Биографии Характеристики Анализ

Чему равен авогадро. Атомная единица массы

Закон Авогадро

На заре развития атомной теории () А. Авогадро выдвинул гипотезу, согласно которой при одинаковых температуре и давлении в равных объёмах идеальных газов содержится одинаковое число молекул. Позже было показано, что эта гипотеза есть необходимое следствие кинетической теории, и сейчас она известна как закон Авогадро. Его можно сформулировать так: один моль любого газа при одинаковых температуре и давлении занимает один и тот же объем, при нормальных условиях равный 22,41383 . Эта величина известна как молярный объем газа .

Сам Авогадро не делал оценок числа молекул в заданном объёме, но понимал, что это очень большая величина. Первую попытку найти число молекул, занимающих данный объем, предпринял в году Й. Лошмидт . Из вычислений Лошмидта следовало, что для воздуха количество молекул на единицу объёма составляет 1,81·10 18 см −3 , что примерно в 15 раз меньше истинного значения. Через 8 лет Максвелл привёл гораздо более близкую к истине оценку «около 19 миллионов миллионов миллионов» молекул на кубический сантиметр, или 1,9·10 19 см −3 . В действительности в 1 см³ идеального газа при нормальных условиях содержится 2,68675·10 19 молекул . Эта величина была названа числом (или постоянной) Лошмидта . С тех пор было разработано большое число независимых методов определения числа Авогадро. Превосходное совпадение полученных значений является убедительным свидетельством реального количества молекул.

Измерение константы

Официально принятое на сегодня значение числа Авогадро было измерено в 2010 году . Для этого использовались две сферы, сделанные из кремния-28 . Сферы были получены в Институте кристаллографии имени Лейбница и отполированы в австралийском Центре высокоточной оптики настолько гладко, что высоты выступов на их поверхности не превышали 98 нм . Для их производства был использован высокочистый кремний-28, выделенный в нижегородском Институте химии высокочистых веществ РАН из высокообогащённого по кремнию-28 тетрафторида кремния, полученного в Центральном конструкторском бюро машиностроения в Санкт-Петербурге.

Располагая такими практически идеальными объектами, можно с высокой точностью подсчитать число атомов кремния в шаре и тем самым определить число Авогадро. Согласно полученным результатам, оно равно 6,02214084(18)×10 23 моль −1 .

Связь между константами

  • Через произведение постоянной Больцмана Универсальная газовая постоянная , R =kN A .
  • Через произведение элементарного электрического заряда на число Авогадро выражается постоянная Фарадея , F =eN A .

См. также

Примечания

Литература

  • Число Авогадро // Большая советская энциклопедия

Wikimedia Foundation . 2010 .

Смотреть что такое "Число Авогадро" в других словарях:

    - (постоянная Авогадро, обозначение L), постоянная, равная 6,022231023, соответствует числу атомов или молекул, содержащихся в одном МОЛЕ вещества … Научно-технический энциклопедический словарь

    число Авогадро - Avogadro konstanta statusas T sritis chemija apibrėžtis Dalelių (atomų, molekulių, jonų) skaičius viename medžiagos molyje, lygus (6,02204 ± 0,000031)·10²³ mol⁻¹. santrumpa(os) Santrumpą žr. priede. priedas(ai) Grafinis formatas atitikmenys:… … Chemijos terminų aiškinamasis žodynas

    число Авогадро - Avogadro konstanta statusas T sritis fizika atitikmenys: angl. Avogadro’s constant; Avogadro’s number vok. Avogadro Konstante, f; Avogadrosche Konstante, f rus. постоянная Авогадро, f; число Авогадро, n pranc. constante d’Avogadro, f; nombre… … Fizikos terminų žodynas

    Авогадро постоянная (число Авогадро) - число частиц (атомов, молекул, ионов) в 1 моле вещества (моль это количество вещества, в котором содержится столько же частиц, сколько атомов содержится точно в 12 граммах изотопа углерода 12), обозначаемое символом N = 6,023 1023. Одна из… … Начала современного естествознания

    - (число Авогадро), число структурных элементов (атомов, молекул, ионов или др. ч ц) в ед. кол ва в ва (в одном моле). Названа в честь А. Авогадро, обозна чается NA. А. п. одна из фундаментальных физических констант, существенная для определения мн … Физическая энциклопедия

    - (число Авогадро; обозначается NА), число молекул или атомов в 1 моле вещества, NА = 6,022045(31) х 1023моль 1; назв. по имени А. Авогадро … Естествознание. Энциклопедический словарь

    - (число Авогадро), число частиц (атомов, молекул, ионов) в 1 моле в ва. Обозначается NA и равна (6,022045 … Химическая энциклопедия

    Na = (6,022045±0,000031)*10 23 число молекул в моле любого вещества или число атомов в моле простого вещества. Одна из фундаментальных постоянных, с помощью которой можно определить такие величины, как, например, массу атома или молекулы (см.… … Энциклопедия Кольера

Из школьного курса химии нам известно, что если взять один моль какого-нибудь вещества, то в нем будет 6.02214084(18).10^23 атомов или других структурных элементов (молекул, ионов и т.д.). Для удобства число Авогадро принято записывать в таком виде: 6.02 . 10^23.

