшийся пузырь перемещается кверху, продолжая увеличиваться в объеме. На поверхности раздела жидкость – пар пузырек лопается.

Поскольку пузыри возникают, растут и отрываются на поверхности теплообмена, то они тем самым разрушают пограничный слой, который является основным термическим сопротивлением. Поэтому теплоотдача при кипении является высокоинтенсивным процессом. Для воды, например, коэффициент достигает (10 … 40) 10 3 Вт/(м 2 ×К).

В процессе кипения поверхность теплообмена контактирует частично с паровой, частично с жидкой фазой. Но , поэтому теплота в основном передается жидкой среде, т.е. идет на ее перегрев, и лишь затем перегретая жидкость испаряется с поверхности пузырей во внутрь их.

На рисунке приведена зависимость коэффициента от (перегрева жидкости).

Можно выделить следующие области кипения. При небольших температурных напорах теплоотдача определяется в основном условиями свободной конвекции, так как количество образующих пузырей невелико и они не оказывают существенного воздействия на пограничный слой – это область конвективного кипения I. В этой области коэффициент теплоотдачи пропорционален . С ростом перегрева жидкости все меньшая шероховатость может служить центрами парообразования, а это приводит к увеличению их числа, и, кроме того, увеличивается частота отрыва пузырей в каждом центре парообразования. Это вызывает усиление циркуляции в пограничном слое, вследствие чего теплоотдача резко возрастает. Наступает развитый пузырьковый режим кипения (область II). пропорционален .

С дальнейшим ростом температурного напора () число пузырей становится настолько большим, что они начинают сливаться, в результате чего все большая часть поверхности будет соприкасаться с паровой фазой, теплопроводность которой ниже, чем жидкости. Поэтому теплоотдача, достигнув максимума, начнет снижаться (переходный режим III) до тех пор, пока не образуется сплошная паровая пленка, отделяющая жидкость от поверхности нагрева. Такой режим кипения называется пленочным (область IV). В последнем случае коэффициент практически не зависит от .

На рисунке представлена экспериментально полученная зависимость коэффициента теплоотдачи от плотности теплового потока

при кипении воды в большом объеме в условиях свободной конвекции.

Из рисунка следует, что с увеличением плотности теплового потока коэффициент теплоотдачи возрастает (участок О – А). Этот участок соответствует пузырьковому режиму кипения. При достижении

плотности теплового потока = Вт/м 2 коэффициент теплоотдачи резко уменьшается (линия А – Г) – пузырьковый режим сменяется пленочным. Участок Г–Д соответствует пленочному режиму. Явление перехода пузырькового режима кипения в пленочный называют

первым кризисом кипения (). При переходе от пузырькового режима к пленочному значительно возрастает перепад температур . Обратный переход от пленочного к пузырьковому кипению происходит при плотности теплового потока Вт/м 2 (линия Б – С), который примерно в 4 раза меньше . Явление перехода от пленочного кипения к пузырьковому называют вторым кризисом кипения (). Участок кривой А – Б характеризует переходный режим, здесь могут сосуществовать одновременно и пузырьковый и пленочный режимы на различных частях поверхности нагрева.

Библиографическое описание:

Нестеров А.К. Теплообмен при конденсации и кипении [Электронный ресурс] // Образовательная энциклопедия сайт

Хотя человек давно знаком с физическими процессами, в ходе которых происходят фазовые переходы веществ из одного агрегатного состояния в другое, они остаются предметом внимания ученых исследований, поскольку являются достаточно сложными и требуют научно-обоснованного подхода к изучению. Рассмотрим некоторые общие закономерности теплообмена при процессах конденсации и кипения веществ.

Конденсация и кипение

Процессы конденсации и кипения являются взаимно обратными процессами, отражая фазовый переход вещества из газообразного состояния в жидкость и наоборот.

Основными теоретико-методологическими вопросами, которые решаются в рамках данной области, являются возможности прогнозировать их протекание в прикладных целях.

Основными прикладными направлениями, для которых важны знания о процессах конденсации и кипения, являются решение исследовательских и практических задач в сфере естествознания, применение в метрологии, проектирование производственных комплексов и оборудования в химической, металлургической промышленности, а также других отраслях национальной экономической системы.

