Биографии Характеристики Анализ

Что известно о силе света и формула ее расчета. Световые величины и единицы

Глава седьмая

ОСВЕЩЕНИЕ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ

7.1. Основные понятия светотехники. Световой поток, сила света, освещенность, яркость светящейся поверхности, коэффициент отражения света.

Для нормальной жизнедеятельности человека, особенно в условиях производства, важную роль играет качество освещения. Плохо освещенные опасные зоны, слепящие источники света, резкие тени от предметов и оборудования ухудшают ориентацию работающих, вследствие чего не исключена возможность травмирования. Недостаточное или неправильное освещение рабочих мест и всей рабочей зоны вызывает преждевременное утомление человека, может быть причиной не только снижения производительности труда, но и несчастного случая. Неправильно выбранные при проектировании электрического освещения осветительные приборы, а также нарушения требований главы «Электрическое освещение» Правил технической эксплуатации электроустановок могут быть причиной пожара, взрыва и других аварий на производстве.

Освещение производственных помещений и рабочих мест может быть естественным 1 , искусственным и совмещенным.

1 Расчет естественного освещения в основном сводится к определению площади световых проемов (окон) в помещении согласно указаниям СНиП II 4-79 «Естественное и искусственное освещение. Нормы проектирования».

Естественный (солнечный) свет оказывает положительное воздействие на зрение и в целом на организм человека. Поэтому все помещения в соответствии с Санитарными нормами проектирования промышленных предприятий СН 245-71, как правило, должны иметь естественное освещение.

Искусственное освещение осуществляется с помощью электрических источников света - ламп накаливания, люминесцентных или иных газоразрядных ламп.

Основными величинами, характеризующими видимый свет, являются световой поток источника света, сила света, освещенность, яркость светящейся поверхности, коэффициент отражения света.

Световой поток Φ - это мощность световой энергии, оцениваемая по световому ощущению, воспринимаемому зрительным органом человека. Единицей измерения светового потока является люмен (лм). Об этой единице можно судить из примера, что световой поток лампы накаливания мощностью (потребляемой из электросети) 25 Вт при напряжении 220 В составляет около 200 лм.

Сила света характеризует его интенсивность в различных точках освещаемого пространства. Сила света равна отношению светового потока к телесному углу ω, в пределах которого световой поток распределен равномерно: I=Φ/ω. За единицу силы света принята кандела (кд), определяемая эталонным источником света. Таким образом, люмен есть световой поток, испускаемый точечным источником света в телесном (пространственном) угле в один стерадиан (ст) при силе света в 1 кд.

Освещенность (Е) - поверхностная плотность падающего на данную поверхность светового потока, измеряется в люксах (лк), т. е. E=Φ/S; 1 лк равен 1 лм/м 2 .

Яркость L - световая величина, непосредственно воспринимаемая глазом, она определяется значением силы света, излучаемого с единицы площади поверхности в заданном направлении под углом α, где L = Iρ/S, ρ- коэффициент отражения поверхности, ρ = Φ отр /Φ пад, т. е. равен отношению светового потока, отраженного от поверхности, к падающему на нее световому потоку.

Одним из самых интересных и неоднозначным явлением нашего мира является свет. Для физики это один из основополагающих параметров многочисленных расчетов. С помощью света ученые надеются отыскать разгадку существования нашей вселенной, а также открыть для человечества новые возможности. В повседневной жизни свет также имеет большое значение, особенно при создании качественного освещения в различных помещениях.

Одним из важных параметров света является его сила, которая характеризует мощность данного явления. Именно силе света и расчету этого параметра будет посвящена данная статья.

Общие сведения о понятии

В физике под силой света (Iv) подразумевается мощность светового потока, определяемая внутри конкретного телесного угла. Из этого понятия следует, что под данным параметром подразумевается не весь имеющийся в пространстве свет, а лишь та его часть, которая излучается в определенном направлении.

В зависимости от имеющегося источника излучения, данный параметр будет увеличиваться или уменьшаться. На его изменения будет оказывать прямое воздействие значения телесного угла.

Обратите внимание! В некоторых ситуациях сила света будет одинаковой для угла любого значения. Это возможно в тех ситуациях, когда источник светового излучения создает равномерное освещение пространства.

