Биографии Характеристики Анализ

2 логические связки. Логические связки в нечеткой логике

символы логических языков, используемые для образования сложных высказываний (формул) из элементарных. Логическими связками называют также соответствующие этим символам союзы естественного языка. Обычно используются такие логические связки, как конъюнкция (союз «и», символические обозначения: &, л и точка в виде знака умножения, которые часто опускают, записывая конъюнкцию А и В как AB), дизъюнкция (нестрогий союз «или», обозначается как «v»), импликация («если..., то», обозначается с помощью знака, . Пропозициональная истинностная функция ставит в соответствие каждому перечисленному набору одно из значений истинности - 1 или 0. Всгго таких функций 16. Конъюнкция приписывает выражению А&.В значение 1 только в случае, когда как Л, так и В истинны, т. е. оба имеют значение 1, в остальных случаях значение А&.В равно 0. Дизъюнкция В, напротив, ложна только в одном случае, когда ложны как А, так и В. Импликация А э В является ложной только при истинном (антецеденте) А и ложном (консеквенте) В. В остальных случаях А => В принимает значение 1. Из четырех одноместных функций интерес представляет только отрицание, меняющее значение высказывания на противоположное: когда А - истинно, -А - ложно, и наоборот. Все другие унарные и бинарные классические функции могут быть выражены через представленные. Когда принятая в соответствующей семантике система логических связок позволяет дать определение всех остальных, ее называют функционально полной. К полным системам в классической логике относятся, в частности, конъюнкция и отрицание; дизъюнкция и отрицание; импликация и отрицание. Конъюнкция и дизъюнкция определимы друг через друга за счет эквивалентностей (А&В) = -i(-i/4v-i.) и (A v В) a -,(-&-), именуемых законами де Моргана, а также: (A^B)s(-iA^ В), (А&В) s -,(А э -), (В) = ((А => В) зА). Любая эквивалентность видаЛ = В имеет силу только тогда, когда общезначима (всегда истинна) конъюнкция (А =) В)&(В э А).

Функции антидизъюнкция и антиконъюнкция, определимые соответственно как -(В) и -(А&.В), также представляют каждая в отдельности функционально полную систему связок. Это последнее обстоятельство было известно уже Ч. Пирсу (неопубликованная при его жизни работа 1880 г.) и было переоткрыто X. Шеффером (H. M. Shefier). Используя антидизъюнкцию как единственную логическую связку, Шеффер в 1913 построил полное исчисление высказываний. Антидизъюнкцию обозначают А В и называют штрихом Ше4)фера, читая данное выражение, как «не-Д и не-В». Ж. Нико (J. G. P. Nicod) употребил то же обозначение для антиконъюнкции («Неверно, что одновременно А и В») и с помощью только этой связки в 1917 сформулировал полное исчисление высказываний с одной (всего!) аксиомой и одним правилом вывода. Т. о., штрихом Шеффера называют по сути саму вертикальную черту, которая у разных авторов может обозначать как антидизъюнкцию, так и антиконъюнкцию.

Экстенсиональность логических связок придает им однозначность, упрощает проблему построения логических исчислений, дает возможность решать для последних метатеоретические проблемы непротиворечивости, разрешимости, полноты (см. Металогика). Однако в некоторых случаях истинностно-функциональная трактовка связок приводит к значительному несоответствию с тем, как они понимаются в естественном языке. Так, указанная истинностная интерпретация импликации вынуждает признавать верными предложения вида «Если А, то В» даже в том случае, когда между высказываниями А и В (и, соответственно, событиями, о которых в них идет речь) нет никакой реальной связи. Достаточно, чтобы А было ложным или В - истинным. Поэтому из двух предложений: «Если А, то В» и «Если В, то А», по крайней мере одно приходится признавать верным, что плохо сообразуется с обычным употреблением условной связки. Импликацию в данном случае специально называют «материальной», отличая ее тем самым от условного союза, предполагающего, что между антецедентом и консеквентом истинного условного высказывания имеется действительная связь. При этом материальная импликация может прекрасно использоваться во многих контекстах, напр., математических, когда при этом не забывают о ее специфических особенностях. В некоторых случаях, однако, именно контекст не позволяет трактовать условный союз как материальную импликацию, предполагая взаимосвязь высказываний. Для анализа таких контекстов приходится строить специальные неклассические логики, напр., релевантные (см. Релевантная логика), в язык которых вместо материальной импликации (или наряду с ней) вводятся другие импликации, которые понимаются интенсионально (содержательно) и верность которых не может быть обоснована истинностно-функционально. Интенсионально могут трактоваться также другие логические связки.

