Биографии Характеристики Анализ

Всё и ничто. Великолепный и таинственный электрический угорь

В морях и океанах есть существа, обладающие удивительными и поразительными способностями вырабатывать электричество. Одним из таких созданий является электрический скат.

Как скаты вырабатывают электричество?

Все благодаря специальным электрическим органам, находящимся внутри этих существ. Они возникли как у пресноводных, так и у морских рыб. Известно, что такие же органы имели некоторые их ископаемые предки. Современная ихтиология насчитывает более 300 видов разных рыб, имеющих электрические органы. Эти органы представляют собой видоизмененные мышцы. У тех или иных «электрорыб» они отличаются своим местоположением. Например, у скатов они представляют собой почковидные образования.

Если говорить простым языком, то электрические органы скатов – это своеобразные мини-генераторы, вырабатывающие весьма приличный заряд тока. Этого заряда хватит на то, чтобы обездвижить не только рыбу, но и человека! Есть специалисты, которые утверждают, что скаты могут за один раз вырабатывать напряжение в 300 вольт. Электрические органы располагаются в спинной и брюшной частях тела этой «электрорыбы». Их можно сравнить с гальванической или электрической батареей.

Каждый из таких органов состоит из многочисленных электрических пластин, собранных в столбики. Это видоизмененные нервные, мышечные и железистые клетки. Между их мембранами и генерируется разность потенциалов. Электрические органы иннервируются специальными ветвями языкоглоточного, лицевого и блуждающего нервов, которые, в свою очередь, подходят к электроотрицательной стороне вышеупомянутых пластинок.

В каких случаях скаты вырабатывают электричество?

Эти создания используют свои уникальные электрогенные свойства в двух случаях: если им угрожает какая-либо опасность, или во время охоты (поиска добычи). Любопытно, что сами скаты не страдают от выпускаемого ими электрического разряда. Это объясняется специальной «изоляцией», которой наградила их матушка-природа. Кстати, электрогенными свойствами обладают не только электрические скаты, но и некоторые другие их виды, не относящиеся к семейству электрических: органы этих существ расположены только на хвосте.

Те рыбаки, которые имели неосторожность на себе почувствовать всю силу воздействия этой «электрорыбы», оставались крайне недовольными. По их словам, удар током от электрического ската сопровождается продолжительной сонливостью, дрожью в ногах, потерей чувствительности, онемением верхних конечностей.

Любопытно, что такое удивительное электрогенное свойство этих созданий успешно эксплуатировалось еще в Древней Греции. Греки использовали этих чудо-рыб для обезболивания во время какого-либо оперативного вмешательства, либо при деторождении.


Внимание, только СЕГОДНЯ!

Все интересное

С древнейших времен люди наблюдали электрические явления, однако постичь, описать и реализовать их получилось относительно недавно. А началась история открытия электричества и его импульсов с исследованием природного «солнечного камня» -…

Любой человек, не особенно посвященный в область электротехники, наслышан о том, что различают ток постоянный и ток переменный. Специалисты говорят еще о пульсирующем электрическом токе. Где, в каких областях энергетики используют тот и иной ток, и…

Самая крупная река в мире – Амазонка. Она же признана и самой опасной. Причиной тому является обилие различного рода фауны, опасной для жизни человека. Хищники АмазонкиАмазонка – южноамериканская река, имеющая протяженность 6992,06 км. Глубина ее…

Кровля – это часть архитектурного образа здания. По сути, это важнейший защитный элемент конструкции строения. От качества крыши зависит не только долговечность постройки, но и внешний вид дома, а также комфортность проживания в нем. Поэтому выбор…

Далеко не каждый может позволить себе установить в своем доме или квартире настоящий камин. Отличной заменой ему является камин электрический - теплый, яркий, красивый, отличающийся от настоящего лишь тем, что вместо огня в нем «пылает»…

Человечеству стоит заранее готовиться к будущему энергетическому голоду. Во-первых, истощаются производящие электричество ресурсы. Во-вторых, мы не можем в тех же темпах его производить дальше, иначе настанет тепловая катастрофа планетарного масштаба. Вероятно, второй момент нас будет все еще очень мало заботить, потому что наш мир на все 100% зависит от энергетики. Отказаться от нее хотя бы на половину будет означать смерть цивилизации. Поэтому мы будем до последнего издыхания искать новые источники электричества.

Через пол века на планете закончится нефть. Еще через пол века не станет газа. И вот только тогда мы перейдем на новый уровень развития, характеризующийся новыми технологиями и возможностями. В принципе, мы могли бы это сделать уже давно, но техническая революция откладывается из-за сугубо меркантильных интересов, о чем речь пойдет немного позже. Что это будут за источники, какова будет их природа и потенциал - со всем этим мы попытаемся разобраться в данной главе.

Начнем с самих себя. Ни для кого не секрет, что в идеале наш организм мог бы дать нам возможность обеспечивать нас же самыми элементарными электрическими ресурсами. Конечно, речь не идет о подогреве чайника или работы лампового телевизора, но значительная часть электроприборов могла бы получать энергию прямо от нашего организма.

Обычно в этом ракурсе понимается наша возможность с помощью физических движений вырабатывать электричество в генераторах. В этом нет ничего удивительного, когда осознаешь насколько человек силен и энергичен в своих действиях. Сила и выносливость его мышц вполне подходит для выработки электроэнергии, что особенно актуально в век приборов, которым нужно все меньше этой самой электроэнергии. В программе «Необъяснимо, но факт» можно было наблюдать изобретателя Мартына Нунупарова, который демонстрировал целый ряд приборов, которые работают от физической силы человека:

Мартын Нунупаров - заведующий лабораторией микроэлектроники института общей физики РАН; изобретатель; обладатель гран-при конкурса русский инноваций 2004 года.

— В приборах может появляться электричество, которое получается при механическом нажатии на специальную клавишу. Это изобретение, которое мы сделали, позволяет делать массу электронных приборов, для которых не нужно ни розетки, ни батарейки, и которые могут служить вечно.

Ученый предлагает использовать целый ряд изобретений, способных генерировать ток практически из любого человеческого действия, будь то даже вдоха, энергия которого равна 1Вт. По его словам, даже энергию ходьбы человека и взмаха руками во время этого процесса достаточно, чтобы питать лампу 60Вт.

Но еще дальше ушли некоторые другие изобретатели, которые, похоже, решили из человека сделать настоящую электрическую станцию. К примеру, группа американских ученых их Georgia Institute of Technology создала действующий прототип наногенератора из оксида цинка, который вживляется в человеческое тело и получает из него ток, используя наши движения. В будущем предлагается оснащать людей множеством таких наноприборов, чтобы мы могли в любой момент получать необходимую энергию.