Этот параметр отражает физическое свойство света, благодаря чему он отличается от таких измерений, как яркость, которая отражает субъективные ощущения. Помимо этого сила света в физике рассматривается как мощность. Если быть точнее, она оценивается как единица мощности. При этом мощность здесь отличается от своего привычного понятия. Здесь мощность зависит не только от энергии, которую излучает осветительная установка, но и от такого понятия, как длина волны.
Стоит отметить, что чувствительность людей к световому излучению напрямую зависит от длины волны. Эта зависимость нашла отражение в функции относительно спектральной световой эффективности. При этом сама сила света является зависимой от световой эффективности величиной. При длине волны в 550 нанометров (зеленый цвет) данный параметр примет свое максимальное значение. В результате этого глаза человека будут более или менее чувствительны к световому потоку при различных параметрах длины волны.
Единица измерения для данного показателя является кандел (кд).

Обратите внимание! Сила излучения, которое исходит от одной свечки, будет примерно равна одной канделе. Ранее применявшаяся для формулы расчета международная свеча равнялась 1,005 кд.

Свечение одной свечи

В редких случаях применяется устаревшая единица измерения – международная свеча. Но в современном мире уже практически везде используется единица измерения для этой величины – кандела.

Диаграмма фотометрического параметра

Iv представляет собой наиболее важный фотометрический параметр. Кроме этой величины к важнейшим фотометрическим параметрам относится яркость, а также освещенность. Все эти четыре величины активно используются при создании системы освещения в самых разнообразных помещениях. Без них невозможно оценить требуемый уровень освещённости для каждой отдельной ситуации.

Четыре важнейших световых характеристики

Для простоты понимания данного физического явления необходимо рассмотреть диаграмму, которая изображает плоскость, отражающую распространение света.

Диаграмма для силы света

Благодаря диаграмме видно, что Iv зависит от направления к источнику излучения. Это означает, что для светодиодной лампочки, для которой направление максимального излучения будет принято за 0°, тогда при измерении нужной нам величины в направлении 180° получится меньшее значение, чем для направления 0°.
Как видно, на диаграмме излучение, которое распространяется двумя источниками (желтый и красный), будет охватывать равную площадь. При этом желтое излучение будет рассеянным, по аналогии со светом свечи. Его мощность примерно будет равняться 100 кд. Причем значение этой величины будет одинаковой во всех направлениях. В тоже время красный будет направленным. В положении 0° он будет иметь максимальное значение в 225 кд. При этом данное значение будет уменьшаться в случае отклонения от 0°.

Обозначение параметра в СИ

Поскольку Iv является физической величиной, то ее можно рассчитать. Для этого используется специальная формула. Но прежде, чем дойти до формулы, необходимо разобраться в том, как искомая величина записывается в системе СИ. В этой системе наша величина будет отображаться как J (иногда она обозначается как I), единица измерения которой буде кандела (кд). Единица измерения отражает, что Iv, испускаемая полным излучателем на площади сечения 1/600000 м2. будет направляться в перпендикулярном данному сечению направлении. При этом температура излучателя будет раной уровню, при котором при давлении 101325 Па будет наблюдаться затвердение платины.

Обратите внимание! Через канделу можно определить остальные фотометрические единицы.

Поскольку световой поток в пространстве распространяется неравномерно, то необходимо ввести такое понятие, как телесный угол. Он обычно обозначается символом .
Сила света используется для расчетов, когда применяется формула размерности. При этом данная величина через формулы связана со световым потоком. В такой ситуации световой поток будет произведением Iv на телесный угол, к которому и будет распространяться излучение.
Световой поток (Фv) есть произведение силы света на телесный угол, в котором распространяется поток. Ф=I .

Формула светового потока

Из этой формулы следует, что Фv представляет собой внутренний поток, распространяемый в пределах конкретного телесного угла (один стерадиан) при наличии Iv в одну канделу.

Обратите внимание! Под стерадианом понимают телесный угол, вырезающий на поверхности сферы участок, который равен квадрату радиуса данной сферы.

При этом через световое излучение можно связать Iv и мощность. Ведь под Фv понимается еще и величина, которая характеризует мощность излучения светового излучения при восприятии его усредненным человеческим глазом, имеющего чувствительностью к излучению определенной частоты. В результате из вышеприведенной формулы можно вывести следующее уравнение:

Формула для силы света

Это отлично видно на примере светодиодов. В таких источниках светового излучения его сила обычно оказывается равной потребляемой мощности. В результате, чем выше будет потребление электроэнергии, тем выше будет уровень излучения.
Как видим, формула для расчета нужной нам величины не так и сложна.