    Логическим умножением или конъюнкцией называется операция, выражаемая связкой «и» и обозначаемая точкой « » (или знаками & или ). Высказывание АВ истинно тогда и только тогда, когда оба высказывания А и В истинны.

Таблица истинности функции логического умножения

F= А В

    Логическим сложением или дизъюнкцией называется операция, выражаемая связкой “или” (в неразделительном смысле этого слова) и обозначаемая «+» (или знаком ). Высказывание АВ ложно тогда и только тогда, когда оба высказывания А и В ложны.

Таблица истинности функции логического сложения

F= А В

    Импликацией называется операция, выражаемая связками “если..., то”, “из... следует”. Высказывание АВ ложно тогда и только тогда, когда А истинно, а В – ложно.

Таблица истинности логической функции «импликация»

F= А В

В обычной речи связка “если..., то” описывает причинно-следственную связь между высказываниями. Но в логических операциях смысл высказываний не учитывается. Высказывания А и В, образующие составное высказывание AВ, могут быть совершенно не связаны по содержанию. Рассматривается только их истинность или ложность.

    Логическим равенством или эквиваленцией (или двойной импликацией ) называется операция, выражаемая связками “тогда и только тогда”, "необходимо и достаточно”, “... равносильно...”, и обозначается знаком  или ~ . Высказывание АВ истинно тогда и только тогда, когда значения А и В совпадают.

Таблица истинности логической функции «эквиваленция»

F= А В

Импликацию можно выразить через дизъюнкцию и отрицание:

А В = Ā В.

Эквиваленцию можно выразить через отрицание, дизъюнкцию и конъюнкцию:

А  В = (Ā В) ( А).

Таким образом, операций отрицания, дизъюнкции и конъюнкции достаточно, чтобы описывать и обрабатывать логические высказывания.

Для каждого составного высказывания можно построить таблицу истинности, которая будет определять его истинность или ложность при различных комбинациях исходных значений простых высказываний. Для примера рассмотрим таблицу истинности логического выражения В) )

Таблица истинности

А В

Ā

В) )

Пример . Определите результат логической операции F = (A B) (C D) при заданных значениях логических переменных A, B, C – истина, D – ложь.

Решение .

(A B) (C D)

Из построенной таблицы истинности следует, что F=1

ЛОГИЧЕСКИЕ СВЯЗКИ – символы логических языков, используемые для образования сложных высказываний (формул) из элементарных. Логическими связками называют также соответствующие этим символам союзы естественного языка. Обычно используются такие логические связки, как конъюнкция (союз «и», символические обозначения: &, ∧ и точка в виде знака умножения, которые часто опускают, записывая конъюнкцию А и В как AB), дизъюнкция (нестрогий союз «или», обозначается как «∨»), импликация («если..., то», обозначается с помощью знака «⊃» и различного рода стрелок), отрицание («неверно, что...», обозначается: , ~ или чертой над отрицаемым выражением). Из перечисленных отрицание является одноместной (унарной) связкой. Другие являются двухместными (бинарными). В принципе логические связки могут быть сколь угодно местными, но на практике более, чем бинарные, используются очень редко. В классической логике (Логика, Логика высказываний) любые многоместные логические связки выразимы через перечисленные. Некоторый практический смысл дает использование тернарной логической связки, называемой условной дизъюнкцией, связывающей три высказывания А, В и С и означающей, что «А в случае В, и С в случае не-B» или формально: (B⊃A)&(B⊃C) (Сидоренко Е.А. Пропозициональное исчисление с условной дизъюнкцией. – В кн.: Методы логического анализа. М., 1977).