Все это, по большей части, лишь предложения к массовому использованию. Однако в мире уже создано не мало прецедентов, которые в повседневной жизни используют человека, как источника тока. Например, в одном из вокзалов технологичной Японии стоят вырабатывающие электричество турникеты. Каждый пассажир, а их многие тысячи ежедневно, проходит через такую систему и питает весь терминал дополнительным чистым источником электричества. Конечно, о больших объемах получаемой энергии говорить не приходится. Она едва ли обеспечивает и несколько процентов потребности, но сам прецедент заслуживает не только внимания, но и уважения. Возможно, по такому принципу когда-нибудь будут работать многие предприятия.

Вероятно, за такими составляющими, как Нунупаров и его изобретения, стоит будущее человечества. Однако все это больше относится к тому, что было всегда известно, но просто мало кто понимал, как правильно получать и использовать электричество из физических действий человека. На самом деле, электричество мы можем генерировать напрямую, избегая переходных систем импульс-движение и движение-генератор. Дело в том, что сама природа любого живого организма, а не только человека, это замкнутая электрическая система, в которой есть свои генераторы, линии передач и потребители. Уж не попробовать ли качать ток прямо из нашего нутра?

Такая идея изначально витала только в умах фантастов. Казалось, это просто невозможно. Вспомним культовый фильм «Матрица», где электричество вырабатывали человеческие мозги, подключенные в одну сплошную генераторную станцию. Но мир движется вперед и основная роль его движения заключается в том, чтобы делать невозможное повседневной реальностью. Однако сначала стоит разобраться с причинами того, почему человек может быть использован в качестве источника энергии и откуда она в нем берется.

Дело в том, что у человека есть все необходимые звенья любой полной электрической цепи. Во-первых, это генераторы. Они делятся на внутренние(сердце и мозг) и внешние(органы чувств). В мозгу ток образуется в месте ретикуло-эндотелиальной формации, откуда по нервам распространяется по всему организму в виде биотоков. В сердце биотоки возникают в синатриальном узле, откуда они через посредников передают импульсы сердечной мышце, а затем растворяются в теле. Именно благодаря этому узлу сердце может какое-то время биться даже вне тела.

В глазах ток возникает в виде потока электронов по нервам к мозгу от сетчатки. Во внутреннем ухе формируется электричество под действием звуковых волн. Физическое и температурное воздействие на рецепторы кожи формирует в них биотоки, которые направляются к головному мозгу на обработку. Это самые мелкие генераторы тока в человеческом организме. В носу электричество вырабатывают митральные клетки, воздействие запаха на которых генерирует биоимпульсы. Во роту под воздействием химических веществ ток вырабатывают вкусовые сосочки.

Если суммировать все вырабатываемое нами внутреннее электричество, то окажется, что более половины берет на себя сердце. Десятую часть тока генерируют органы чувств, а все остальное, около 40%, производит головной мозг. Однако при больших болях органы чувств, болевые рецепторы, могут давать абсолютное большинство всего электричества в организме. В общем, все это не удивительно, если понимать, что биотоки являются главным движущим и поддерживающим живое существо фактором.

Некоторые умы упорно решают задачу, как взять хотя бы часть всего внутричеловеческого тока и использовать его для нужд самого человека. Вероятно, это не даст серьезных сдвигов в уровне развития цивилизации, но в чем-то может сыграть свою положительную роль. Так, к примеру, внутреннее электричество могло бы питать вживленные чипы человека будущего или искусственные органы. Но еще дальше уходят идеи искусственной культивации тех же рецепторов боли в промышленных масштабах, чтобы из них вырабатывать ток в больших объемах. Бесспорно, эта идея далекого будущего. Но некоторые современные достижения выглядят не менее фантастично.

Так, в японской лаборатории Matsushita Electric научились получать ток напрямую из крови человека. Дело в том, что она полна электронов от ферментного окисления глюкозы. А тот же Нунупаров предлагает использовать для получения электричества не только наши движения, но и те лишние отложения жировых тканей, что нас так сильно раздражают у зеркала и на фотографиях. По его подсчетам, одного грамма такого жирка хватит на подзарядку аж четырех батареек АА. Без труда можно подсчитать, что брюхо среднего европейского мужчины может питать до 40 тыс. батареек, что представляет из себя внушительный запас электричества. Остается только решить, насколько выгодней производить человеку жир для энергетических целей?

Но все вышеописанное не идет ни в какие сравнения с тем, как собираются решить энергетический вопрос в Лондонском музее науки. Как и полагается настоящим деятелем науки, руководство музея решило найти консенсус между тремя миллионами посетителей в год и огромными счетами за электроэнергию. В отличие от безобидных японских турникетов, которые вырабатывают электричество, когда сквозь них проходят клиенты железнодорожной станции, англичане решили использовать обед посетителей. Впрочем, как и завтрак и ужин. В общем, все, что осталось в кишечнике.

Кто-то мозговитый решил, что слишком большое расточительство выкидывать содержимое унитазов в сточные воды, ведь это содержимое творят три миллиона человек в год. Это ж сколько можно добра сделать! Было подсчитано, если грамотно использовать данные продукты жизнедеятельности, то из счетов за электроэнергию можно будет вычеркнуть около 15000 лампочек, которые смогут «освещать», посетители музейных унитазов.

Нечто подобное придумали сингапурские ученые. Они решили ограничиться небольшим - мочой. Группа Института биотехнологий и нанотехнологий изобрела бумагу, состоящую из вымоченного в дихлориде меди бумажного слоя между полосками магния и меди. Когда на это чудо попадает всего 0,2 мл. мочи, вырабатывается 1,5-вольтовое напряжение с солидной мощностью. Об использовании такой батареи в промышленных генерациях электричество никто пока не говорит. Изначально стояла цель создать медицинские приборы, способные самостоятельно делать анализ мочи без посторонних источников энергии.

Киборги - они заполонили всю планету...

1. Человек - это электрическая система. Существуют определённые законы, которым подчиняется движение электрического тока внутри человеческого организма. Организм человека и животного - это электрические системы, где существует генератор электричества, проводники (периферическая нервная система), объекты частичного поглощения биотоков (внутренние органы) и объекты полного поглощения биотоков (акупунктурные точки).
В теле животного есть свои «электростанции» (головной мозг, сердце, сетчатка глаза, внутреннее ухо, вкусовые рецепторы и т. д.), «линии электропередач» (нервные ветви различной толщины), «потребители» биотоков (мозг, сердце, легкие, печень, почки, желудочно-кишечный тракт, железы внутренней секреции, мышцы и т. д.) и поглотители балластного электричества (в виде биологически активных точек, расположенных под кожей).

Если рассматривать человеческий организм с «технических» позиций, то человек является автономной саморегулирующейся электрической системой .
Физика называет три главных составных части электрической цепи: производитель электрического тока (генератор), система электропередачи (проводники тока) и потребитель (поглотитель) электричества. Например, электростанция вырабатывает электрический ток, линия электропередач (ЛЭП) передает электричество на большие расстояния потребителю (заводу, фабрике, жилым домам и т.д.). Из физики электричества известно, что электрический ток в цепи будет проходить только в том случае, если на одном конце проводника образовался избыток электронов, а на другом конце их недостаток. Электроток движется от плюсового электрического заряда к минусовому. Условия для движения электротока не возникнут до тех пор, пока в электрической цепи не появится разность потенциалов .