Молекулярно-кинетическая теория опирается на определенные представления о строении вещества и оперирует моделями вещества, с помощью которых устанавливаются законы поведения макроскопических систем, состоящих из бесконечно большого числа отдельных частиц. "Молекулярно-кинетическая теория – это учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химических веществ" . Следует отметить, что молекулярно-кинетическая теория описывает поведение различных систем на основе вероятностных моделей, чтобы установить взаимозависимость между макроскопическими величинами и микроскопическими характеристиками частиц. К макроскопическим величинам относятся, например, температура, объем, давление и др., а к микроскопическим характеристикам частиц – энергия, масса, импульс и др.

Следует отметить, что в рамках данной области естествознания, термодинамика не оперирует молекулярной структурой вещества и является наукой феноменологической. Термодинамика формирует выводы о свойствах вещества на основе сформированных опытным путем законов и оперирует только макроскопическими величинами, которые вводятся на основе физического эксперимента.

Таким образом, термодинамический и статистический подходы взаимно дополняют друг друга, поскольку только комплексное использование в научных изысканиях термодинамики и молекулярно-кинетической теории позволяет сформировать наиболее полное представление о свойствах систем, состоящих из бесконечно большого числа отдельных частиц.

В зависимости от условий и их изменения любой вещество может находиться в трех разных агрегатных состояниях: твердое, жидкое, газообразное. Процесс перехода из одного состояния в другое является фазовым переходом. Реальные газы, например, азот, водород, кислород и др., могут превратиться в жидкость при соблюдении определенных условий. Превращение газа в жидкость может наблюдаться только при температурах, которые ниже критической температуры (Т кр). "Например, для воды критическая температура – 647,3 К, азота – 126 К, кислорода – 154,3 К. При комнатной температуре (≈ 300 К) вода может находиться и в жидком, и в газообразном состояниях, а азот и кислород существуют только в виде газов" .

Фазовый переход из жидкого состояния в газообразное называется испарением. При этом процессе с поверхности жидкости вылетают наиболее быстрые молекулы, кинетическая энергия которых превышает энергию их связи с остальными молекулами жидкости. Это приводит к уменьшению средней кинетической энергии оставшихся молекул, т.е. к охлаждению жидкости (если нет подвода энергии от окружающих тел).

Фазовый переход, при котором молекулы пара возвращаются в жидкое состояние, называется конденсацией и является обратным процессу испарения.

"Процесс кипения жидкости происходит при температуре, при которой давление ее насыщенных паров становится равным внешнему давлению" . Поскольку в жидкости всегда имеются мельчайшие пузырьки газа, испарение может происходить в объеме жидкости в случае, если давление насыщенного пара жидкости равно давлению газа в пузырьках или больше него. Вследствие этого жидкость будет испаряться внутрь пузырьков, что приведет к расширению пузырьков газа, которые будут всплывать на поверхность.

Теплообмен при конденсация паров газа

Жидкость и ее пар могут находиться в состоянии динамического равновесия, которое означает, что в закрытом сосуде число вылетающих с поверхности жидкости молекул, кинетическая энергия которых превышает энергию их связи с остальными молекулами жидкости, равно числу молекул пара, которые возвращаются в жидкое состояние. Динамическое равновесие означает, что скорость процессов испарения и конденсации примерно одинаковы. Пары газа, которые находятся в равновесии с жидкостью, называются насыщенным газом.

Число молекул, которые превращаются в жидкость, зависит от концентрации молекул пара газа и скорости их теплового движения, зависящей от температуры паров газа. Следовательно, в состоянии динамического равновесия температура вещества в жидком и газообразном состоянии является равновесной. "Давление насыщенного пара вещества зависит только от его температуры и не зависит от объема" . Этим объясняется, что в двухфазной системе изотермы реальных газов содержат горизонтальные участки, как показано на рисунке 1.

Рисунок 1 – Изотермы реального газа

На рисунке цифрами отмечено:

I – жидкое состояние вещества; II – двухфазная система "жидкость + насыщенный пар"; III – газообразное состояние вещества.