Дополнительные варианты расчета

Поскольку распределение излучения, идущего от реального источника в пространство, будет неравномерно, то Фv уже не сможет выступать в роли исчерпывающей характеристикой источника. Но только за исключением ситуации, когда одновременно с этим не будет определяться распределение испускаемого излучения по разнообразным направлениям.
Чтобы охарактеризовать распределение Фv в физике используют такое понятие, как пространственной плотности излучения светового потока для различных направлений пространства. В данном случае для Iv необходимо использовать уже знакомую формулу, но в несколько дополненном виде:

Вторая формула для расчета

Эта формула позволит оценить нужную величину в различных направлениях.

Заключение

Сила света занимает важное место не только в физике, но и в более приземленных, бытовых моментах. Это параметр особенно важен для освещения, без которого невозможно существование привычного нам мира. При этом данное значение используется не только в разработке новых осветительных приборов с более выгодными техническими характеристиками, но и при определенных расчетах, связанных с организацией системы подсветки.

Подсветка зданий грунтовыми светильниками- обзор самых популярных, монтаж
Детские люстры для комнаты девочки:критерии выбора

Вопросы госэкзамена по дисциплине «Электрическое освещение»

Сами по себе энергия и поток излучения не могут свидетельствовать о большем или меньшем восприятии человеком этого излучения. Действительно, если излучения находятся в инфракрасной или ультрафиолетовой области, то какой бы мощностью они не обладали, для глаза человека они останутся невидимыми. Если излучения одинаковой мощности принадлежат видимой области спектра, человек будет воспринимать их по-разному: в большей мере при длинах волн около 555 нм (жёлтые и зелёные излучения) и значительно слабее на границах видимого диапазона (красные и фиолетовые). Следовательно, для оценки восприятия излучений человеком необходимо учитывать не только энергию излучения, но и относительную спектральную чувствительность глаза, которая является функцией длины волны излучения.

Световой поток Ф – мощность потока излучения, оцениваемая по световому ощущению, которое она вызывает у селективного приемника - стандартного фотометрического наблюдателя, криваяотносительной спектральной чувствительности глаза которогостандартизована МКО. Иначе говоря, световой поток‑ это эффективно преобразованный глазом поток излучения.

За единицу светового потока в соответствии с международным соглашением принят люмен (лм).

Постоянного переводного коэффициента из Ватт (лучистый поток) в люмены (световой поток) не существует. Точнее, такой коэффициент существует, но он различен для разных длин волн.

Cила света I – это пространственная плотность светового потока в заданном направлении:

I a = dФ/dw,

гдеФ ‑ световой поток, лм;

w телесный (пространственный) угол с вершиной в точке расположения источника света, в пределах которого равномерно распределен этот световой поток, ср.

За единицу телесного угла – стерадиан (ср) – принимается угол, который, имея вершину в центре сферы, вырезает на ее поверхности сферический участок, по площади равный квадрату радиуса.

Телесный угол сферы равен 4π..

Единицей силы света в соответствии с решением, принятым 13-й Генеральной конференцией по мерам и весам в 1967 г., служит кандела [кд]. Кандела основная единица в системе Си наравне с метром, килограммом, секундой, ампером и др.

Освещенность Е – это поверхностная плотность падающего светового потока. Освещенность элемента поверхности в заданной точке определяется отношением светового потока , падающего на рассматриваемый элемент поверхности, к площади dS 2 (индексом 2 принято обозначать освещаемую поверхность) этого элемента поверхности: Е = dФ/dS 2 .

Единицей освещенности служит люкс (лк). Люкс равен освещенности поверхности площадью в 1м 2 , по которой равномерно распределен световой поток в 1 лм:

Освещенность элемента поверхности, создаваемая точечным источником, пропорциональна силе света и косинусу угла падения света на освещаемую поверхность, и обратно пропорциональна квадрату расстояния от источника света до этой поверхности.