Генератор электричества создает избыток электронов в одном месте, а потребители электричества играют роль непрерывных поглотителей электронов. Если бы потребители электричества не поглощали электроны, а постепенно их накапливали, то с течением времени их потенциал сравнялся бы с электрическим потенциалом генератора, и тогда движение электричества в цепи прекратилось бы. Поэтому первый закон электрофизики можно сформулировать следующим образом: для движения электрических токов в цепи обязательно необходимо присутствие трёх составных частей
- в виде генератора (электрического плюса), который вырабатывает электроны,
- проводника тока, который передает электроны с одного места в другое,
- и потребителя электричества (электрического минуса), который поглощает электроны.

Хорошо известно, что благодаря биотоку, движущемуся по нервным тканям, происходит перистальтика кишечника, сокращение мышечной ткани сердца, работа мышечно-суставного аппарата (благодаря которой человек ходит, совершает трудовую деятельность). Мышление и проявление эмоций осуществляется также вследствие движения биотоков по нервным клеткам коры головного мозга. Поступление биотоков по нервным стволам к речевому аппарату делает возможным общение людей друг с другом. Биоимпульсы, исходящие из головного мозга, регулируют синтез белков в печени, гормонов в железах внутренней секреции, влияют на выделительную функцию почек, устанавливают периодичность дыхательных движений. Человека в целом надо воспринимать как сложную электротехническую (кибернетическую) систему, которая способна к умственной и физической деятельности и размножению. Конечно, «электротехническое» строение живого организма значительно сложнее, чем банальная электрическая цепь. Но общие принципы их деятельности одинаковы.

2. О генераторах электричества человеческого организма. Животные организмы имеют два вида генераторов электричества: внутренние и наружные . К внутренним относятся мозг и сердце, к наружным пять органов чувств (зрения, слуха, вкуса, обоняния и осязания).
В головном мозге биотоки вырабатываются в том месте, где располагается ретикуло-эндотелиальная формация. От головного мозга биотоки поступают в спинной мозг, а оттуда по нервным сплетениям направляются ко всем органам и тканям. Далее очень мелкие нервы проникают во все органы грудной и брюшной полости, в кости, мышцы, сосуды, связки туловища и конечностей. Нервные ткани являются специфическими проводниками биотоков. В виде тончайшей сеточки они пронизывают все органы и ткани организма. В конце своего пути биотоки покидают нервные окончания и переходят в межклеточное пространство неспецифических проводников электричества внутренних органов, мышц, сосудов, кожи и т. д. Все ткани человеческого тела состоят на 95 % из воды с растворенными в ней солями. Поэтому живые ткани являются прекрасными проводниками электричества.

В сердце биотоки генерируются в синатриальном узле. От него концентрированный поток электронов проходит по пучку Гисса, нервные ветви которого заканчиваются клетками Пуркинье, диффузно расположенными в миокарде. Клетки Пуркинье передают биоимпульсы к мышечным клеткам сердца. Под действием биоимпульсов происходит сжатие сердечной мышцы. Далее сердечные биотоки покидают пределы сосредоточения и «растекаются» по всему телу. Благодаря этому электрокардиограф фиксирует наличие биотоков на контактных металлических пластинках, которые соприкасаются с кожей грудной клетки, ног и рук.

Внутри глаза также имеется специфический генератор биотоков в виде сетчатки. Когда свет попадает на сетчатку глаза, возникает поток электронов, который дальше распространяется по зрительному нерву и передается в кору головного мозга. Благодаря выработке биотоков сетчаткой глаза, человек получает возможность видеть окружающий мир. Зрение дает более 80 % информации для человека.

Внутреннее ухо является генератором электроимпульсов, которые возникают при воздействии звуковых волн. Чувствительные слуховые клетки кортиева органа расположены на основной мембране внутреннего уха (улитка) и приходят в возбуждение при колебаниях основной мембраны. Из улитки биотоки проходят по слуховому нерву в продолговатый мозг, а дальше в кору головного мозга.

Кожные рецепторы воспринимают прикосновение, давление, болевое раздражение, холодовое и тепловое воздействие. При гистологическом исследовании в коже обнаружено большое количество нервных окончаний в виде кисточек, корзинок, розеток, окруженных капсулой. Тактильную чувствительность воспринимают клетки Меркеля, Фатера-Пачини и тельца Мейснера. Свободные окончания осевых цилиндров в виде заострений и пуговчатых утолщений воспринимают болевую чувствительность. Колбы Краузе, тельца Мейснера и Руффини воспринимают чувство холода и тепла. На 1 квадратном сантиметре кожи находится 200 болевых рецепторов, 20 тактильных, 12 холодовых и 2 тепловых. Воздействие давления, тепла, холода, укола и других видов травмы на эти кожные рецепторы приводит к возникновению биоимпульсов, которые по мелким и крупным нервным стволам передаются в спинной мозг, далее в продолговатый мозг и кору полушарий. Кожные рецепторы относятся к самым мелким генераторам электричества в организме человека.

Обонятельные нервы берут свое начало на так называемых митральных клетках обонятельной луковицы. Воздействие пахучих веществ на эти клетки приводит к возникновению биоимпульсов. Нервные обонятельные клетки заканчиваются в грушевидной извилине коры головного мозга.
Вкусовые рецепторы расположены на языке и представлены микроскопическими «вкусовыми почками», которые объединяются во вкусовые сосочки. При воздействии химических веществ вкусовые сосочки языка вырабатывают биоимпульс, т.е. вкусовые сосочки играют роль генераторов электрического тока. Вкусовые нервы относятся к волокнам лицевого, языкоглоточного и блуждающего нервов. По ним биоимпульсы проходят к таламусу и заканчиваются в опекулярной области коры головного мозга. В этой области возникают электропотенциалы после раздражения вкусовых рецепторов химическими веществами.
Если все электричество, которое вырабатывается соответствующими тканями на протяжении суток принять за 100 %, то 50 % этого количества вырабатывает сердце, 40 % - мозг, и только 10 % органы чувств (сетчатая оболочка глаза 7 %, внутреннее ухо - 2 %, и 1 % тактильные, обонятельные и вкусовые рецепторы). Конечно, если человек перенёс сильную травму, то тогда болевые рецепторы (тактильные органы чувств) могут выработать до 90 % всего количества биоимпульсов, выработанных человеком за сутки.