При увеличении температуры (Т) возрастает давление и плотность насыщенного пара вещества, а плотность жидкости уменьшается из-за теплового расширения. При условии Т = Т кр плотности пара и жидкости вещества становятся одинаковыми. При условии Т > Т кр физические отличия жидкого и газообразного состояния вещества нивелируются. Если при условии Т < Т кр изотермически сжимать ненасыщенный пар, то давление пара будет увеличиваться до тех пор, пока не сравняется с давлением насыщенного пара. Дальнейшее уменьшение объема приведет к тому, что на дне сосуда образуется жидкость и установится динамическое равновесие, при уменьшении объема все большая часть паров газа будет конденсироваться, при этом давление меняться не будет, когда все пары газа возвратятся в жидкое состояние, давление резко увеличивается при дальнейшем сокращении объема по причине малой сжимаемости жидкости. При этом процесс преобразования вещества из паров газа в жидкость может произойти миновав двухфазную область, как показывает линия ABC.

Давление насыщенного пара с ростом температуры увеличивается очень быстро и при постоянной концентрации молекул возрастает прямо пропорционально росту температуры газа. При этом рост температуры обуславливает не только увеличение средней кинетической энергии молекул, но и их концентрации, поэтому давление насыщенного пара увеличивается быстрее, чем давление идеального газа при постоянной концентрации молекул вещества.

С точки зрения естественнонаучного содержания,

Процесс теплоотдачи при конденсации насыщенного пара является одновременным переносом теплоты и массы.

Перенос теплоты определяется теплотой парообразования, масса – количеством сконденсированного пара. При процессе конденсации молекулы пара находятся в состоянии турбулентного потока, вихри которого переносят молекулы вещества в газообразном состоянии к охлаждаемой стенке сосуда, на которой они конденсируются. Следствием является резкое уменьшение объема пара, в результате создается собственное поступательное движение молекул вещества в газообразном состоянии к стенке сосуда. Образовавшийся на стенке сосуда конденсат стекает по ней, а к стенке подходит собственный пар. При этом в научно-прикладном аспекте процесс переноса теплоты и основной массы вещества в газообразном состоянии к стенке сосуда происходит настолько быстро, что степень турбулентности потока молекул вещества в газообразном состоянии не оказывается сколько-нибудь значимого влияния на сам процесс конденсации.

Процесс конденсации неразрывно связан с теплообменом, так как при конденсации паров газа выделяется теплота фазового перехода, поэтому справедливы два условия: "температура стенки сосуда должна быть ниже температуры насыщения при данном давлении и необходим отвод теплоты от поверхности, на которой образуется конденсат" . При пленочной конденсации конденсат стекает с поверхности теплообмена в виде простой пленки, для этого должно соблюдаться условие смачивания жидкостью данной поверхности. В случае, если поверхность теплообмена не смачивается или, например, находится в загрязненном состоянии, то будет иметь место конденсация капельного типа, когда конденсат будет формироваться в виде капель разного размера. Наконец, смешанная конденсация подразумевает, что на различных участках поверхности теплообмена может проходить процесс конденсации пленочного и капельного типа одновременно.

Следует отметить, что для разных типов процесса конденсации интенсивность теплообмена отличается следующим образом:

  • интенсивность теплообмена при конденсации пленочного типа будет ниже, чем при конденсации капельного типа;
  • интенсивность теплообмена при конденсации смешанного типа будет зависеть от характера и соотношения типов конденсации, находясь в пределах минимального и максимального значений для соответствующих типов конденсации .

В этой связи в практике проектирования и применения теплообменных устройств превалирует пленочная конденсация из-за того, что интенсивность процесса теплоотдачи при конденсации пленочного типа ниже капельного из-за термического сопротивления пленки конденсата, тогда как организация процесса капительной конденсации в устройствах теплообмена дороже организации процесса пленочной конденсации.

Рисунок 2 – Термическое сопротивление пленки определяется механизмом переноса теплоты, зависящим от режима течения конденсата

В процессе конденсации процесс теплообмена при пленочной конденсации не является лимитирующем, при конденсации пленочного типа вещества в газообразном состоянии термическое сопротивление сосредоточено в пленке конденсата.