Яркость L a ‑ это поверхностная плотность силы света в заданном направлении, т.е. отношение силы света в заданном направлении к площади проекции светящейся поверхности на плоскость, перпендикулярную данному направлению.

Единицей яркости служит кандела на квадратный метр (кд/м 2).

Уровень ощущения света человеком зависит от яркости светящегося объекта.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

Исходная величина

Преобразованная величина

люкс метр-кандела сантиметр-кандела фут-кандела фот нокс кандела-стерадиан на кв. метр люмен на кв. метр люмен на кв. сантиметр люмен на кв. фут ватт на кв. см (при 555 нм)

Подробнее об освещенности

Общие сведения

Освещенность - это световая величина, которая определяет количество света, попадающего на определенную площадь поверхности тела. Она зависит от длины волны света, так как человеческий глаз воспринимает яркость световых волн разной длины, то есть разного цвета, по-разному. Освещенность вычисляют отдельно для волн разной длины, так как люди воспринимают свет с длиной волны в 550 нанометров (зеленый), и цвета, находящиеся рядом в спектре (желтый и оранжевый), как самые яркие. Свет, образуемый более длинными или короткими волнами (фиолетовый, синий, красный) воспринимается, как более темный. Часто освещенность связывают с понятием яркости.

Освещенность обратно пропорциональна площади, на которую падает свет. То есть, при освещении поверхности одной и той же лампой, освещенность большей площади будет меньше, чем освещенность меньшей площади.

Разница между яркостью и освещенностью

Яркость Освещенность

В русском языке слово «яркость» имеет два значения. Яркость может означать физическую величину, то есть характеристику светящихся тел, равную отношению силы света в определенном направлении к площади проекции светящейся поверхности на плоскость, перпендикулярную этому направлению. Также она может определять более субъективное понятие об общей яркости, которое зависит от многих факторов, например особенностей глаз того, кто смотрит на этот свет, или количества света в окружающей среде. Чем меньше света вокруг, тем ярче кажется источник света. Чтобы не путать эти два понятия с освещенностью стоит запомнить, что:

яркость характеризует свет, отраженный от поверхности светящегося тела или посылаемый этой поверхностью;

освещенность характеризует падающий на освещаемую поверхность свет.

В астрономии яркость характеризует как излучающую (звезды), так и отражающую (планеты) способность поверхности небесных тел и измеряется по фотометрической шкале звездных яркостей. Причем, чем ярче звезда, тем меньше величина ее фотометрической яркости. Самые яркие звезды имеют отрицательную величину звездной яркости.

Единицы измерения

Освещенность чаще всего измеряют в единицах СИ люксах . Один люкс равен одному люмену на квадратный метр. Те, кто предпочитают метрическим единицам имперские, используют для измерения освещенности фут-канделу . Часто ее применяют в фотографии и кино, а также в некоторых других областях. Фут в названии используется потому, что одна фут-кандела обозначает освещенность одной канделой поверхности в один квадратный фут, которую измеряют на расстоянии одного фута (чуть больше 30 см).

Фотометр

Фотометр - это устройство, которое измеряет освещенность. Обычно свет поступает на фотодетектор, преобразуется в электрический сигнал и измеряется. Иногда встречаются фотометры, которые работают по другому принципу. Большая часть фотометров показывают информацию об освещенности в люксах, хотя иногда используются и другие единицы. Фотометры, называемые экспонометрами, помогают фотографам и операторам определить выдержку и диафрагму. Кроме этого фотометры используют для определения безопасной освещенности на рабочем месте, в растениеводстве, в музеях, и во многих других отраслях, где необходимо знать и поддерживать определенную освещенность.

Освещенность и безопасность на рабочем месте

Работа в темном помещении грозит ухудшением зрения, депрессией и другими физиологическими и психологическими проблемами. Именно поэтому многие правила охраны труда включают требования о минимальной безопасной освещенности рабочего места. Измерения обычно проводят фотометром, который выдает конечный результат в зависимости от площади распространения света. Это необходимо для того, чтобы обеспечить достаточную освещенность во всем помещении.