второй закон биоэлектрофизики : в организме человека имеется 7 биологических генераторов биотоков. Физиологические исследования нервных тканей давно установили факт существования двух различных по функциональной деятельности нервных клеток: эфферентных и афферентных. В эфферентной электрической цепи биотоки распространяются от центра (мозга) к периферии (кожным покровам), проходя через все внутренние органы и ткани. В афферентных путях биотоки распространяются от внешних генераторов электричества (органов чувств) к центральной нервной системе (сначала к спинному, а потом к головному мозгу). Это положение относится ко второму закону биоэлектрофизики.
3. Траектория движения балластного (отработанного) электричества от сердца и мозга. Теперь обратим внимание на явление, которое фактически никогда не исследовалось физиологией нервной ткани. Биотоки генерируются в живом организме с целью передачи информации, закодированной в синусоидальном электрическом биопотенциале. Они проводят биотоки по эфферентным нервным клеткам, от центральной нервной системы к внутренним органам и тканям (и, в конце концов, электричество поступает к кожным покровам). Это может быть информация-команда об усилении перистальтики кишечника, о рвотной реакции, об увеличении выделения желудочного сока, об уменьшении выделения гормональных веществ, о сокращении определенной группы мышц и так далее. Все внутренние органы и ткани «прочитывают» информацию, заложенную в биоимпульсе, соответствующим образом реагируют, а потом этот поток биотоков становится ненужным организму, и подлежит ликвидации. Клетки воспринимают информацию биоимпульса, и после этого в его существовании не нуждаются. Далее по межклеточному пространству биотоки поступают на кожу.

Интересны последние исследования автора книги. Им установлено, что в головном мозгу происходит медленное накопление «балластных электронов » в связи с активной умственной деятельностью. Это вызывает «мыслительную усталость» человека, заторможенность мышления и действий, плохую память. В мозгу к концу дня (перед сном) «застревает» внутри нервных тканей около 15 % статического, отработанного электричества. Вредное статическое электричество покидает клетки мозга (почему-то) только ночью, во время сна . К акупунктурным точкам головы во время сна устремляются потоки «застрявших» днём статических электронов в клетках головного мозга. Организм человека требует сна потому, что мозг должен «разрядить» накопившийся в нем электрический заряд, который (почему-то) покидает клетки головного мозга и уничтожается акупунктурными точками только во время сна . Это факт указывает на несовершенство клеток мозга, так как эти клетки за миллиарды лет своей эволюции не выработали для себя электрического или биохимического механизма для полного, 100 % - ого удаления из своего тела отработанных, «статических» электронов в дневное время суток, во время бодрствования человека. Если бы такой механизм существовал, то сон для людей был бы не нужен.

Сердце , как и мозг , также является сильнейшей электростанцией нашего организма, однако из нервных и мышечных клеток сердца во время сна не выбрасывается поток «застрявших ранее» электронов. Это точно установлено, благодаря экспериментам по измерению потенциалов, исходящих от сердца ночью. Следовательно, нервные и мышечные клетки сердечной мышцы не накапливают внутри себя балластное электричество, а все биотоки выводятся за свои пределы в межклеточное пространство во время дневной деятельности. Тогда можно утверждать, что мозг днём работает, а ночью отдыхает (выбрасывает вредные биотоки из своих клеток), а сердце - работает и днём и ночью! И ещё можно сделать один вывод о том, что нервные клетки сердца у человека более совершенны , чем нервные клетки мозга. Следовательно сердце (как орган) у всех животных более раннее и более совершенное образование, чем мозг.

4. Траектория движения балластного (отработанного) электричества от пяти органов чувств (зрения, слуха, вкуса, обоняния и осязания). Как уже упоминалось, существуют еще и наружные генераторы тока в виде пяти органов чувств. Они проводят биотоки по афферентным нервным клеткам от поверхности тела к центральной нервной системе. Какова судьба этих биотоков? Возможно, они полностью поглощаются в коре головного мозга без образования «шлаковых» биотоков? Нейрофизиологами проведено большое количество опытов по исследованию электроэнцефалограмм (ЭЭГ) при воздействии вспышки яркого света (исследовались биотоки от глаза), сильного звука (исследовались биотоки от внутреннего уха), пахучих веществ (исследовались биотоки от обонятельных клеток), химических веществ на слизистую языка (исследовались биотоки от вкусовых рецепторов) и болевого симптома (исследовались биотоки от осязательных рецепторов). Во всех случаях энцефалограф отмечал множественные изменения биотоков, исходящих от мозга к коже головы. Надо обратить внимание, что энцефалограф воспринимает электрические импульсы не от глубинных участков мозга, а от кожных покровов головы! Следовательно, эти опыты доказывают, что биоимпульсы от органов чувств по афферентным нервам поступают в головной мозг, передают информацию коре головного мозга, а дальше в виде балластного электричества токи проникают на поверхность кожи через кости черепа и мягкие ткани головы.

5. Токи стремятся к "кожной" периферии тела. Итак, все органы и ткани поглощают только 5 % пришедших к ним биотоков, а 95 % электрического потенциала становится «ненужным балластом» и он со скоростью 200 метров в секунду перетекает на кожу. Почему все биотоки (полностью, на 100 %) не поглощаются органом, которому они предназначены? Почему генераторы биотоков вырабатывают избыточное количество электроэнергии, а не ровно столько, сколько требуется для передачи какой-то информации органу? Неужели природа создала затратный механизм электроснабжения живых организмов? На все эти вопросы автор дает ответы в следующих параграфах.
Итак, можно констатировать факт существования большого количества «балластного» электричества внутри и на поверхности человеческого тела. Постоянное поступление «отработанных» биотоков на поверхность живого организма является третьим законом биоэлектрофизики.
Что заставляет все биотоки организма заканчивать свое движение на кожных покровах тела? Ответ на этот вопрос дает следующий физический эксперимент.

6. Физический эксперимент. Теперь обратим внимание на эксперимент, который проводится на уроках физики с учениками средней школы. Для опыта берется полый металлический шар с толстой стенкой (около сантиметра), который имеет небольшое круглое отверстие «в днище».
(Смотрите рисунок 1).
При помощи эбонитовой палочки заряжаем статическим электричеством металлический шар изнутри, прикасаясь к точкам Д, Е и К. Сразу после подзарядки при помощи прибора измеряем электрический потенциал в этих точках. К большому изумлению учащихся, прибор показывает отсутствие электрического потенциала на внутренней поверхности шара (в точках Д, Е и К). Как бы сильно мы ни заряжали внутреннюю поверхность шара, она всегда оказывается электрически нейтральной. В то же время прибор фиксирует наличие высокого электрического потенциала на наружной поверхности шара, в том числе и в точках А, В, С, несмотря на то, что с наружной поверхности железный шар не насыщался статическими электронами. На основании этого опыта можно сделать очень важный вывод: при насыщении электрическими зарядами внутренней «зоны» какого-то тела весь потенциал будет быстро перетекать на наружную поверхность тела. Интересно отметить, что любые попытки направить хотя бы часть электрического потенциала с наружной поверхности шара (от точек А, В, С) на внутреннюю поверхность (к точкам Д, Е, К) не осуществимы.

Рисунок 1. Полый металлический шар.