Теплообмен при кипении жидкости

В закрытом сосуде процесс кипения жидкости происходить не может, так как при каждом значении температуры устанавливается равновесие вещества в жидком и газообразном состоянии, при этом пары газа вещества являются насыщенным паром. По кривой равновесия давления и температуры р0 (Т) можно определять температуру кипения жидкости при разных давлениях. При этом необходимо отметить, что из газообразного и жидкого состояния любое вещество может перейти в твердое состояние. Термодинамическое равновесие между двумя фазами вещества может сохраняться при заданной температуре и давлении в системе.

Зависимость равновесного давления от температуры представляет собой кривую фазового равновесия. На рисунке 3 изображена фазовая диаграмма вещества, кривые равновесия разделяют систему координат на отдельные области, соответствующие твердому, жидкому и газообразному состоянию вещества.

Рисунок 3 – Фазовая диаграмма вещества

На рисунке цифрами обозначено:

I – твердое состояние вещества, II – жидкое состояние вещества, III – газообразное состояние вещества.

Кривая 0Т соответствует равновесию между твердым и газообразным состоянием вещества и называется кривой сублимации. Кривая ТК соответствует равновесию между жидким и газообразным состоянием вещества, обрываясь в критической точке К, и называется кривой испарения. Кривая ТМ соответствует равновесию между твердым и жидким состоянием вещества и называется кривой плавления. В точке тройной точке Т могут сосуществовать в равновесии все три фазы.

"Кипение соответствует процессу интенсивного образования пара внутри объема жидкости при температуре насыщения или выше этой температуры" . В ходе данного процесса поглощается теплота фазового перехода, следовательно, чтобы кипение было осуществимо, требуется обеспечивать нагрев вещества, иными словами, подводить теплоту. Существует поверхностное и объемное кипение, причем последнее встречается достаточно редко. При объемном кипении, например, в результате резкого уменьшения давления, наблюдается значительный перегрев жидкости, а температура вещества превышает температуру насыщения при таком давлении. Поверхностное кипение происходит вследствие подвода теплоты к жидкости от твердой поверхности, которая соприкасается с веществом, находящимся в жидком состоянии.

При кипении высокая интенсивность теплообмена и сам процесс кипения широко используется на практике и производстве: выпаривание, перегонка, испарители, кипячение, преобразование веществ для изменения свойств и т.д. При этом для возникновения кипения необходимо, чтобы температура жидкости была больше температуры насыщения, т.е. соблюдалось бы условие Т жидк > Т насыщ, а также наличие центров парообразования. Чтобы теплота передавалась от стенки к кипящей жидкости, необходим перегрев стенки относительно температуры насыщения: ∆Т = Т ст – Т кип

На рисунке 4 показана зависимость удельной тепловой нагрузки q и коэффициента теплоотдачи α от температурного напора ∆Т.

Рисунок 4 – Зависимость удельной тепловой нагрузки q и коэффициента теплоотдачи α от температурного напора ∆Т

В области АВ перегрев еще мал, активных центров парообразования недостаточно, а теплообмен определяется законами свободной конвекции около стенки α ~ ∆Т1.3. В области ВС перегрев выше, становится больше центров парообразования, теплообмен резко увеличивается, при этом наблюдается турбулизация пограничного слоя около стенки. Эта область называется пузырчатым кипением. Схема процесса теплоотдачи при пузырчатом кипении показана на рисунке 5.

Рисунок 5 – Схема процесса теплоотдачи при пузырчатом кипении

Часть жидкости испаряется, образуя таким способом пузырьки вещества в газообразном состоянии. Пузырьки вещества увлекают значительные массы жидкости, когда они поднимаются и увеличиваются в объеме, на место увлеченной и испарившейся жидкости поступает свежие потоки жидкости, за счет чего происходит циркуляция жидкости у поверхности нагрева, что приводит к ускорению процесса теплоотдачи. В этот момент α ~ ∆Т 2/3 . Высокий уровень интенсивности теплообмена при пузырчатом режиме кипения обусловлен степенью турбализации пограничного слоя у поверхности, которая пропорциональна числу и объему пузырьков, которые формируются в микровпадинах на поверхности нагрева.