Классическая логика рассматривает логические связки экстенсионально (игнорируя содержательный смысл связываемых ими высказываний) как функции истинности, определяемые истинностными значениями связываемых ими высказываний. При двух имеющих место в этой логике истинностных значениях 1 (истинно) и 0 (ложно) высказывания А и В могут иметь четыре возможных набора упорядоченных истинностных значений: <1,1>, <1,0>, <0,1>, <0,0>. Пропозициональная истинностная функция ставит в соответствие каждому перечисленному набору одно из значений истинности – 1 или 0. Всего таких функций 16. Конъюнкция приписывает выражению А&В значение 1 только в случае, когда как А, так и В истинны, т.е. оба имеют значение 1, в остальных случаях значение А&В равно 0. Дизъюнкция Α ∨ В, напротив, ложна только в одном случае, когда ложны как А, так и В. Импликация А ⊃ В является ложной только при истинном (антецеденте) А и ложном (консеквенте) В. В остальных случаях А ⊃ В принимает значение 1. Из четырех одноместных функций интерес представляет только отрицание, меняющее значение высказывания на противоположное: когда А – истинно, A – ложно, и наоборот. Все другие унарные и бинарные классические функции могут быть выражены через представленные. Когда принятая в соответствующей семантике система логических связок позволяет дать определение всех остальных, ее называют функционально полной. К полным системам в классической логике относятся, в частности, конъюнкция и отрицание; дизъюнкция и отрицание; импликация и отрицание. Конъюнкция и дизъюнкция определимы друг через друга за счет эквивалентностей (А&В)≡(А∨В) и (A∨B)≡(А&B), именуемых законами де Моргана, а также: (Α⊃Β)≡(Α∨В), (А&В)≡(А⊃B), (Α∨В)≡((А⊃В)⊃A). Любая эквивалентность вида A ≡ В имеет силу только тогда, когда общезначима (всегда истинна) конъюнкция (А⊃В)&(В⊃A).

Функции антидизъюнкция и антиконъюнкция, определимые соответственно как (А∨В) и (А&В), также представляют каждая в отдельности функционально полную систему связок. Это последнее обстоятельство было известно уже Ч.Пирсу (неопубликованная при его жизни работа 1880 г.) и было переоткрыто X.Шеффером (H.M.Sheffer). Используя антидизъюнкцию как единственную логическую связку, Шеффер в 1913 построил полное исчисление высказываний. Антидизъюнкцию обозначают А∣В и называют штрихом Шеффера, читая данное выражение, как «не-A и не-B». Ж.Нико (J. G.P.Nicod) употребил то же обозначение для антиконъюнкции («Неверно, что одновременно А и B») и с помощью только этой связки в 1917 сформулировал полное исчисление высказываний с одной (всего!) аксиомой и одним правилом вывода. Т.о., штрихом Шеффера называют по сути саму вертикальную черту, которая у разных авторов может обозначать как антидизъюнкцию, так и антиконъюнкцию.

Экстенсиональность логических связок придает им однозначность, упрощает проблему построения логических исчислений, дает возможность решать для последних метатеоретические проблемы непротиворечивости, разрешимости, полноты (см. Металогика). Однако в некоторых случаях истинностно-функциональная трактовка связок приводит к значительному несоответствию с тем, как они понимаются в естественном языке. Так, указанная истинностная интерпретация импликации вынуждает признавать верными предложения вида «Если А, то B» даже в том случае, когда между высказываниями А и В (и, соответственно, событиями, о которых в них идет речь) нет никакой реальной связи. Достаточно, чтобы А было ложным или В – истинным. Поэтому из двух предложений: «Если А, то В» и «Если В, то А», по крайней мере одно приходится признавать верным, что плохо сообразуется с обычным употреблением условной связки. Импликацию в данном случае специально называют «материальной», отличая ее тем самым от условного союза, предполагающего, что между антецедентом и консеквентом истинного условного высказывания имеется действительная связь. При этом материальная импликация может прекрасно использоваться во многих контекстах, напр., математических, когда при этом не забывают о ее специфических особенностях. В некоторых случаях, однако, именно контекст не позволяет трактовать условный союз как материальную импликацию, предполагая взаимосвязь высказываний. Для анализа таких контекстов приходится строить специальные неклассические логики, напр., релевантные (см. Релевантная логика), в язык которых вместо материальной импликации (или наряду с ней) вводятся другие импликации, которые понимаются интенсионально (содержательно) и верность которых не может быть обоснована истинностно-функционально. Интенсионально могут трактоваться также другие логические связки.