Подчиняясь этому электрофизическому закону, балластное электричество человеческого тела неудержимо стремится от внутренних органов на периферию тела - к кожным покровам! Далее эндогенное электричество «растечется» по всей поверхности кожных покровов, покроет «одинаковым количеством электронов» каждый квадратный сантиметр кожи. Если из металла отлить фигурку человека с отведенными в сторону руками и ногами, то стремление электрических зарядов занять самые наружные поверхности выразится следующим образом. Более 80 % электрических зарядов располагаются на стопах ног, кистях рук и волосистой части головы. Лишь 20 % зарядов останутся на туловище (спине, животе), плечах и бедрах. Можно предположить, что из-за более низкой электропроводимости живых тканей (по сравнению с металлом) поведение эндогенного электричества в чем-то будет отличаться, но эти отличия не будут выражены очень резко.
Из сказанного можно сформулировать четвертый закон биоэлектрофизики: свободные электрические заряды всегда стремятся быстро покинуть внутренние «районы» металлического проводника (внутренние органы и ткани человеческого тела), и стремятся расположиться на поверхности металлического проводника (на поверхности проводящего электричество металлического провода, на коже). Электрики хорошо знают, что электрический ток распространяется по самой наружной оболочки железного помещения, и никогда не будет поражен электричеством человек, который находится внутри железного помещения. На протяжении жизни (животного или человека) происходит непрерывное поступление «отработанных» биотоков из внутренней среды организма к его наружной (периферической) поверхности. Если бы кожные покровы не осуществляли процесс утилизации электрического тока, то каждый человек стал бы носителем сильного заряда статического электричества. Однако накопление электрического заряда на поверхности тела не происходит. Кстати, существуют животные, которые накапливают эндогенное электричество на своей поверхности и при нападении на другое животное (или человека) поражают его смертельным ударом электрического тока. Это морские рыбы: электрический скат, электрический угорь и другие.

6. Где в организме электрический "плюс", а где "минус"? Великий физиолог И.П. Павлов утверждал, что в том месте, где возникает электричество (в ЦНС), там оно и поглощается. То есть, он полагал, что в ЦНС, как и в электрической батарее, существуют ткани вырабатывающие электричество (генератор, плюсовой потенциал) и ткани, поглощающие электричество (минусовой потенциал). Движение биотоков осуществляется по кругу: от генератора электричества, «от плюса» - к эфферентным нервным волокнам, после чего перетекают к органу.

Все биотоки в этой схеме не выходят за пределы нервных тканей, не покидают нервных клеток, «вооруженных» надежной электроизоляцией в виде жировой шванновской оболочки. Правда, тогда становится не понятна судьба электричества, выработанного в сердце. Ведь сердечные биотоки никак не могут попасть в ЦНС для своей «ликвидации».

К большому сожалению, «павловская рефлекторная дуга» является несостоятельной. Павловской рефлекторной дугой (точнее - Павловским кольцом) можно объяснить движение биотоков, вырабатываемых в ЦНС, но невозможно объяснить движение биотоков от сердца и пяти органов чувств.

Она не дает объяснения на вопрос: почему все биотоки можно регистрировать на поверхности кожи?

Ведь по Павловской теории биотоки не должны покидать нервные волокна, имеющие прекрасные жировые изоляторы вокруг своего электропроводящего волокна. Но почему тогда электрические приборы определяют наличие электрических потенциалов на поверхности кожи, исходящих от сердца (электрокардиограмма, ЭКГ) и от мозга (электроэнцефалограмма, ЭЭГ)?

Реальная схема распространения биотоков в организме животного и человека имеет вид движения только в одну сторону: или от центра к периферии, или от периферии к центру. Павловская теория игнорирует тот физиологический факт, что эфферентные нервные клетки имеют свой генератор биотоков в ЦНС и в сердце, и свой конечный путь, прерывающийся в глубинах внутренних органов и тканях. Афферентные же нервные волокна имеют совершенно другие генераторы энергии на поверхности организма (кожа, глаз, язык, нос, ухо) в 5 органах чувств, а прерываются они в центральной нервной системе.
Отсюда видно, что замкнутого цикла движения биотоков в природе не существует, а теория рефлекторной дуги подлежит коррекции.
Современные взгляды в электрофизиологии опровергают Павловскую модель «электроснабжения» органов и тканей.
Pазница механизма поглощения электричества промышленными потребителями (заводами, фабриками, городами) и животными организмами состоит в следующем: технические потребители электричества выступают одновременно в ролях и потребителя, и поглотителя электричества. В живом организме эти две функции разделены. Внутренние органы человеческого организма являются потребителями биоимпульсов, а кожные покровы выступают в роли поглотителей электронов (балластных, статических биотоков).
Как показывают мои исследования, если по нерву подается импульс по направлению к какому-то органу с силой тока, который можно принять за 100 %, то орган поглощает не более 5 % электрической энергии, а около 95 % потенциала покидает орган и быстро перетекает на кожу.

В электрической физике каждая батарейка имеет плюсовой потенциал с избытком электронов и минусовой потенциал, где электроны поглощаются. В человеческом организме избыток электронов создают биологические генераторы тока.

Локализация генераторов электричества внутри человеческого организма ученым хорошо известна. А вот места, где поглощаются биоимпульсы, установлены только сейчас. Оказывается, все электроны, которые генерирует организм в своем теле после передачи клеткам ценной информации, поступают на периферию организма по межклеточному пространству.
Вот для чего организму нужно содержать раствор поваренной соли (NaCl) в крови и межклеточном пространстве.
Вот почему пища без соли «не вкусная».

В мозгу к концу дня (перед сном) застревает около 15 % статического электричества, выработанного ретикуло-эндотелиальной формацией на протяжение дня. По-видимому, во время труда в мозгу человека работают в автономном режиме сотни «программ»: память, внимание, интуиция, напряжение мышления, слуха, зрения, разрабатывается система определенной очередности целенаправленных действий. Работа всей «компьютерной сети мозга» требует энергетических затрат на протяжении всего периода бодрствования. Только после того, как человек заснул, оперативная работа «компьютерной сети мозга» отключается, и биотоки «гасятся». Во время сна необходимость работы «компьютерной сети мозга» отпадает и (теперь уже балластное, вредное, статическое) электричество покидает клетки мозга.

Человек имеет далеко не идеальную электротехническую систему, несмотря на 3 миллиарда лет ее непрерывной эволюции. Такую расточительность и несовершенство живых тканей можно объяснить (а точнее - оправдать) следующими причинами.
Во-первых, неадекватно высокий электрический потенциал вырабатывают электростанции организма с целью быстрого прохождения биотока от начального нервного волокна через десятки синаптических щелей и вторичных нервных волокон к иннервируемому органу.

Во-вторых, объяснение выработки чрезмерно большего электрического потенциала в организме человека и животного, состоит в том, что балластные электроны в акупунктурных точках при своем «уничтожении» дают организму тепло, то есть электрическая энергия не исчезает бесследно, а превращается в тепловую энергию. К такому заключению автор этой книги пришёл после экспериментального измерения температуры в точках акупунктуры. Оказалось, что при температуре окружающей среды в 18 ° по Цельсию кожные покровы человека имеют максимальную температуру 36,6 ° - 36,8 ° исключительно и непосредственно над точками акупунктуры, а кожные покровы вокруг точки имеют температуру ниже на 0,5 - 2 градуса.