Однако почему постоянная Авогадро (на украинском языке «стала Авогадро») равна именно такому значению? Ответ на этот вопрос в учебниках отсутствует, а историки от химии предлагают самые разные версии. Такое впечатление, что число Авогадро имеет некий тайный смысл. Ведь есть же магические числа, куда некоторые относят число «пи», числа фибоначчи, семерку (на востоке восьмерку), 13 и т.д. Будем бороться с информационным вакуумом. О том, кто такой Амедео Авогадро, и почему в честь этого ученого помимо сформулированного им закона, найденной константы был также назван кратер на Луне, мы говорить не будет. Об этом и без того написано множество статей.

Если быть точным, не занимался подсчетами молекул или атомов в каком-то определенном объеме. Первым, кто попытался выяснить, сколько молекул газа

содержится в заданном объеме при одинаковом давлении и температуре, был Йозеф Лошмидт, а было это в 1865 году. В результате своих экспериментов Лошмидт пришел к выводу, что в одном кубическом сантиметре любого газа в обычных условиях находится 2.68675 . 10^19 молекул.

Впоследствии было изобретено независимых способов того, как можно определить число Авогадро и поскольку результаты в большей части совпадали, то это лишний раз говорило в пользу действительного существования молекул. На данный момент число методов перевалило за 60, но в последние годы ученые стараются еще больше повысить точность оценки, чтобы ввести новое определение термина «килограмм». Пока что килограмм сопоставляется с выбранным материальным эталоном без какого-либо фундаментального определения.

Однако вернемся к нашему вопросу - почему данная константа равна 6.022 . 10^23?

В химии, в 1973 г., для удобства в расчетах было предложено ввести такое понятие как «количество вещества». Основной единицей для измерения количества стал моль. Согласно рекомендациям IUPAC, количество любого вещества пропорционально числу его конкретных элементарных частиц. Коэффициент пропорциональности не зависит от типа вещества, а число Авогадро является его обратной величиной.

Для наглядности возьмем какой-нибудь пример. Как известно из определения атомной единицы массы, 1 а.е.м. соответствует одной двенадцатой от массы одного атома углерода 12С и составляет 1.66053878.10^(−24) грамма. Если умножить 1 а.е.м. на константу Авогадро, то получится 1.000 г/моль. Теперь возьмем какой-нибудь скажем, бериллий. Согласно таблице масса одного атома бериллия составляет 9.01 а.е.м. Посчитаем чему равен один моль атомов этого элемента:

6.02 х 10^23 моль-1 * 1.66053878х10^(−24) грамм * 9.01 = 9,01 грамм/моль.

Таким образом, получается, что численно совпадает с атомной.

Постоянная Авогадро была специально выбрана так, чтобы молярная масса соответствовала атомной либо безразмерной величине - относительной молекулярной Можно сказать, что число Авогадро обязано своему появлению, с одной стороны, атомной единице массы, а с другой - общепринятой единице для сравнения массы - грамму.

N A = 6,022 141 79(30)×10 23 моль −1 .

Закон Авогадро

На заре развития атомной теории () А. Авогадро выдвинул гипотезу, согласно которой при одинаковых температуре и давлении в равных объёмах идеальных газов содержится одинаковое число молекул. Позже было показано, что эта гипотеза есть необходимое следствие кинетической теории, и сейчас она известна как закон Авогадро. Его можно сформулировать так: один моль любого газа при одинаковых температуре и давлении занимает один и тот же объем, при нормальных условиях равный 22,41383 . Эта величина известна как молярный объем газа .

Сам Авогадро не делал оценок числа молекул в заданном объеме, но понимал, что это очень большая величина. Первую попытку найти число молекул, занимающих данный объем, предпринял в Й. Лошмидт ; было установлено, что в 1 см³ идеального газа при нормальных условиях содержится 2,68675·10 19 молекул. По имени этого ученого указанная величина была названа числом (или постоянной) Лошмидта . С тех пор было разработано большое число независимых методов определения числа Авогадро. Превосходное совпадение полученных значений является убедительным свидетельством реального существования молекул.

Связь между константами

  • Через произведение постоянной Больцмана Универсальная газовая постоянная , R =kN A .
  • Через произведение элементарного электрического заряда на число Авогадро выражается постоянная Фарадея , F =eN A .