В точке С коэффициент теплоотдачи достигает своего максимального значения, что соответствует максимальному значению удельной тепловой нагрузки q, далее будет наблюдаться резкое снижение коэффициента теплоотдачи. При соблюдении условия ∆Т ≥ ∆Т кр происходит слияние пузырьков, которые находятся близко друг от друга или образуются рядом, у поверхности стенки будет возникать паровая пленка, которая будет создавать дополнительное термическое сопротивление процессу теплоотдачи. Значение коэффициента теплоотдачи α резко падает. Этот режим процесса кипения называется пленочным. Следует отметить, что хотя пленка вещества в газообразном состоянии очень нестабильна, постоянно разрушаясь и возникая вновь, такой режим кипения серьезно ухудшает теплообмен, соответственно, на практике он крайне нежелателен.

Выводы

По итогам рассмотрения процессов кипения и конденсации можно судить о том, что они имеют большое значение в прикладных аспектах бытовой жизнедеятельности человека и производственных процессах.

В ходе изучения вопросов, связанных с теплообменом при протекании процессов конденсации и кипении, было установлено, что эти привычные человеку процессы имеют весьма сложную молекулярно-кинетическую природу. От протекания данных процессов зависит решение не только бытовых задач в повседневной деятельности человека, но и различные и многосторонние аспекты функционирования сложных технических систем, производственных комплексов, а также отдельных объектов и элементов инфраструктуры жилищно-коммунального хозяйства.

Процесс теплообмена при конденсации пара протекает при изменении агрегатного состояния теплоносителей. Специфика процесса конденсации состоит в том, что процесс теплообмена происходит при постоянной температуре.

При пузырчатом кипении теплообмен состоит из переноса теплоты от стенки к жидкости, затем жидкостью теплота передается внутренней поверхности пузырьков пара вещества в виде теплоты испарения. Следует отметить, что теплообмен между стенкой и непосредственно пузырьками вещества в газообразном состоянии ничтожно мал, так как мала поверхность соприкосновения пузырьков пара со стенкой и мала теплопроводность пара. Для осуществления теплообмена жидкость должна иметь температуру несколько выше температуры пара, следовательно, при кипении температура жидкости выше температуры насыщенного пара над поверхностью жидкости.

Список литературы

  1. Алексеев Г.Н. Общая теплотехника. – М.: Высшая школа, 1980. – 552 с.
  2. Бухмиров В.В. Теоретические основы теплотехники. – Иваново: изд-во ИГЭУ, 2008.
  3. Ерохин В.Г., Маханько М.Г. Основы термодинамики и теплотехники. – М.: Ленанд, 2014. – 232 с.
  4. Круглов Г.А., Булгакова Р.И., Круглова Е.С. Теплотехника. – СПб.: Лань, 2010. – 208 с.
  5. Мазур Л.С. Техническая термодинамика и теплотехника. – М.: ГЭОТАР, 2003. – 352 с.
  6. Самарин О.Д. Теплофизика. Энергосбережение. Энергоэффективность. – М.: изд-во Ассоциации строительных вузов, 2011. – 296 с.
  7. Теплотехника / под ред. В.Н. Луканин. – М.: Высшая школа, 2009. – 678 с.
  8. Теплотехника / под ред. М.Г. Шатров. – М.: Академия, 2013. – 288 с.

Теплоотдача при кипении жидкости.

Режимы кипения жидкости.

Кипением называется процесс интенсивного парообразования, происходящего во всем объеме жидкости, перегретой относительно температуры насыщения, с образованием паровых пузырей. Процессы кипения находят применение в теплоэнергетике, химической технологии, атомной энергетики и др.

Различают кипение жидкости на твердой поверхности теплообмена, к которой подводится тепло, и кипение в объеме жидкости.

При кипении на твердой поверхности образование паровой фазы наблюдается в отдельных местах этой поверхности. При объемном кипении паровая фаза возникает самопроизвольно (спонтанно) непосредственно в объеме жидкости. Объемное кипение может происходить лишь при значительном перегреве жидкости относительно температуры насыщения при данном давлении. Значительный перегрев имеет место, например при сбросе давления в системе.

Для возникновения процесса кипения необходимо два фактора: 1) перегрев жидкости, 2) наличие центров парообразования.