Освещенность в фото- и видеосъемке

В большинстве современных камер имеются встроенные экспонометры, упрощающие работу фотографа или оператора. Экспонометр необходим для того, чтобы фотограф или оператор могли определить, сколько света нужно пропустить на пленку или фотоматрицу в зависимости от освещенности снимаемого объекта. Освещенность в люксах преобразуется экспонометром в возможные комбинации выдержки и диафрагмы, которые потом выбираются вручную или автоматически, в зависимости от того, как настроена камера. Обычно предлагаемые комбинации зависят от настроек в камере, а также от того, что фотограф или оператор хочет изобразить. В студии и на съемочной площадке часто используют внешний или встроенный в камеру экспонометр, чтобы определить, достаточно ли освещения обеспечивают используемые источники света.

Для получения хороших фотографий или видеоматериала в условиях плохого освещения на пленку или фотоматрицу должно попасть достаточное количество света. Этого не трудно добиться с помощью фотоаппарата - нужно только установить правильную экспозицию. С видеокамерами дело обстоит сложнее. Для видеосъемки высокого качества обычно нужно устанавливать дополнительное освещение, иначе видео будет слишком темным или с сильным цифровым шумом. Это не всегда возможно. Некоторые видеокамеры специально разрабатывают для съемки в условиях слабой освещенности.

Камеры, предназначенные для съемки в условиях слабой освещенности

Есть два вида камер для съемок в условиях слабой освещенности: в одних используется оптика более высокого уровня, а в других - более совершенная электроника. Оптика пропускает больше света в объектив, а электроника лучше обрабатывает даже тот малый свет, что попадает в камеру. Обычно именно с электроникой связаны проблемы и побочные эффекты, описанные ниже. Светосильная оптика позволяет снять видео более высокого качества, но ее недостатки - дополнительный вес из-за большого количества стекла и значительно более высокая цена.

Кроме этого, на качество съемки влияет установленная в видео- и фотокамерах одноматричная или трехматричная фотоматрица. В трехматричной матрице весь поступающий свет делится с помощью призмы на три цвета - красный, зеленый и синий. Качество изображения в темных условиях лучше в трехматричных камерах, чем в одноматричных, так как при прохождении через призму рассеивается меньше света, чем при его обработке фильтром в одноматричной камере.

Существует два основных вида фотоматриц - на приборах с зарядовой связью (ПЗС) и выполненные на основе КМОП-технологии (комплементарный металлооксидный полупроводник). В первом обычно установлен датчик, на который поступает свет, и процессор, который обрабатывает изображение. В КМОП-матрицах датчик и процессор обычно объединены. В условиях недостаточного освещения камеры с ПЗС-матрицами обычно дают изображение лучшего качества, а достоинства КМОП-матриц в том, что они дешевле и потребляют меньше энергии.

Размер фотоматрицы также влияет на качество изображения. Если съемка происходит с малым количеством света, то чем больше матрица - тем лучше качество изображения, а чем меньше матрица - тем больше проблем с изображением - на нем появляется цифровой шум. Большие матрицы устанавливают в более дорогих камерах, и для них необходима более мощная (и, как следствие - тяжелая) оптика. Фотокамеры с такими матрицами позволяют снимать профессиональное видео. Например, в последнее время появился ряд фильмов полностью снятых на такие камеры как Canon 5D Mark II или Mark III, у которых размер матрицы - 24 x 36 мм.

Производители обычно указывают, в каких минимальных условиях может работать камера, например при освещенности от 2 люкс. Эта информация не стандартизирована, то есть производитель решает сам, какое видео считать качественным. Иногда две камеры с одним и тем же показателем минимальной освещенности дают разное качество съемки. Альянс отраслей электронной промышленности EIA (от английского Electronic Industries Association) в США предложил стандартизированную систему определения светочувствительности камер, но пока он используется только некоторыми производителями и не принят повсеместно. Поэтому часто, чтобы сравнить две камеры с одинаковыми световыми характеристиками, нужно испробовать их в действии.

На данный момент любая камера, даже рассчитанная на работу в условиях низкой освещенности, может давать картинку низкого качества, с высокой зернистостью и послесвечением. Чтобы решить некоторые из этих проблем возможно предпринять следующие шаги:

  • Снимать на штативе;
  • Работать в ручном режиме;
  • Не использовать режим переменного фокусного расстояния, а вместо этого перенести камеру как можно ближе к объекту съемки;
  • Не использовать автоматическую фокусировку и автоматический выбор ISO - при большей величине ISO увеличивается шум;
  • Снимать с выдержкой в 1/30;
  • Использовать рассеянный свет;
  • Если нет возможности установить дополнительное освещение, то использовать весь возможный свет вокруг, например уличные фонари и лунный свет.