Это доказывает факт участия точек акупунктуры в процессе образование тепла для организма. Ведь охлаждение тела всегда начинается с периферии, с кожных покровов. Природа «позаботилась» о том, чтобы генераторы тепла находились на самой периферии организма - в кожных покровах. Животные 100 миллионов лет назад (в том числе и динозавры) имели механизм интенсивного охлаждения тела через испарение воды с кожных покровов, но не имели механизма выработки (генерации) тепла. Тогда окружающая среда (воды океанов и воздух атмосферы) была чрезмерно нагрета до 50 ° - 70 ° С. Но уже 100 миллионов лет назад началось медленное охлаждение поверхности Земли. Теплокровные животные на Земле появились около 70 миллионов лет тому назад, когда началось быстрое охлаждение поверхности планеты. Внутри животных организмов появились сложные биохимические механизмы эндогенного (внутреннего) образования тепла.

Благодаря длительным эволюционным процессам начали вырабатывать тепло 1700 акупунктурных точек, расположенных равномерно по всей поверхности кожи человека и животного. Те животные, которые 70 миллионов лет назад смогли «обзавестись» собственными генераторами тепла - выжили и продолжают развиваться. Все остальные животные, в том числе и крупные динозавры, погибли от холода.

Из сказанного можно сформулировать пятый закон биоэлектрофизики : в животном организме произошло разделение процесса потребления биотоков органами от процесса их уничтожения на поверхности кожи. Избыток электрической энергии возникает внутри электрических генераторов (сердца, мозга, 5 органов чувств), потребляют биотоки все органы и ткани человека, а поглощение электронов осуществляется внутри акупунктурных точек на поверхности кожных покровов.

Кроме того, на основании вышесказанного можно сформулировать и шестой биоэлектрофизический закон : все биотоки, вырабатываемые в организме человека, концентрируются в кожных покровах, где ликвидируются (утилизируются, поглощаются) благодаря специфической деятельности биологически активных точек.
Поэтому было бы правильнее назвать точки акупунктуры аннигиляционными точками, или точками - электропоглотителями.
Интересно, что древние китайские медики совершенно правильно истолковывали функциональную деятельность акупунктурных точек, придавая им энергетическое значение. Однако дальнейшие объяснения древних китайских врачей не согласуются с современными научными понятиями и больше похожи на мистику. По их мнению, акупунктурные точки являются отверстиями в теле человека, через которые происходит обмен энергии с окружающей средой и с космосом. Через эти «окна в теле» и через вставленные в кожу иглы энергия «улетает» в космос, когда существует ее переизбыток в организме. Если организм ощущает недостаток энергии, то она может, благодаря лечению, пополняться, медленно «всасываясь» в тело из космического пространства. Только через окна в теле человека (то есть через акупунктурные точки) проникают в организм патогенные климатические факторы внешней среды (Ветер, Жара, Холод, Влага и Сухость), и исключительно по этой причине возникают болезни у человека, так как эти «патогены» нарушают энергетическую гармонию в организме.

ВЫВОД. Теперь сделаем общий вывод из сказанного. Человек является замкнутой электрической системой. Внутри него вырабатываются электрические токи различных частот в 7 биологических электростанциях: в сердце, в мозге и в пяти органах чувств. Сначала биотоки по нервным клеткам несут информацию к специфическим для них клеткам человеческого тела, к органам и тканям. Организм человека поглощает только 5 % общей энергии. На заключительном этапе судьба 95 % электричества состоит в следующем. После передачи информации клеткам соответствующих органов, электричество устремляется по межклеточному пространству к кожным покровам, где аннигилируется акупунктурными точками. Все электричество, которое вырабатывается внутри человеческого организма (и организма животного) поглощается его же тканями. Ни один электрон, произведенный внутри живого организма, не покидает человеческое тело, и не переходит в окружающую среду, а поглощается кожей. Этим и обусловлена замкнутость электрической системы человека. Организм сам поглощает все электричество, которое ранее он же и произвел, генерировал.

Отсюда

Расскажите об электрических рыбах. Какой величины ток они вырабатывают?

Электрический сом.

Электрический угорь.

Электрический скат.

В. Кумушкин (г. Петрозаводск).

Среди электрических рыб первенство принадлежит электрическому угрю, живущему в притоках Амазонки и других реках Южной Америки. Взрослые особи угря достигают двух с половиной метров. Электрические органы - преобразованные мышцы - располагаются у угря по бокам, простираясь вдоль позвоночника на 80 процентов всей длины рыбы. Это своеобразная батарея, плюс которой находится в передней части тела, а минус - в задней. Живая батарея вырабатывает напряжение около 350, а у самых крупных особей - до 650 вольт. При мгновенной силе тока до 1-2 ампер такой разряд способен свалить с ног человека. С помощью электрических разрядов угорь защищается от врагов и добывает себе пропитание.

В реках Экваториальной Африки обитает другая рыба - электрический сом. Размеры его поменьше - от 60 до 100 см. Специальные железы, вырабатывающие электричество, составляют около 25 процентов общего веса рыбы. Электрический ток достигает напряжения 360 вольт. Известны случаи электрического шока у людей, купавшихся в реке и нечаянно наступивших на такого сома. Если электрический сом попадается на удочку, то и рыболов может получить весьма ощутимый удар током, прошедшим по мокрым леске и удилищу к его руке.

Однако умело направленные электрические разряды можно использовать в лечебных целях. Известно, что электрический сом занимал почетное место в арсенале народной медицины у древних египтян.

Вырабатывать весьма значительную электрическую энергию способны и электрические скаты. Их насчитывается более 30 видов. Эти малоподвижные обитатели дна, размером от 15 до 180 см, распространены главным образом в прибрежной зоне тропических и субтропических вод всех океанов. Затаившись на дне, иногда наполовину погрузившись в песок или ил, они парализуют свою добычу (других рыб) разрядом тока, напряжение которого у разных видов скатов бывает от 8 до 220 вольт. Скат может нанести значительный удар током и человеку, случайно соприкоснувшемуся с ним.

Помимо электрических зарядов большой силы рыбы способны вырабатывать и низковольтный, слабый по силе ток. Благодаря ритмическим разрядам слабого тока с частотой от 1 до 2000 импульсов в секунду, они даже в мутной воде превосходно ориентируются и сигнализируют друг другу о возникающей опасности. Таковы мормирусы и гимнархи, обитающие в мутных водах рек, озер и болот Африки.

Вообще же, как показали экспериментальные исследования, практически все рыбы, и морские, и пресноводные, способны излучать очень слабые электрические разряды, которые можно уловить лишь с помощью специальных приборов. Эти разряды играют важную роль в поведенческих реакциях рыб, особенно тех, которые постоянно держатся большими стаями.