Различают два основных режима кипения пузырьковый и пленочный . Кипение, при котором пар образуется в виде отдельных периодически зарождающихся, растущих и отрывающихся паровых пузырей, называется пузырьковым.

С увеличением теплового потока до некоторого значения отдельные паровые пузыри сливаются, образуя у поверхности теплообмена сплошной паровой слой, периодически прорывающий в объем жидкости. Этот режим кипения, который характеризуется наличием на поверхности пленки пара, называется пленочным.

Интенсивность теплообмена при пленочном кипении меньше, чем при пузырьковом.

Элементы физики процесса кипения.

Интенсивность теплообмена при пузырьковом кипении зависит от микрохарактеристик кипения и режимных параметров процесса.

К микрохарактеристикам процесса относятся критический радиус пузырька, скорость его роста, отрывной диаметр и частота отрыва, работа необходимая для образования пузырька, характеристики поверхности и жидкости.

1). Минимальный радиус парового пузырька.

Обычно считают, что жидкость закипает при температуре t ж, равной t н выходящего из нее насыщенного пара, давление которого р н = р ж. Однако это не совсем так. При t ж = t н пузыри пара существовать не могут, и теплоотдача идет по законам естественной конвекции.

Дело в том, что давление насыщенного пара внутри пузырей р п должно уравновешивать не только давление жидкости р ж, но и силы поверхностного натяжения, сжимающие пузырь подобно упругой оболочке. А если р п > р н, то и t п > t н, поскольку более высокому давлению пара в насыщенном состоянии соответствует более высокая температура. Естественно, что и температура жидкости t ж, внутри которой образуются паровые пузыри, должна быть по меньшей мере равна t п. Таким образом, перегрев жидкости ∆t ж = (t ж - t н), необходимый для её закипания, однозначно определяется давлением ∆р, создаваемым силами поверхностного натяжения.

Для определения ∆р мысленно разрежем сферический пузырь по диаметру, заменим действие отброшенной нижней части на верхнюю силой поверхностного натяжения (она действует по периметру) и приравняем её вертикальной проекции сил давления (они действуют по полусфере) – см. рисунок.

отсюда получим:

Согласно этой формуле ∆р растет с уменьшением радиуса пузыря R. Поэтому при любом перегреве жидкости ∆t ж всегда найдется такой критический радиус пузыря R кр, при котором суммарное давление р ж + ∆р будет равно давлению насыщения р н при температуре t ж = t н + ∆t ж. Пузыри с радиусом R>R кр будут расти, поскольку р п > р ж + ∆р, а пузыри с радиусом R

Было получено УКК:

Если на границе раздела фаз кроме сил давления действуют и другие силы (например, силы поверхностного натяжения), то можно записать уравнение КК в обобщенном виде:

Для случая паровой пузырь
= 0,

В такой форме R к характеризует радиус кривизны пузырьков пара. Одновременно R к определяет порядок размеров неровностей поверхности, которые при данных условиях могут служить центрами парообразования.

С повышением ∆T значение R к уменьшается.

С повышением Р знач. R к уменьшается тоже, так как увеличивается ρ".

Увеличение ∆T и Р → ↓ R к → усиление кипения, так как увеличивается число центров парообразования.

В действительности зародышами паровых пузырей являются пузырьки газа. Газ в пузырьках, как упругое тело, только сжимается под действием поверхностного натяжения, не исчезая (так как он не может конденсироваться), поэтому критического радиуса для газовых пузырей не существует. Пар из перегретой жидкости образуется на поверхности газовых пузырей, радиус которых больше критического. Сильнее всего жидкость перегрета, естественно, около обогреваемой поверхности, поэтому там величина критического радиуса минимальна. Пузырьки газа или воздуха в микротрещинах и шероховатостях обогреваемой поверхности, радиус которых превышает R кр, и является местами зарождения паровых пузырей – так называемыми центрами парообразования.

После зарождения паровые пузыри быстро растут, отрываются от поверхности и всплывают, но небольшие части остаются на поверхности и служат зародышами следующих пузырей.

Различают кипение жидкости на твердой поверхности теплообмена, к которой извне подводится тепло, и кипение в объеме жидкости.