Несмотря на отсутствие стандартизации о чувствительности камер к освещенности, для ночной съемки все равно лучше выбрать камеру, на которой указано, что она работает при 2 люкс или ниже. Также следует помнить, что даже если камера действительно хорошо снимает в темных условиях, ее чувствительность к освещенности, указанная в люксах - чувствительность к свету, направленному на объект, но камера на самом деле получает свет, отраженный от объекта. При отражении часть света рассеивается, и чем дальше камера от объекта - тем меньше света попадает в объектив, что ухудшает качество съемки.

Экспозиционное число

Экспозиционное число (англ. Exposure Value, EV) - целое число, характеризующее возможные комбинации выдержки и диафрагмы в фото, кино- или видеокамере. Все сочетания выдержки и диафрагмы, при которых на пленку или светочувствительную матрицу попадает одинаковое количество света, имеют одинаковое экспозиционное число.

Несколько комбинаций выдержки и диафрагмы в камере при одном и том же экспозиционном числе позволяют получить примерно одинаковое по плотности изображение. Однако изображения при этом будут различными. Это связано с тем, что при разных значениях диафрагмы глубина резко изображаемого пространства будет различной; при разных значениях выдержки изображение на пленке или матрице будет находиться разное время, в результате чего оно будет в разной степени смазано или совсем не смазано. Например, сочетания f/22 - 1/30 и f/2.8 - 1/2000 характеризуются одним и тем же экспозиционным числом, но первое изображение будет иметь большую глубину резкости и может оказаться смазанным, а второе будет иметь малую глубину резкости и, вполне возможно, совсем не будет смазанным.

Бóльшие значения EV используются, если объект съемки лучше освещен. Например, экспозиционное число (при светочувствительности ISO 100) EV100 = 13 можно использовать при съемке ландшафта, если на небе имеется облачность, а EV100 = –4 годится для съемки яркого полярного сияния.

По определению,

EV = log 2 (N 2 /t )

2 EV = N 2 /t , (1)

    где
  • N - диафрагменное число (например: 2; 2,8; 4; 5,6, и т. д.)
  • t - выдержка в секундах (например: 30, 4, 2, 1, 1/2, 1/4, 1/30, 1/100, и т. д.)

Например, для комбинации f/2 и 1/30, экспозиционное число

EV = log 2 (2 2 /(1/30)) = log 2 (2 2 × 30) = 6.9 ≈ 7.

Это число может быть использовано для съемки ночных сцен и освещенных витрин. Комбинация f/5.6 с выдержкой 1/250 дает экспозиционное число

EV = log 2 (5.6 2 /(1/250)) = log 2 (5.6 2 × 250) = log 2 (7840) = 12.93 ≈ 13,

которое можно использовать для съемки пейзажа с облачным небом и без теней.

Следует отметить, что аргумент логарифмической функции должен быть безразмерным. В определении экспозиционного числа EV игнорируется размерность знаменателя в формуле (1) и используется только численное значение выдержки в секундах.

Взаимосвязь экспозиционного числа с яркостью и освещенностью объекта съемки

Определение экспозиции по яркости света, отраженного от объекта съемки

При использовании экспонометров или люксметров, измеряющих отраженный от объекта съемки свет, выдержка и диафрагма связаны с яркостью объекта съемки следующим соотношением:

N 2 /t = LS /K (2)

  • N - диафрагменное число;
  • t - выдержка в секундах;
  • L - усредненная яркость сцены в канделах на квадратный метр (кд/м²);
  • S - арифметическое значение светочувствительности (100, 200, 400, и т. д.);
  • K - калибровочный коэффициент экспонометра или люксметра для отраженного света; Canon и Nikon используют K = 12.5.

Из уравнений (1) и (2) получаем экспозиционное число

EV = log 2 (LS /K )

2 EV = LS /K

При K = 12,5 и ISO 100, имеем следующее уравнение для яркости:

2 EV = 100L /12.5 = 8L

L = 2 EV /8 = 2 EV /2 3 = 2 EV–3 .