Е.А. Сидоренко

Новая философская энциклопедия. В четырех томах. / Ин-т философии РАН. Научно-ред. совет: В.С. Степин, А.А. Гусейнов, Г.Ю. Семигин. М., Мысль, 2010, т. II, Е – М, с. 439-440.

Литература:

Чёрч А. Введение в математическую логику, т. 1. М., 1960;

Карри Х. Основания математической логики. М., 1969.

  • Аграрная и земельная реформы как неотъемлемое звено экономических реформ: понятия, исторические, идеологические и социально-экономические предпосылки
  • Адаптивные биологические ритмы. Циркадный и цирканный ритмы. Фотопериодизм.
  • Акцентологические нормы – умение правильно ставить ударение.
  • Аналогично вышеприведенному необходимо описать все основные геологические процессы, которые происходят на заданном участке).
  • Анатомо-морфологические и физиологические особенности лиц зрелого (среднего) и пожилого возраста
  • С грамматической точки зрения, высказывание – это повествовательное предложение.

    Сложные предложения строятся из выражений, обозначающих некоторые понятия, и логических связок. Слова и обороты НЕ, И, ИЛИ, ЕСЛИ … ТО, ТОГДА И ТОЛЬКО ТОГДА, СУЩЕСТВУЕТ, ВСЕ и некоторые другие называются логическими связками (операторами) и обозначают логические операции, с помощью которых из одних предложений строятся другие.

    Предложения без логических связок являются элементарными, их нельзя расчленить на части так, чтобы при этом каждая из частей была также предложением. Элементарные высказывания называются также высказываниями (суждениями). В высказываниях содержится информация о предметах, явлениях, процессах.

    Элементарное высказывание состоит из субъекта (логического подлежащего) – того, о чем идет речь в высказывании, и предиката (логического сказуемого) – того, что утверждается или отрицается в высказывании о субъекте.

    Таким образом, высказывание – это форма мышления, в которой утверждается или отрицается логическая связь между понятиями, выступающими в качестве субъекта и предиката данного высказывания. Соответствие или несоответствие этой связи реальности делает высказывание (суждение) истинным или ложным.

    Логическая связь между субъектом и предикатом высказывания выражается обычно в виде связки ЕСТЬ или НЕ ЕСТЬ, хотя в самом предложении эта связка может отсутствовать, а лишь подразумеваться. При этом субъект высказывания может выражаться не обязательно только подлежащим в предложении, так же как и предикат – не только сказуемым (это могут быть и другие члены предложения). Что считать в предложении субъектом, а что предикатом высказывания определяется логическимударением. Логическое ударение связано со смыслом, содержащимся в предложении для говорящего или слушающего.

    По форме высказывания делятся на простые (имеющие логическую форму «S есть P » или «S не есть P », где S – субъект, P – предикат) и сложные (грамматически выражающиеся сложными предложениями).

    Пример простого высказывания: «Все медведи любят мед», сложного – «Некоторые медведи любят мед и молодые побеги бамбука».

    Простые высказывания позволяют выразить следующие типы высказываний:

    · атрибутивные высказывания – выражают принадлежность или не принадлежность свойства объекту или классу (например, Земля есть планета);



    · высказывания об отношениях– говорят о наличии отношения между объектами (например, 3<5 );

    · высказывания существования (экзистенциональные высказывания)– говорят о существовании или не существовании объекта или явления.

    Операции на множестве высказываний.

    Из элементарных высказываний можно составлять сложные высказывания с помощью логических операций. Элементарные высказывания, входящие в состав сложного высказывания, связываются логическими операторами не по смысловому описанию, а только по их истинностным значениям. Следовательно, сложные высказывания являются функциями от входящих в них элементарных высказываний. Все операции в логике высказываний описываются только таблицей истинности.