Направленное (упорядоченное) движение частиц, носителей электрического заряда, в электромагнитном поле.

Что такое электрический ток в разных веществах? Примем, соответственно, движущиеся частицы:

  • в металлах - электроны,
  • в электролитах - ионы (катионы и анионы),
  • в газах - ионы и электроны,
  • в вакууме при определённых условиях - электроны,
  • в полупроводниках - дырки (электронно-дырочная проводимость).

Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля.

Электрический ток проявляется следующим образом:

  • нагревает проводники (явление не наблюдается в сверхпроводниках);
  • изменяет химический состав проводника (данное явление в первую очередь характерно для электролитов);
  • создает магнитное поле (проявляется у всех без исключения проводников).

Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический ""ток проводимости"". Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют ""конвекционным"".

Токи различают на постоянный и переменный. Также существуют всевозможные разновидности переменного тока. При определении видов тока слово «электрический» опускают.

  • Постоянный ток - ток, направление и величина которого не меняются во времени. Может быть пульсирующий, например выпрямленный переменный, который является однонаправленным.
  • Переменный ток - электрический ток, изменяющийся во времени. Под переменным током понимают любой ток, не являющийся постоянным.
  • Периодический ток - электрический ток, мгновенные значения которого повторяются через равные интервалы времени в неизменной последовательности.
  • Синусоидальный ток - периодический электрический ток, являющийся синусоидальной функцией времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. Любой периодический несинусоидальный ток может быть представлен в виде комбинации синусоидальных гармонических составляющих (гармоник), имеющих соответствующие амплитуды, часто́ты и начальные фазы. В этом случае Электростатический потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
  • Квазистационарный ток - относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов. Этими законами являются закон Ома, правила Кирхгофа и другие. Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры. Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.
  • Ток высокой частоты - переменный ток, (начиная с частоты приблизительно в десятки кГц), для которого становятся значимыми такие явления, которые являются либо полезными, определяющими его применение, либо вредными, против которых принимаются необходимые меры, как излучение электромагнитных волн и скин-эффект. Кроме того, если длина волны излучения переменного тока становится сравнимой с размерами элементов электрической цепи, то нарушается условие квазистационарности, что требует особых подходов к расчёту и проектированию таких цепей.
  • Пульсирующий ток - это периодический электрический ток, среднее значение которого за период отлично от нуля.
  • Однонаправленный ток - это электрический ток, не изменяющий своего направления.

Вихревые токи

Вихревые токи (или токи Фуко) - замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитный поток, поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.

Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока. Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов. При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.

Характеристики

Исторически принято, что """направление тока""" совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц.

Дрейфовая скорость электронов

Дрейфовая скорость направленного движения частиц в проводниках, вызванного внешним полем, зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. За 1 секунду электроны в проводнике перемещаются за счёт упорядоченного движения меньше чем на 0,1 мм. Несмотря на это, скорость распространения собственно электрического тока равна скорости света (скорости распространения фронта электромагнитной волны). То есть то место, где электроны изменяют скорость своего движения после изменения напряжения, перемещается со скоростью распространения электромагнитных колебаний.

Сила и плотность тока

Электрический ток имеет количественные характеристики: скалярную - силу тока, и векторную - плотность тока.

Сила ток а - физическая величина, равная отношению количества заряда

Прошедшего за некоторое время

через поперечное сечение проводника, к величине этого промежутка времени.

Сила тока в СИ измеряется в амперах (международное и русское обозначение: A).

По закону Ома сила тока

на участке цепи прямо пропорциональна электрическому напряжению

Приложенному к этому участку цепи, и обратно пропорциональна его сопротивлению

Если на участке цепи электрический ток не постоянный, то напряжение и сила тока постоянно изменяется, при этом у обычного переменного тока средние значения напряжения и силы тока равны нулю. Однако средняя мощность выделяемого при этом тепла нулю не равна.

Поэтому применяют следующие понятия:

  • мгновенные напряжение и сила тока, то есть действующие в данный момент времени.
  • амплитудные напряжение и сила тока, то есть максимальные абсолютные значения
  • эффективные (действующие) напряжение и сила тока определяются тепловым действием тока, то есть имеют те же значения, которые они имеют у постоянного тока с таким же тепловым эффектом.

Плотность тока - вектор, абсолютная величина которого равна отношению силы тока, протекающего через некоторое сечение проводника, перпендикулярное направлению тока, к площади этого сечения, а направление вектора совпадает с направлением движения положительных зарядов, образующих ток.

Согласно закону Ома в дифференциальной форме плотность тока в среде

пропорциональна напряжённости электрического поля

и проводимости среды

Мощность

При наличии тока в проводнике совершается работа против сил сопротивления. Электрическое сопротивление любого проводника состоит из двух составляющих:

  • активное сопротивление - сопротивление теплообразованию;
  • реактивное сопротивление - сопротивление, обусловленное передачей энергии электрическому или магнитному полю (и обратно).

Как правило, большая часть работы электрического тока выделяется в виде тепла. Мощностью тепловых потерь называется величина, равная количеству выделившегося тепла в единицу времени. Согласно закону Джоуля - Ленца мощность тепловых потерь в проводнике пропорциональна силе протекающего тока и приложенному напряжению:

Мощность измеряется в ваттах.

В сплошной среде объёмная мощность потерь

определяется скалярным произведением вектора плотности тока

и вектора напряжённости электрического поля

в данной точке:

Объёмная мощность измеряется в ваттах на кубический метр.

Сопротивление излучению вызвано образованием электромагнитных волн вокруг проводника. Это сопротивление находится в сложной зависимости от формы и размеров проводника, от длины излучаемой волны. Для одиночного прямолинейного проводника, в котором везде ток одного направления и силы, и длина которых L значительно меньше длины излучаемой им электромагнитной волны

Зависимость сопротивления от длины волны и проводника относительно проста:

Наиболее применяемому электрическому току со стандартной частотой 50 ""Гц"" соответствует волна длиной около 6 тысяч километров, именно поэтому мощность излучения обычно пренебрежительно мала по сравнению с мощностью тепловых потерь. Однако, с увеличением частоты тока длина излучаемой волны уменьшается, соответственно возрастает мощность излучения. Проводник, способный излучать заметную энергию, называется антенной.

Частота

Понятие частоты относится к переменному току, периодически изменяющему силу и/или направление. Сюда же относится наиболее часто применяемый ток, изменяющийся по синусоидальному закону.

Период переменного тока - наименьший промежуток времени (выраженный в секундах), через который изменения силы тока (и напряжения) повторяются. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц (Гц) соответствует одному периоду в секунду.