При кипении на твердой поверхности образование паровой фазы наблюдается в отдельных местах этой поверхности (по Х. Кухлингу коэффициент теплоотдачи á – кипящая вода – металлическая стенка находится в пределах от 3500 до 5800 Вт/(м 2 ⋅К).

При объемном кипении паровая фаза возникает самопроизвольно (спонтанно) непосредственно в объеме жидкости в виде отдельных пузырьков пара. Объемное кипение может происходить лишь при значительном перегреве жидкой фазы относительно температуры насыщения при данном давлении. Например, значительный перегрев может быть получен при быстром сбросе давления в системе.

От механизма теплоотдачи при конвекции однофазной жидкости механизм теплообмена при пузырьковом кипении отличается наличием дополнительного переноса массы вещества и тепла паровыми пузырями из пограничного слоя в объем кипящей жидкости.

Для возникновения процесса кипения необходимо выполнение двух условий:

Наличие перегрева жидкости относительно температуры насыщения;

Наличие центров парообразования.

Перегрев жидкости имеет максимальную величину непосредственно у обогреваемой поверхности теплообмена, так как на ней находятся центры парообразования в виде отдельных неровностей стенки, пузырьков воздуха, пылинок и пр.

Кипение, при котором пар образуется в виде периодически зарождающихся и растущих пузырей, называют пузырьковым кипением.

С увеличением теплового потока до некоторой величины отдельные паровые пузырьки сливаются, образуя у стенки сплошной паровой слой, периодически прорывающийся в объем жидкости. Такой реж им называют пленочным кипением.

Теплоотдача при пузырьковом кипении жидкости в условиях свободного движения

Коэффициент теплоотдачи по Д.А. Лабунцову:

α кип св. дв. = С ⋅ λ ⋅ Re n ⋅ Pr 1/3 /l , Вт/м 2 ⋅К,

где: l – характерный линейный размер пузырька пара в момент зарождения, в м.

Физические параметры, входящие в критерии подобия, определены при температуре насыщения.

Значения постоянных при кипении воды составляют:

при Re ≤ 0,01, C = 0,0625, n = 0,5;

при Re > 0,01, C = 0,125, n = 0,65.

Зависимость справедлива в области значений величин:

Re = 10 -5 ÷ 10 +4 ; Pr = 0,86 ÷ 7,6; W ≤ 7 м/с;

и при объемном паросодержании – â ≤ 70% для широкого диапазона давлений насыщения (до околокритических давлений).

Коэффициент теплоотдачи по М.А. Михееву:

α кип св. дв. = 33,4∆t 2,33 ⋅ Р 0,5 , Вт/м 2 ⋅К,

где Р – давление воды в барах.

Зависимость применима для воды в диапазоне давлений 1 ÷ 40 бар (0,1-4,0 МПа).

Теплоотдача при пузырьковом кипении в условиях вынужденной конвекции в трубах

В этом случае интенсивность теплообмена определяется взаимодействием пульсационного движения жидкости, вследствие парообразования и возмущений, проникающих из объема жидкости, обусловленных вынужденной конвекцией. Интерполяционная формула Д.А. Лабунцова для теплоотдачи из пузырьковом кипении в условиях вынужденной конвекции в трубах имеет вид:

α/α w = 4α w /4α w + α q q , где:

α g – коэффициент теплоотдачи, рассчитанный по формулам развитого кипения (когда скорость не влияет на теплообмен);

α w – коэффициент теплоотдачи, рассчитанный по формулам конвективного теплообмена однофазной жидкости (когда q не влияет на теплообмен).

Зависимость применима:

В интервале значений α q /α w от 0,5 до 2,0, (при величине этого отношения, меньшей 0,5 - α w = α, а при большей 2,0 - α q = α);

При средних объемных паросодержаниях, не превышающих 70% (при этом коэффициент теплоотдачи относится к разности температур t c – t н).

Теплоотдача при пленочном кипении жидкости

Пленочное кипение возникает при наличии большого количества центров парообразования, при котором паровые пузырьки сливаются, образуя у поверхности теплообмена сплошной слой пара, периодически прорывающийся в объем жидкости. В этом случае жидкость отделена от обогреваемой поверхности паровым слоем. Тепловой поток к поверхности раздела фаз проходит через малотеплопроводный слой пара. При пленочном кипении жидкости в условиях свободного движения величина коэффициента теплоотдачи мало изменяется с изменением величины теплового потока.