    К операциям на множестве высказываний относятся:

    · Отрицание. Для него таблица истинности:

    В естественном языке она чаще всего интерпретируется союзом «и».

    · Дизъюнкция двух элементарных высказываний истинна тогда и только тогда, когда истинно хотя бы одно из элементарных высказываний. Ее иногда называется логическим сложением или логическим максимумом. Таблица истинности дизъюнкции выглядит так:

    · Операция «исключающего или» задается следующей таблицей истинности, она истинна, когда истинен только один из операндов. Эту операцию еще называют строгой дизъюнкцией или логическим неравенством.

    В таком виде часто формулируются математические теоремы. Если теорема сформулирована как-нибудь иначе, то ее можно перефразировать в указанном виде, не теряя её сущности.

    Широко употребительных логических связок пять. Это отрицание (изображается знаком ¬), конъюнкция (знак ), дизъюнкция (знак v), импликация (знак ) и эквивалентность (знак ).

    Высказывание ¬A (читается «не A ») означает, что высказывание A ложно. Иначе говоря, ¬A истинно тогда, когда A ложно, и ложно тогда, когда A истинно.

    Высказывание A B (читается «A и B ») означает утверждение, что верно и A , и B . Оно верно только в том случае, если верны оба высказывания A и B .

    Высказывание A v B A или B ») верно, если верно хотя бы одно из высказываний A и B .

    Высказывание A B читается «A влечет B » или «если A , то B ». Оно неверно, если A истинно, B ложно, и верно во всех остальных случаях.

    Наконец, высказывание A B верно в том случае, если высказывания A и B либо оба истинны, либо оба ложны.

    Для обозначения структуры связей пользуются скобками подобно тому, как это делается в алгебре для обозначения порядка выполнения арифметических действий. Так, например, высказывание ¬A B означает «A неверно, а B верно», а высказывание ¬(A B ) - «неверно, что A и B оба верны». И так же, как в алгебре, для уменьшения числа скобок устанавливается порядок старшинства связок по силе связи. Выше мы перечислили связки в порядке ослабления связи. Например, конъюнкция связывает сильнее, чем импликация, поэтому высказывание A B C понимается как A (B C ), но не как (A B ) C . Это соответствует тому, что в алгебре a + b ? c означает a + (b ? c ), но не (a + b ) ? c .

    Приведем несколько примеров составных высказываний.

    Известная скороговорка утверждает: «цапля чахла, цапля сохла, цапля сдохла». Это высказывание можно записать в виде: «цапля чахла» «цапля сохла» «цапля сдохла».

    Соотношение 0 < Z < 1 есть конъюнкция «Z > 0» «Z < 1», a соотношение |Z | > 1 - дизъюнкция «Z > 1» v «Z < -1». Определение логической связки данное выше, можно записать так:

    [(A B ) (A B ) v (¬A ¬B )] [(A B ) v (¬A ¬B ) (A B )]

    Предоставляем читателю перевести на обычный язык следующее высказывание:

    «Свет включен» «Лампочка не горит» «Нет электричества» v «Перегорели пробки» v «Перегорела лампочка».

    Если считать, что высказывания могут быть только истинными или ложными и, сверх этого, о высказывании ничего сказать нельзя, то перечисленных связок достаточно, чтобы выразить все мыслимые конструкции из высказываний. Достаточно даже двух связок, например отрицания и конъюнкции или отрицания и дизъюнкции. Такая ситуация имеет место, в частности, в отношении утверждений математики. Поэтому в математической логике других связок не используется.

    Однако естественный язык отражает большее разнообразие в оценке высказываний, чем просто деление их на истинные и ложные. Например, высказывание можно рассматривать как бессмысленное или как недостоверное, хотя и возможное («в этом лесу, наверное, есть волки»). Этим вопросам посвящены специальные разделы логики, в которых находятся другие связки. Большого значения для современной науки эти разделы (в отличие от классической математической логики) не имеют, и мы их касаться не будем.