Ток смещения

Иногда для удобства вводят понятие тока смещения. В уравнениях Максвелла ток смещения присутствует на равных правах с током, вызванным движением зарядов. Интенсивность магнитного поля зависит от полного электрического тока, равного сумме тока проводимости и тока смещения. По определению, плотность тока смещения

Векторная величина, пропорциональная скорости изменения электрического поля

во времени:

Дело в том, что при изменении электрического поля, также как и при протекании тока, происходит генерация магнитного поля, что делает эти два процесса похожими друг на друга. Кроме того, изменение электрического поля обычно сопровождается переносом энергии. Например, при зарядке и разрядке конденсатора, несмотря на то, что между его обкладками не происходит движения заряженных частиц, говорят о протекании через него тока смещения, переносящего некоторую энергию и своеобразным образом замыкающего электрическую цепь. Ток смещения

в конденсаторе определяется по формуле:

Заряд на обкладках конденсатора,

Электрическое напряжение в между обкладками,

Электрическая ёмкость конденсатора.

Ток смещения не является электрическим током, поскольку не связан с перемещением электрического заряда.

Основные типы проводников

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Металлы - здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма - ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.

Электролиты - жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока. Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.

Электрические токи в природе


Атмосферное электричество - электричество, которое содержится в воздухе. Впервые показал присутствие электричества в воздухе и объяснил причину грома и молнии Бенджамин Франклин.

В дальнейшем было установлено, что электричество накапливается в сгущении паров в верхних слоях атмосферы, и указаны следующие законы, которым следует атмосферное электричество:

  • при ясном небе, так же как и при облачном, электричество атмосферы всегда положительное, если на некотором расстоянии от места наблюдения не идёт дождь, град или снег;
  • напряжение электричества облаков становится достаточно сильным для выделения его из окружающей среды лишь тогда, когда облачные пары сгущаются в дождевые капли, доказательством чего может служить то, что разрядов молний не бывает без дождя, снега или града в месте наблюдения, исключая возвратный удар молнии;
  • атмосферное электричество увеличивается по мере возрастания влажности и достигает максимума при падении дождя, града и снега;
  • место, где идёт дождь, является резервуаром положительного электричества, окружённым поясом отрицательного, который, в свою очередь, заключён в пояс положительного. На границах этих поясов напряжение равно нулю.

Движение ионов под действием сил электрического поля формирует в атмосфере вертикальный ток проводимости со средней плотностью, равной около (2÷3)·10 −12 А/м².

Полный ток, текущий на всю поверхность Земли, при этом составляет приблизительно 1800 А.

Молния является естественным искровым электрическим разрядом. Была установлена электрическая природа полярных сияний. Огни святого Эльма - естественный коронный электрический разряд.

Биотоки - движение ионов и электронов играет весьма существенную роль во всех жизненных процессах. Создаваемый при этом биопотенциал существует как на внутриклеточном уровне, так и у отдельных частей тела и органов. Передача нервных импульсов происходит при помощи электрохимических сигналов. Некоторые животные (электрические скаты, электрический угорь) способны накапливать потенциал в несколько сот вольт и используют это для самозащиты.

Применение

При изучении электрического тока было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны. После того, как электрическому току нашли практическое применение, и по той причине, что электрический ток можно получать различными способами, в промышленной сфере возникло новое понятие - электроэнергетика.

Электрический ток используется как носитель сигналов разной сложности и видов в разных областях (телефон, радио, пульт управления, кнопка дверного замка и так далее).

В некоторых случаях появляются нежелательные электрические токи, например блуждающие токи или ток короткого замыкания.

Использование электрического тока как носителя энергии

  • получения механической энергии во всевозможных электродвигателях,
  • получения тепловой энергии в нагревательных приборах, электропечах, при электросварке,
  • получения световой энергии в осветительных и сигнальных приборах,
  • возбуждения электромагнитных колебаний высокой частоты, сверхвысокой частоты и радиоволн,
  • получения звука,
  • получения различных веществ путём электролиза, зарядка электрических аккумуляторов. Здесь электромагнитная энергия превращается в химическую,
  • создания магнитного поля (в электромагнитах).

Использование электрического тока в медицине


  • диагностика - биотоки здоровых и больных органов различны, при этом бывает возможно определить болезнь, её причины и назначить лечение. Раздел физиологии, изучающий электрические явления в организме называется электрофизиология.
    • Электроэнцефалография - метод исследования функционального состояния головного мозга.
    • Электрокардиография - методика регистрации и исследования электрических полей при работе сердца.
    • Электрогастрография - метод исследования моторной деятельности желудка.
    • Электромиография - метод исследования биоэлектрических потенциалов, возникающих в скелетных мышцах.
  • Лечение и реанимация: электростимуляции определённых областей головного мозга; лечение болезнь болезни Паркинсона и эпилепсии, также для электрофореза. Водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии и иных сердечных аритмиях.

Электробезопасность


Включает в себя правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия. Правила электробезопасности регламентируются правовыми и техническими документами, нормативно-технической базой. Знание основ электробезопасности обязательно для персонала, обслуживающего электроустановки и электрооборудование. Тело человека является проводником электрического тока. Сопротивление человека при сухой и неповрежденной коже колеблется от 3 до 100 кОм.

Ток, пропущенный через организм человека или животного, производит следующие действия:

  • термическое (ожоги, нагрев и повреждение кровеносных сосудов);
  • электролитическое (разложение крови, нарушение физико-химического состава);
  • биологическое (раздражение и возбуждение тканей организма, судороги)
  • механическое (разрыв кровеносных сосудов под действием давления пара, полученного нагревом током крови)

Основным фактором, обуславливающим исход поражения током, является величина тока, проходящего через тело человека. По технике безопасности электрический ток классифицируется следующим образом:

  • ""безопасным"" считается ток, длительное прохождение которого через организм человека не причиняет ему вреда и не вызывает никаких ощущений, его величина не превышает 50 мкА (переменный ток 50 Гц) и 100 мкА постоянного тока;
  • ""минимально ощутимый"" человеком переменный ток составляет около 0,6-1,5 мА (переменный ток 50 Гц) и 5-7 мА постоянного тока;
  • пороговым ""неотпускающим"" называется минимальный ток такой силы, при которой человек уже неспособен усилием воли оторвать руки от токоведущей части. Для переменного тока это около 10-15 мА, для постоянного - 50-80 мА;
  • ""фибрилляционным порогом"" называется сила переменного тока (50 Гц) около 100 мА и 300 мА постоянного тока, воздействие которого дольше 0,5 с с большой вероятностью вызывает фибрилляцию сердечных мышц. Этот порог одновременно считается условно смертельным для человека.

В России в соответствии c Правилами технической эксплуатации электроустановок потребителей (Приказ Минэнерго РФ от 13.01.2003 № 6 «Об утверждении Правил технической эксплуатации электроустановок потребителей») и Правилами по охране труда при эксплуатации электроустановок (Приказ Минэнерго РФ от 27.12.2000 N 163 «Об утверждении Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок»), установлено 5 квалификационных групп по электробезопасности в зависимости от квалификации и стажа работника и напряжения электроустановок.

Примечания

  • Баумгарт К. К., Электрический ток.
  • А.С. Касаткин. Электротехника.
  • Ю.Г. Синдеев. Электротехника с элементами электроники.