Освещенность и музейные экспонаты

Скорость, с которой ветшают, выцветают и иным образом портятся музейные экспонаты, зависит от их освещенности и от силы источников света. Сотрудники музеев измеряют освещенность экспонатов, чтобы убедиться, что на экспонаты попадает безопасное количество света, а также и для того, чтобы обеспечить достаточно света для посетителей, чтобы они могли хорошо рассмотреть экспонат. Освещенность можно измерить фотометром, но во многих случаях это бывает нелегко, так как он должен находиться как можно ближе к экспонату, а для этого часто необходимо убрать защитное стекло и выключить сигнализацию, а также получить на это разрешение. Чтобы облегчить задачу, работники музея часто пользуются фотоаппаратами как фотометрами. Конечно, это не замена точным измерениям в ситуации, где найдена проблема с количеством света, который попадает на экспонат. Но для того, чтобы проверить, нужна ли более серьезная проверка с фотометром, фотоаппарата вполне достаточно.

Экспозиция определяется фотоаппаратом на основе показаний об освещенности, и, зная экспозицию, можно найти освещенность, проделав ряд несложных вычислений. В этом случае сотрудники музеев пользуются либо формулой, либо таблицей с переводом экспозиции в единицы освещенности. Во время вычислений не стоит забывать, что камера поглощает часть света, и учитывать это в конечном результате.

Освещенность в других сферах деятельности

Садоводы и растениеводы знают, что растения нуждается в свете для фотосинтеза, и им известно, сколько света необходимо каждому растению. Они измеряют освещенность в теплицах, садах и огородах, чтобы убедиться в том, что каждое растение получает достаточное количество света. Некоторые используют для этого фотометры.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Свет представляет собой форму энергии, которая распространяется в пространстве в виде электромагнитных волн с частотами, воспринимаемыми человеческими глазами. Фотометрия – это методы измерения световой энергии оптического диапазона. Световым потоком называют протекающую через некоторую поверхность единицу времени световую энергию, оцениваемую по зрительному ощущению, т.е. световой поток – это мощность светового излучения. Зрительное ощущение меняется зрительно и качественно. Источник света наз. Точечным если его размеры пренибрижительно малы по сравнению расстоянием, на котором оценивается его действие. Для описания светового потока испускаемого источником света по разным направлениям используют понятие телесного угла , т.е. области пространства представляющей собой форму конуса. Ω=S/R 2 – телесный угол. Ω=4П – телесный угол сферы. Силой света называют световой поток созданный источником света в единичном телесном угле. I c =Ф с /Ω – Сила света (кд(канделах)) I c =Ф с /4П – сила света вокруг точечного источника (сферы) Ф с =I c * Ω – световой поток. Источник света почти всегда освещает световую поверхность неравномерно. Освещенностью называют отношение светового тока падающего на некоторый участок поверхности к площади этой поверхности. Е=Ф с /S=I c /R 2 – Освещенность (ЛК(люкс)). Первый закон освещённости : Освещенность прямо пропорциональна силе света источника и обратно пропорциональна квадрату расстояния от источника.Е 0 =I c /h 2 – освещенность под источником света. Второй закон освещенности : Освещенность поверхности создаваемая параллельными лучами пропорциональна косинусу угла падения луча. E=E 0* cosα=I c /R 2 * cosα

53. линзы. Оптическая сила. Формула тонкой линзы.

Линза – это прозрачное тело ограниченная двумя сферическими поверхностями. Если середина Лизы тоньше чем её края, то она называется рассеивающей, а сама она вогнутая. Если середина у линзы тоньше чем края, то она называется собирающей. |O 1 O 2 | - главная оптическая ось. Любая прямая проходящая через центр линзы называется побочной осью. Точка, в которой пересекается все лучи после преломления в собирающей линзе, падающей параллельно главной оптической оси называется главным фокусом линзы . У линзы 2 главных фокуса. Линия, на которой лежат фокусы Лизы, называется фокальной плоскостью . Собирательная линза даёт действительное изображение, а рассеивающие мнимое изображение. Величину равную обратному фокусному расстоянию называют силой оптической линзы . Д=1/F – оптическая сила линзы (диоптрия). F – Фокус. 1/F=1/f+1/d – формула тонкой линзы (для собир.) 1/f=1/F+1/d - формула тонкой линзы (для рассеивающей). Г=H/h=f/d – увеличение линзы.