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Постоянная Авогадро" в других словарях:

    постоянная Авогадро - Avogadro konstanta statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas(ai) Grafinis formatas atitikmenys: angl. Avogadro constant vok. Avogadro Konstante, f; Avogadrosche Konstante, f rus. константа Авогадро … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    постоянная Авогадро - Avogadro konstanta statusas T sritis fizika atitikmenys: angl. Avogadro’s constant; Avogadro’s number vok. Avogadro Konstante, f; Avogadrosche Konstante, f rus. постоянная Авогадро, f; число Авогадро, n pranc. constante d’Avogadro, f; nombre… … Fizikos terminų žodynas

    постоянная Авогадро - Avogadro konstanta statusas T sritis Energetika apibrėžtis Apibrėžtį žr. priede. priedas(ai) MS Word formatas atitikmenys: angl. Avogadro’s constant vok. Avogadro Konstante, f; Avogadrosche Konstante, f rus. константа Авогадро, f; постоянная… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

    - (Авогадро число) (NA), число молекул или атомов в 1 моле вещества; NA=6,022?1023 моль 1. Названа по имени А. Авогадро … Современная энциклопедия

    Авогадро постоянная - (Авогадро число) (NA), число молекул или атомов в 1 моле вещества; NA=6,022´1023 моль 1. Названа по имени А. Авогадро. … Иллюстрированный энциклопедический словарь

    Авогадро (Avogadro) Амедео (9.8.1776, Турин, ‒ 9.7.1856, там же), итальянский физик и химик. Получил юридическое образование, затем изучал физику и математику. Член корреспондент (1804), ординарный академик (1819), а затем директор отделения… …

    - (Avogadro) Амедео (9.8.1776, Турин, 9.7.1856, там же), итальянский физик и химик. Получил юридическое образование, затем изучал физику и математику. Член корреспондент (1804), ординарный академик (1819), а затем директор отделения физико… … Большая советская энциклопедия

    Постоянная тонкой структуры, обычно обозначаемая как, является фундаментальной физической постоянной, характеризующей силу электромагнитного взаимодействия. Она была введена в 1916 году немецким физиком Арнольдом Зоммерфельдом в качестве меры… … Википедия

    - (число Авогадро), число структурных элементов (атомов, молекул, ионов или др. ч ц) в ед. кол ва в ва (в одном моле). Названа в честь А. Авогадро, обозна чается NA. А. п. одна из фундаментальных физических констант, существенная для определения мн … Физическая энциклопедия

    ПОСТОЯННАЯ - величина, имеющая неизменное значение в области её использования; (1) П. Авогадро то же, что Авогадро (см.); (2) П. Больцмана универсальная термодинамическая величина, связывающая энергию элементарной частицы с её температурой; обозначается k,… … Большая политехническая энциклопедия

Книги

  • Биографии физических констант. Увлекательные рассказы об универсальных физических постоянных. Выпуск 46
  • Биографии физических констант. Увлекательные рассказы об универсальных физических постоянных , О. П. Спиридонов. Настоящая книга посвящена рассмотрению универсальных физических постоянных и их важной роли в развитии физики. Задача книги - в популярной форме рассказать о появлении в истории физики…

Количество вещества ν равно отношению числа молекул в данном теле к числу атомов в 0,012 кг углерода, то есть количеству молекул в 1 моле вещества.
ν = N / N A
где N – количество молекул в данном теле, N A – количество молекул в 1 моле вещества, из которого состоит тело. N A – это постоянная Авогадро. Количество вещества измеряется в молях. Постоянная Авогадро – это количество молекул или атомов в 1 моле вещества. Эта постоянная получила своё название в честь итальянского химика и физика Амедео Авогадро (1776 – 1856). В 1 моле любого вещества содержится одинаковое количество частиц.
N A = 6,02 * 10 23 моль -1 Молярная масса – это масса вещества, взятого в количестве одного моля:
μ = m 0 * N A
где m 0 – масса молекулы. Молярная масса выражается в килограммах на моль (кг/моль = кг*моль -1). Молярная масса связана с относительной молекулярной массой соотношением:

μ = 10 -3 * M r [кг*моль -1 ]
Масса любого количества вещества m равна произведению массы одной молекулы m 0 на количество молекул:
m = m 0 N = m 0 N A ν = μν
Количество вещества равно отношению массы вещества к его молярной массе:

ν = m / μ
Массу одной молекулы вещества можно найти, если известны молярная масса и постоянная Авогадро:
m 0 = m / N = m / νN A = μ / N A

Идеальный газ - математическая модель газа, в которой предполагается, что потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями. В расширенной модели идеального газа частицы, из которого он состоит, имеют также форму в виде упругих сфер или эллипсоидов, что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц и др. }