Через паровую пленку, кроме тепла за счет конвекции и теплопроводности, проходит и лучистое тепло. Поэтому на коэффициент теплоотдачи на пленочном кипении оказывают влияние излучение поверхности теплообмена, излучение поверхности жидкости и излучение паров. Доля лучистого переноса тепла резко увеличивается по мере увеличения перегрева жидкости. Обе формы переноса тепла – конвективным теплообменом и излучением – оказывают взаимное влияние друг на друга. Оно проявляется в том, что пар, образующийся благодаря излучению, приводит к утолщению паровой пленки и соответствующему уменьшению интенсивности переноса тепла за счет конвекции и теплопроводности.

При пленочном кипении насыщенной жидкости тепловой поток, отводимый от поверхности нагрева, расходуется не только на испарение слоев жидкости, расположенных на границе паровой пленки. Часть отводимого тепла идет также на перегрев пара в пленке, так как средняя температура пара внутри пленки выше температуры насыщения.

При пленочном кипении недогретой жидкости тепло, которое проходит через паровую пленку с поверхности кипения, частично передается в объем жидкости путем конвекции. Интенсивность конвективного переноса тепла в объем жидкости зависит от недогрева и скорости циркуляции жидкости.

В котлах прямоточного типа технологическая вода поступает в недогретом состоянии, а выходит в виде перегретого пара. В таком котле по мере течения пароводяной смеси коэффициент теплоотдачи изменяется: по законам конвекции однофазового потока на входном участке; по законам конвекции и кипения пузырькового режима на промежуточном участке; по законам кипения пленочного режима на выходном участке. При пленочном кипении теплоотдача значительно меньше, чем при пузырьковом. Однако при высоких давлениях абсолютная величина теплоотдачи становится значительной. Поэтому пережога кипятильных труб (прогара поверхности) не происходит, т.е. состояние поверхности нагрева и в этом случае остается управляемым.

Коэффициент теплоотдачи при ламинарном движении паровой пленки на вертикальной стенке по В.П. Исаченко:

α = С 4 √(λ 3 n ⋅ r ⋅ ρ n ж − ρ n ) ⋅ g /(µ n ⋅ ∆t ⋅ H)) , Вт/(м 2 ⋅К),

при t = t н (температура насыщения воды) и скорости на границе раздела фаз – W гр = 0, постоянный множитель С = 0,667;

при градиенте скорости dw = 0, постоянный множитель С = 0,943.

В первом случае жидкость неподвижна, во втором случае – скорость движения жидкости равна скорости движения пара на границе раздела фаз.

Коэффициент теплоотдачи при ламинарном движении паровой пленки при кипении на наружной поверхности горизонтального цилиндра по В.П. Исаченко:

α = С 4 √(λ 3 n ⋅ r ⋅ ρ n ж − ρ n ) ⋅ g /(µ n ⋅ ∆t ⋅ d)) , Вт/(м 2 ⋅К),

В этом случае С равно соответственно 0,53 (жидкость неподвижна) и 0,72 (скорость движения жидкости равна скорости движения пара на границе раздела фаз).

Приведенные зависимости теплоотдачи при ламинарном движении паровой пленки учитывают перенос тепла по сечению пленки путем теплопроводности. Лучистая (радиационная) составляющая коэффициента теплоотдачи (α р) должна определяться отдельно (см. раздел 7.3.4.)

Коэффициент теплоотдачи при турбулентном движении паровой пленки при кипении на вертикальной стенке по Д.А. Лабунцову:

α = С ⋅ (λ/H)(Gr ⋅ Pr) г 1 /3 Вт/(м 2 ⋅К),

где: применительно к пленочному кипению сила, определяющая движение пара в пленке, равна g*(ρ ж − ρ n ); постоянный множитель С = 0,25; физические свойства относятся к средней температуре паровой пленки (на что указывает индекс «Г»).

Критерий Грасгофа имеет вид Gr = (gl 3 /ν n 2)*(ρ ж − ρ n )/ρ ж

Зависимость применима при (Gr ⋅ Pr) г ≥ 2 ⋅ 10 7 .